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Abstract

Different from most existing tasks relying on abundant labeled data, Few-shot Named Entity Recognition (NER) aims
to develop NER systems that are capable of learning from a small set of labeled samples and then generalizing well
to new, unseen data. In this paper, with the intention of obtaining a model that can better adapt to new domains, we
design a novel three-stage framework for Few-shot NER, including teacher span recognizer, student span recognizer
and entity classifier. We first train a teacher span recognizer which is based on a global boundary matrix to obtain
soft boundary labels. Then we leverage the soft boundary labels learned by the teacher model to assist in training the
student span recognizer,which can smooth the training process of span recognizer. Finally, we adopt the traditional
prototypical network as entity classifier and incorporate the idea of prompt learning to construct a more generalizable
semantic space. Extensive experiments on various benchmarks demonstrate that our approach surpasses prior
methods.
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1. Introduction

Named Entity Recognition (NER) is a fundamental
task in natural language processing (NLP), aim-
ing to extract pre-defined named entities from text
data.With the assistance of deep neural networks,
previous methods (Lample et al., 2016; Chiu and
Nichols, 2016; Li et al., 2022) have demonstrated
remarkable performance on fully supervised NER
tasks with sufficient labeled data.However, the is-
sue of data scarcity is a major challenge for NER
in practical scenarios.To this end, much recent re-
search(Ding et al., 2021; Huang et al., 2020, 2021)
in NER focuses on developing few-shot learning
methods that can leverage limited labeled data and
generalize to new domain.

Existing research on few-shot NER mainly fol-
lows two directions: one is to use the idea of meta-
learning, focusing on studying the model’s fast
adaptation ability; the other’s task setting is sim-
ilar to full-shot scenario, emphasizing tapping into
the universal capabilities of pre-trained large lan-
guage models(LLMs). In this paper, we focus on
the former and conduct further exploration. Several
recent studies(Fritzler et al., 2019; Hou et al., 2020;
Yang and Katiyar, 2020; Das et al., 2021; Ji et al.,
2022) on meta-based Few-shot NER combines the
strategies of metric-learning and sequence label-
ing, where classification is performed by evaluating
the distance between each token in query set and
the tokens in support set or the prototype of each
entity class. Despite effectively avoiding the over-
fitting issue induced by scarce samples with their
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metric-learning-based approaches, the presence of
non-entity noise can still cause interference to their
method, as all non-entity tokens share the same
prototype ’O’.To tackle this problem, some meth-
ods(Ma et al., 2022; Wang et al., 2022) decompose
Few-shot NER task into two stages: entity span de-
tection and entity typing, which productively solves
the noise trouble arising from ’O’ label. However,
there also exist additional limitations in their decom-
position methods. First, for the span recognizer,
the conventional hard labeling method completely
separates the commonalities between episodes,
and the model just blindly adapts to new domains
while discarding all previous domain knowledge.
Such an approach makes the overall model train-
ing process too sharp and aggressive, while also
making it difficult to ensure that the model can even-
tually converge to a good initialization point. More-
over, limited by the number of samples,employing
a conventional prototypical network (ProtoNet) as
entity classifier can have disadvantages like weak
prototype representation accuracy and insufficient
semantic space generalization ability.

In this paper, we propose a seminal three-stage
framework for Few-shot NER to address the limita-
tions mentioned above, which mainly includes three
submodules: Student span recognizer, Teacher
span recognizer and Entity classifier.We design a
soft-label-enhanced span recognizer in the first two
stages and a prompt-based prototypical network
(Prompt-ProtoNet) in Entity classifier. Specifically,
the span-based Teacher span recognizer is trained
in a conventional manner, and eventually a teacher
model with universal capabilities is obtained to pro-
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vide guidance to the student model. Then, we in-
troduce the idea of soft label learning in Student
span recognizer to smooth the domain transition
process during training.Note that different from (Hin-
ton et al., 2015) who propose soft label learning
for model compression, we utilize soft boundary
learning to smooth the training process, thereby
retaining universal capabilities and eventually ob-
tain more universal initial model weights. For Entity
classifier, we propose Prompt-ProtoNet. Specifi-
cally, we employ prompt learning to build a general
semantic space that assists in the construction of
specific semantic space.With the help of prompt
learning, we can take full advantage of LLMs to im-
prove the accuracy of prototypical representation
and the generalization of semantic space.

We summarize our main contributions as fol-
lows:

• We propose a novel three-stage framework for
Few-shot NER, including: Student span rec-
ognizer, Teacher span recognizer and Entity
classifier.

• As far as we know, we are the pioneers in
applying the idea of soft label learning to the
few-shot field, which is helpful for obtaining
more universal and faster domain-adaptive ini-
tial model weights.

• Our work is the first to integrate prompt learn-
ing with prototypical network, which can take
advantage of LLMs for a more generalizable
semantic space and more accurate entity pro-
totype representation in ProtoNet.

• Extensive experiments demonstrate that our
method achieves new state-of-the-art perfor-
mance on two widely used benchmarks.

2. Related work

2.1. Few-shot learning

Few-shot learning(Wang et al., 2020) aims at train-
ing models that can generalize to new classes only
with very limited amounts of labeled data and now
meta-learning(Hochreiter et al., 2001) has become
a popular paradigm as it aligns well with the goal
of few-shot tasks.Recent studies center around
metric-based methods.Matching Networks(Vinyals
et al., 2016) performs classification by measuring
cosine similarity between images and the samples
in the support set.Prototypical networks(Snell et al.,
2017) utilizes the distance between each token and
the prototypes constructed from the support set to
determine its class.

2.2. Few-shot NER

Different from conventional NER with adequate la-
beled data, Few-shot NER is confronted with data
scarcity and domain transfer. Existing research on
few-shot NER mainly follows two ideas.One is us-
ing meta-learning methods.This type of research
often follows the N-way K-shot meta-task paradigm
and ultimately results in obtaining optimal model
initialization parameters by training over a large
number of domain episodes.The other is similar to
full-shot scenarios, often combined with transfer
learning and prompt learning, aiming to achieve
model optimization in certain specific domains.

Numerous studies on meta-learning Few-shot
NER are based on metric-learning.Among them,
Fritzler et al. (2019) and Ji et al. (2022) em-
ploy prototypical networks.Zhang et al. (2023) pro-
pose a prompting method via k-nearest neighbor
search.Das et al. (2021) first leverage Gaussian
Embedding with a contrastive learning method.Cao
et al. (2023) adopt Gaussian distribution as tran-
sition function.Additionally, Wang et al. (2021) de-
compose the task into a series of span-level proce-
dures.Fang et al. (2023) uses a memory module
to utilize the information from the source domain
to augment prototypes. To address the noise dis-
turbance caused by non-entity tokens, Ma et al.
(2022), Wang et al. (2022) and Li et al. (2023)
split Few-shot NER into two stages, while Ma et al.
(2023) propose a representation learning method
for "O" and unlabeled entities. Chen et al. (2023)
also injects contextual NER capabilities into PLMs
through pretraining.Dong et al. (2023) devise a
joint pre-training and semantic decoupling method
for Few-shot NER.Moreover, some studies explore
the potential of LLMs in few-shot NER.Ashok and
Lipton (2023) propose a prompting-based NER
method.Ma et al. (2023) propose an adaptive filter-
then-rerank paradigm.

Some studies abandon the meta-learning task
setting and use prompt learning to discover the uni-
versal capabilities inherent in LLMs for Few-shot
NER.Lee et al. (2021) find that concatenating suit-
able in-contexts after the input is effective. Ma
et al. (2021) transform NER into an LM task consis-
tent with the pre-training stage.Chen et al. (2021),
Lu et al. (2022) and Chen et al. (2022) redesign
the NER task as a generative manner. However,
these prompt-based techniques which abandon the
meta-learning setting tend to lack stability, and of-
ten require the designer to continuously optimize
and adjust the prompt when facing new domain
data.

In this paper, we mainly follow in the footsteps
of the former(meta-learning based research) for
further exploration.
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Figure 1: An example of the 2-way 1-shot setting
on NER task.

3. Task Definition

For few-shot tasks, a model need to be trained
in source domain Dtrain and then finetuned in a
target domain Dtest with sample-limited support
set Stest.We follow the N-way K-shot setting as
Ding et al. (2021) which means N entity types
to be recognized and K samples available for
each entity type in one episode.Figure 1 shows
an example of a 2-way 1-shot NER task. More
specifically, dataset D is composed of episodes
and D = Dtrain ∪ Deval ∪ Dtest. In an episode
E = (S,Q, T ) ∈ D, S, Q and T mean support set,
query set and entity type set, respectively.During
the training phase, Strain, Qtrain and Ttrain are all
available for model training while only Stest and
Ttest can be used in testing phase.

In this paper, we handle Few-shot NER as a
span extraction task.For each sample (X,P, Y ) in
episode E , X = {xi}Li=1 represents the input sen-
tence X with L tokens. P = {(it, jt)}Mt=1 means
that the sentence X contains M entities, and the
boundary index of the t-th entity is located by it and
jt. Moreover, Y = {yit,jt}

M
t=1 is the entity type set

corresponding to the entity span set P .

4. Methods

In this work, we split Few-shot NER into three sub-
modules:Teacher span recognizer, Student span
recognizer and Entity classifier. In general, we use
the first two stages to train a soft-label-enhanced
span recognizer, and then train an entity classifier
in the last stage. Figure 2 illustrates the overall
framework of our method.

4.1. Span recognizer
In this section, we introduce the basic structure of
our span recognizers.Note that the teacher span
recognizer and student span recognizer share
the same model architecture, and the only differ-
ence is in the loss function.For an input sentence

X = {xi}Li=1 ∈ Strain with L tokens, we obtain
the contextualized representations H = {hi}Li=1

via BERT(Devlin et al., 2019).Furthermore, we use
two feedforward layers to construct key and query
which depend on start and end indices, respec-
tively.

qi = Wqhi + bq, ki = Wkhi + bk (1)

where qi ∈ Rd stands for entity head representa-
tion and ki ∈ Rd denotes entity tail representa-
tion. Wq ∈ Rd×d and Wk ∈ Rd×d are trainable
weights.bq ∈ Rd and bk ∈ Rd are biases. Next,
we utilize self-attention mechanism(Vaswani et al.,
2017) to calculate the probability score for each
span.The specific probability scoring method refers
to SpanProto(Wang et al., 2022):

s(i, j) = qTi kj +Wv(hi + hj) (2)

where, Wv ∈ Rd×d is a trainable weight.

4.2. Teacher span recognizer
We first train a teacher span recognizer to learn soft
boundary labels.In particular, we expect that the
teacher model pays more attention to the capture
of entity boundary information, regardless of entity
type.Thus, we label the span belonging to any entity
as the probability of 1, while the non-entity span as
the probability of 0. During the training phase of
teacher model, we adopt the loss function proposed
by Su et al. (2022a)1:

Lhard = log

1 +
∑

(i,j)∈Pos

e−s(i,j)

+

log

1 +
∑

(i,j)∈Neg

es(i,j)

 (3)

where, Pos and Neg denote the entity set and the
non-entity set, respectively.Note that to maintain
the consistency between training phase and testing
phase, we only use support set Strain ∈ Etrain for
model training. As a result, we can get the soft
boundary label of span (i, j) as follows:

ρ(i, j) = sigmoid(s(i, j)). (4)

4.3. Student span recognizer
For span recognizer, the conventional hard labeling
method completely separates the commonalities
between episodes. During training, the model just
blindly adapts to new domain while constantly dis-
carding previous domain knowledge. We believe
that in the meta-learning setting, such a training

1https://spaces.ac.cn/archives/8373
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Figure 2: The framework of our three-stage model.We first train a reliable teacher span recognizer on
the training set.Then, with the assistance of soft labels provided by the teacher model, we train a Student
span recognizer with enhanced generalization ability.In the entity classification stage, we take advantages
of prompt to build two semantic space for entity classification.

method will aggravate model forgetting, which hin-
ders the model from learning task-relevant meta
information and prevents it from converging to a
general and quickly domain-adaptable initialization
point. To address this issue, we consider letting
a teacher model that has previewed knowledge
and has certain universal capabilities provide assis-
tance, so that the student model can softly adapt to
new domains. This allows the student to not only
adapt well to new domains, but also converge to a
stable and universal initialization point.

During the training phase of student span recog-
nizer, we employ the soft loss function proposed
by Su et al. (2022b)2:

Lsoft = log

1 +
∑
(i,j)

e−s(i,j)+log ρ(i,j)

+

log

1 +
∑
(i,j)

es(i,j)+log(1−ρ(i,j))

 (5)

Note that in order to avoid potential prediction errors
in soft label, we will also take into account the actual
hard label.The hard loss function is the same as
Eq.(3).As a result, the training loss of student span

2https://spaces.ac.cn/archives/9064
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Figure 3: Mapping process of Prompt-ProtoNet.

recognizer can be calculated as:

Lspan = Lhard + λLsoft (6)

where, λ is a hyper-parameter.Note that similar to
the teacher model, student span recognizer also
only uses Strain for training.

4.4. Entity classifier
For entity classifier, we intend to assign a pre-
defined entity type for the span extracted by stu-
dent span recognizer.Inspired by prototypical net-
works(Snell et al., 2017), we further incorporate
the idea of prompt learning and propose Prompt-
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ProtoNet as our entity classifier. The Mapping pro-
cess of Prompt-ProtoNet is visualized in Figure 3.

4.4.1. General semantic space

During model training, we randomly sample
an episode Etrain = (Strain,Qtrain, Ttrain) ∈
Dtrain. For an input sentence Xk = {xi}Li=1 ∈
Strain, k means the k-th sample in support set
Strain.We first concatenate a prompt template
“This sentence includes entities : µ1, µ2, ...” to
the end of it.Note that µt is the description of entity
class t ∈ Ttrain in episode Etrain.As a result, a new
sentence X k = {x1, ..., xL, [SEP ], ..., µ1, µ2, ...}
can be obtained. Then, we use a multi-layer
perceptron MLPgen to map embeddings into a
general semantic space and obtain Hk

gen =
{h1, ..., hL, ..., hµ1 , hµ2 , ...}. We take the first token
of hµt

as a satellite node of prototype ctgen.Within
a K-shot task, we can acquire At, a set of satel-
lite nodes for entity class t in support set Strain,
where |At| = K. Consequently, the general pro-
totype ctgen of entity class t can be determined by
averaging the satellite nodes in At:

ctgen =
1

K

∑
at∈At

at. (7)

The span representation in general semantic space
can be computed by summing up the boundary
token representations: pi,j = hi + hj . Here, pi,j
denotes the representation of span starting with i
and ending with j.

During training time, for (XQ, PQ, YQ) ∈ Qtrain,
we aim to minimize the distance between each
entity span and its corresponding prototype. The
loss in general semantic space can be calculated
as follows:

Lgen =
1

|PQ|
∑

(i,j)∈PQ
yi,j∈YQ

− log θ (yi,j |(i, j))

θ (yi,j |(i, j)) = softmax(−d(cyi,j
gen, pi,j))

(8)

and d(·, ·) denotes Euclidean distance.yi,j repre-
sents the entity type of the span starting with i and
ending with j.

4.4.2. Specific semantic space

Similar with section 4.4.1, given the concatenated
sentenceX k, embeddings are mapped into the spe-
cific semantic space by another MLPspe and then
we can obtain Hk

spe =
{
h

′

1, ..., h
′

L, ..., h
′

µ1
, h

′

µ2
, ...

}
.

Likewise, we calculate span representation by:
p

′

i,j = h
′

i + h
′

j .
Different from general prototypes, specific proto-

types are constructed by entity spans.Specifically,
we acquire the specific prototype ctspe for entity type

t ∈ Ttrain by averaging span representations which
share the same entity type t:

ctspe =
1

Mt

∑
PS∈S

∑
(i,j)∈PS
yi,j∈YS

I(yi,j = t)p
′

i,j

Mt =
∑
PS∈S

∑
(i,j)∈PS
yi,j∈YS

I(yi,j = t).
(9)

where, I(·) is a filtering function.Mt is the count
of entities belonging to class t in support set S.
Then with the help of specific prototype ctspe,we can
compute specific loss like Eq.(8):

Lspe =
1

|PQ|
∑

(i,j)∈PQ
yi,j∈YQ

− log θ
′
(yi,j |(i, j)) .

θ
′
(yi,j |(i, j)) = softmax(−d(cyi,j

spe , p
′

i,j))

(10)

Afterwards, we establish a connection between
two semantic spaces.The connection step involves
another MLP to map the embeddings of prototypes
from general semantic space into specific semantic
space:

(ctspe)
′
= MLPpro(c

t
gen). (11)

For episode Etrain = (Strain,Qtrain, Ttrain), we
attempt to reduce the distance between original
specific prototype and the new specific prototype
mapped from general semantic space.The loss
function between prototypes that share the same
entity class t can be formulated as follows:

Lpro =
1

N

∑
t∈Ttrain

− log θ(ctspe|(ctspe)
′
) (12)

The final loss is a weighted sum of the three
losses:

Lclassier = Lgen + Lspe + αLpro. (13)
where, α is hyper-parameter.

4.5. Inference
Given an episode Etest = (Stest,Qtest, Ttest), we
first finetune student span recognizer in support set
Stest and predict candidate entities in Qtest.Note
that for fast adaptation to new domains, student
span recognizer is only finetuned according to hard
labels as Eq.(3).Then we select the spans that sat-
isfy ρ(i, j) ≥ 0.5 as candidate entities.Next, we
utilize Prompt-ProtoNet to classify the candidate
entities.We first employ Stest to build prototypes,
and then classify each candidate entity according
to its distance to each specific prototype. Addi-
tionally, drawing inspiration from SpanProto(Wang
et al., 2022), we mark candidate spans as negative
if their distances to all prototypes are larger than r
and r is a hyper-parameter.

4https://github.com/microsoft/vert-
papers/tree/master/papers
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Models
Intra Inter

1∼2-shot 5∼10-shot Avg. 1∼2-shot 5∼10-shot Avg.5 way 10 way 5 way 10 way 5 way 10 way 5 way 10 way
ProtoBERT† 20.76±0.84 15.05±0.44 42.54±0.94 35.40±0.13 28.44 38.83±1.49 32.45±0.79 58.79±0.44 52.92±0.37 45.75
NNShot† 25.78±0.91 18.27±0.41 36.18±0.79 27.38±0.53 26.90 47.24±1.00 38.87±0.21 55.64±0.63 49.57±2.73 47.83
StructShot† 30.21±0.90 21.03±1.13 38.00±1.29 26.42±0.60 28.92 51.88±0.69 43.34±0.10 57.32±0.63 49.57±3.08 50.53
CONTaiNER(Das et al., 2021) 40.43 33.84 53.70 47.49 43.87 55.95 48.35 61.83 57.12 55.81
SpanProto∗ 39.76±1.72 31.62±0.73 51.05±0.96 46.05±0.31 42.12 55.72±1.21 50.22±1.03 62.65±0.11 57.64±0.45 56.56
ESD† 36.08±1.60 30.00±0.70 52.14±1.50 42.15±2.60 40.09 59.29±1.25 52.16±0.79 69.06±0.80 64.00±0.43 61.13
DecomposedMetaNER† 49.48±0.85 42.84±0.46 62.92±0.57 57.31±0.25 53.14 64.75±0.35 58.65±0.43 71.49±0.47 68.11±0.05 65.75
Ours 56.35±0.64 50.51±0.36 65.22±0.52 58.35±0.19 57.61 68.20±0.79 64.72±0.23 72.86±0.46 68.62±0.27 68.60

Table 1: F1 scores on FewNERD.The best results are in bold.† denotes the result reported in Ma et al.
(2022)4.∗ represents the results we reproduce with the same dataset version.

1-shot 5-shot
News Wiki Social Mixed Avg. News Wiki Social Mixed Avg.

TransferBERT† 4.75±1.42 0.57±0.32 2.71±0.72 3.46±0.54 2.87 15.36±2.81 3.62±0.57 11.08±0.57 35.49±7.60 16.39
SimBERT† 19.22 6.91 5.18 13.99 11.33 32.01 10.63 8.20 21.14 18.00
Matching Network† 19.50±0.35 4.73±0.16 17.23±2.75 15.06±1.61 14.13 19.85±0.74 5.58±0.23 6.61±1.75 8.08±0.47 10.03
ProtoBERT† 32.49±2.01 3.89±0.24 10.68±1.40 6.67±0.46 13.43 50.06±1.57 9.54±0.44 17.26±2.65 13.59±1.61 22.61
L-TapNet+CDT(Hou et al., 2020) 44.30±3.15 12.04±0.65 20.80±1.06 15.17±1.25 23.08 45.35±2.67 11.65±2.34 23.30±2.80 20.95±2.81 25.31
DecomposedMetaNER† 46.09±0.44 17.54±0.98 25.14±0.24 34.13±0.92 30.73 58.18±0.87 31.36±0.91 31.02±1.28 45.55±0.90 41.53
Ours 57.42±0.28 30.89±0.75 27.91±0.44 37.72±0.83 38.49 62.44±0.56 38.57±0.64 31.23±1.02 46.64±0.49 44.62

Table 2: F1 scores on Cross-DataSet.The best results are in bold.† denotes the result reported in Ma
et al. (2022).

5. Experiments

5.1. Datasets
We evaluate our approach on two popular meta-
based datasets: Few-NERD(Ding et al., 2021)5 and
Cross-DataSet(Hou et al., 2020)6. Few-NERD is
annotated with a schema of 8 coarse-grained and
66 fine-grained entity types.Moreover, it involves
two different tasks: Intra and Inter.For Intra, en-
tities in the training set, validation set, and test
set belong to different coarse-grained types.For In-
ter, coarse-grained types can be shared across
different sets, while there is no overlap between
fine-grained entity types.Few-NERD also adopts
four sampling settings for each task: 5-way 1∼2-
shot, 5-way 5∼10-shot, 10-way 1∼2-shot and 10-
way 5∼10-shot. Cross-DataSet is based on four
datasets from different domains: CoNLL-03(Tjong
Kim Sang, 2002)(News), GUM(Zeldes, 2017)(Wiki),
WNUT-17(Derczynski et al., 2017)(Social) and
OntoNotes(Pradhan et al., 2013)(Mixed).It has two
sampling settings: 1-shot and 5-shot.To ensure
fairness in comparison, we directly use the data
provided by Hou et al. (2020).

5.2. Baselines
We compare the performance of our approach with
various strong Few-shot NER models, including
ProtoBERT(Ding et al., 2021; Hou et al., 2020),
NNshot(Ding et al., 2021), StructShot(Ding et al.,
2021), CONTaiNER(Das et al., 2021), ESD(Wang
et al., 2021), L-TapNet+CDT(Hou et al., 2020),

5https://github.com/thunlp/Few-NERD
6https://github.com/AtmaHou/FewShotTagging

TransferBERT(Hou et al., 2020), SimBERT(Hou
et al., 2020), Matching Network(Hou et al., 2020),
DecomposedMetaNER(Ma et al., 2022) and Span-
Proto(Wang et al., 2022). Details about them are
present in A.1.

5.3. Implementation details
Following previous methods, we use BERT-base-
uncased(Devlin et al., 2019) as our encoder.Within
our three-stage framework, the BERT encoders
used by the three models are independent, and the
parameters of Student span recognizer are trained
from scratch.In detail, we use AdamW(Loshchilov
and Hutter, 2019) as our optimizer.We set the
dropout ratio(Srivastava et al., 2014) to 0.3, batch
size to 4, max sequence length to 128 and train
all models for 1 epoch.In addition, we perform grid
search to find the best parameters setting for each
benchmark.As a result, weight λ for Student span
recognizer, weight α for Classifier, threshold r are
0.6, 0.2 and 5.0, respectively.More details about
parameters are provided in Appendix A.2.

5.4. Main results
Table 1 and Table 2 respectively illustrate the com-
parison results of our approach and other baselines
on Few-NERD and Cross-DataSet.Based on them,
we can conclude that our approach outperforms
previous methods with a large margin.Under exactly
the same task setting, the comparison between our
approach and current SOTA model Decomposed-
MetaNER(the one with the best performance and
the most comprehensive experiments at present)
reveals that our approach achieves an average
improvement of 4.34% and 2.85% on Few-NERD



1299

Intra Inter
Ours 57.48 68.60
1)w/o Soft Boundary Learning 56.12 66.63
2)w/o Prompt 53.28 65.07
3)w/o Soft Boundary Learning w/o Prompt 51.85 61.90

Table 3: The average F1 scores of ablation study
on Few-NERD.

Figure 4: Case study of two different span recog-
nizers in Few-NERD inter. Normal SR: directly
use teacher span recognizer for entity span extract-
ing. SL-enhanced SR: use soft-label-enhanced
student span recognizer as an alternative.

intra and Few-NERD inter, respectively.Likewise,
on the 1-shot setting and 5-shot setting of Cross-
DataSet, our approach exhibits an average im-
provement of 7.76% and 3.04%, respectively.In
addition, Table 1 also indicates that our method
shows a more significant improvement on the more
challenging Few-NERD intra than on Few-NERD
inter, which indicates that our method has better
domain adaptation capability and richer universal
knowledge.Furthermore, we observe that our ap-
proach shows a higher improvement on the 1-shot
setting compared to the 5-shot setting.We attribute
this to the fact that the prompt-based general se-
mantic space provides effective guidance in the
case of sparse data, but its advantage becomes
less apparent in the the 5-shot setting which con-
tains relatively abundant data.

6. Analysis

6.1. Ablation study
In order to verify the effectiveness of each com-
ponent in our approach, we conduct ablation ex-
periments with the following variants. 1)w/o Soft
Boundary Learning: we directly replace Student
span recognizer with Teacher span recognizer and
then finetune it on the support set to extract entity
spans. 2)w/o Prompt: we remove the general se-
mantic space constructed by prompts and use a
conventional ProtoNet as the entity classifier. 3)w/o
Soft Boundary Learning w/o Prompt: we use fine-
tuned Teacher span recognizer as entity span ex-
tractor and conventional ProtoNet as the classifier.

Table 3 provides evidence for the necessity of

Model Intra Inter
1-shot 5-shot 1-shot 5-shot

MAML span recognizer 66.78 72.68 72.46 74.33
Teacher span recognizer 70.65 76.88 70.32 74.55
Student span recognizer 73.08 78.39 73.28 76.66

Table 4: The average F1 scores of span recog-
nizers on Few-NERD.Details are presented in Ap-
pendix A.3.
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Figure 5: Impact of λ on the F1 score of student
span recognizer on 5-way 5∼10-shot Few-NERD.

each component in our proposed approach.In sum-
mary, we can conclude that: 1)the incorporation
of soft label learning can indeed improve the fast
domain adaptation capability of our model; 2)the
joint use of prompt and ProtoNet can expand the
universal knowledge of semantic space and im-
prove the accuracy of prototypes; 3)the integra-
tion of soft-label-enhanced span recognizer and
Prompt-ProtoNet can lead to a significant improve-
ment in the overall performance of the model.

6.2. Impact of soft boundary learning

Through a case study, we investigate the benefits of
soft boundary learning for span recognizer.Figure 4
shows that the student model trained with soft la-
bels can identify the entity span ’judicial district’,
while the teacher model overlooks it.Additionally,
Table 4 demonstrates that Student span recognizer
enhanced by soft labels outperforms Teacher span
recognizer comprehensively, and can also easily
surpass MAML-enhanced span recognizer, which is
a classic meta-learning algorithm commonly used
in various few-shot tasks.

We attribute this to the guidance from the teacher
model which helps smooth the training process
of the student model and finally converges to a
universal, fast domain-adaptive initialization point.

Then, we analyze how the weight of soft loss
λ impacts the model during training.As presented
in Figure 5, Student Span Recognizer exhibits the
highest performance when the weight of soft label
loss is controlled at 0.6.
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Figure 6: The t-SNE visualization of entity representations on Few-NERD Intra, 5-way 5∼10-shot
validation set.We randomly choose 5 classes which include a total of 9722 samples.The left section shows
the conventional ProtoNet’s 2D visualization, while the right depicts Prompt-ProtoNet’s 2D visualization.

Classifier Intra Inter
1-shot 5-shot 1-shot 5-shot

ProtoNet 61.57 75.70 83.54 91.35
Prompt-ProtoNet 72.45 78.83 90.51 93.27

Table 5: The average F1 scores on Few-
NERD.Results are all based on ground truth enti-
ties.For detail results, please refer to Appendix A.4.

6.3. Effectiveness of prompt learning

To investigate the effectiveness of Prompt-ProtoNet,
we compare the classification performance of our
Prompt-ProtoNet with conventional ProtoNet on
ground truth entity spans.Results in Table 5 con-
firms the effectiveness of Prompt-ProtoNet, particu-
larly in the extremely low-sample 1∼2-shot settings,
where prompts can endow ProtoNet with general
knowledge and further improve its generalization
ability. To better illustrate the generalization im-
provement of Prompt-ProtoNet over traditional Pro-
toNet, we randomly select five entity types in Few-
NERD and then utilize t-SNE(van der Maaten and
Hinton, 2008) to map entity representations into a 2-
dimensional space. Figure 6 displays the visualiza-
tion results, where Prompt-ProtoNet is capable of
clustering representations of the same entity class
even in various episodes, while also dispersing rep-
resentations of different entity classes.Therefore, it
is evident that the semantic space constructed by
Prompt-ProtoNet has stronger generalization ability
and entity-level knowledge extraction capability.

We further explore the effect of information inter-
action between two semantic spaces.We conduct
experiments about α in Eq.(13), which controls the
distance weight between the mapped general pro-
totypes and specific prototypes.From Figure 7, we
can find that although two semantic spaces are
built from different perspectives, connecting them
via spatial mapping is indeed effective.
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Figure 7: The influence of hyper-parameter α on
the F1 score of Prompt-ProtoNet and the results
are based ib the 5∼10-shot setting of Few-NERD.

Model Intra Inter
1-shot 5-shot 1-shot 5-shot

ESD 33.04 47.15 55.73 66.53
CONTaiNER 37.16 50.60 52.15 59.48
Teacher w/o finetune 36.83 46.96 59.22 64.57
Ours w/o finetune 45.75 50.63 65.64 68.29

Table 6: The average F1 without being finetuned
according to support set during testing.

6.4. Real-world applicability
Models may be limited and unable to perform fine-
tuning based on the support set in practical sce-
narios.In this situation, we find that our method
can achieve competitive results even without be-
ing finetuned according to support set.Table 6 dis-
plays the overall performance of our method on
Few-NERD.We believe this is also attributed to the
generalization boost provided by soft-label learning
and capacity to learn general knowledge provided
by Prompt-ProtoNet.

7. Conclusion

In this paper, we propose a novel three-stage frame-
work for Few-shot NER, which decomposes the
task into three submodules: Student span recog-
nizer, Teacher span recognizer and Entity classi-
fier.To smooth the training process in meta-task
setting, we incorporate the idea of soft label learn-
ing into span-based span recognizer, which can
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improve the model’s domain adaptation capabil-
ity.In addition, we propose Prompt-ProtoNet, which
builds a general semantic space with the help
of prompt to enhance the generalization potential
of ProtoNet.Extensive experiments on two widely
used benchmarks validate the effectiveness of our
approach.In our future research, we are consider-
ing integrating in-context learning and pre-training
to further uncover the capabilities of our model.
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Model
Intra Inter

1∼2-shot 5∼10-shot 1∼2-shot 5∼10-shot
5-way 10-way 5-way 10-way 5-way 10-way 5-way 10-way

MAML SR 66.15 67.40 73.01 72.34 72.17 72.74 74.87 73.78
Teacher SR 70.29 71.00 75.94 77.81 70.47 70.16 74.21 74.88
Student SR 72.27 73.89 78.01 78.76 73.14 73.41 76.49 76.83

Table 7: Detailed F1 scores of two entity span extractors on Few-NERD.SR: Span recognizer.

Model
Intra Inter

1∼2-shot 5∼10-shot 1∼2-shot 5∼10-shot
5-way 10-way 5-way 10-way 5-way 10-way 5-way 10-way

ProtoNet 66.57 56.56 80.16 71.24 87.77 79.31 93.21 89.49
Prompt-ProtoNet 78.07 66.83 83.17 74.48 93.04 87.98 95.00 91.54

Table 8: Detailed F1 scores obtained by two entity classifiers on Few-NERD.Note that the results are all
based on ground truth entity spans.

A. Appendix

A.1. Details about baselines
Following Ma et al. (2022), we compare our three-
stage method with following competitive models.

SimBERT(Hou et al., 2020) directly uses an un-
finetuned BERT(Devlin et al., 2019) as the encoder
and then makes classification according to the most
similar token in support set.

ProtoBERT(Fritzler et al., 2019) employs sup-
port set to construct prototypes in the form of av-
eraging embeddings, and then classifies tokens
according to the most nearest prototypes.

TransferBERT(Hou et al., 2020) first pretrains a
domain transfer model based on BERT on source
domains, and then finetune it on support set for
classification.

NNshot(Yang and Katiyar, 2020) determines the
label of token in query set based on the distance
between tokens in support set.

StructShot(Yang and Katiyar, 2020) employs an
additional Viterbi decoder with the help of abstract
transition probability matrixes during its inference
phase.

Matching Network(Hou et al., 2020) utilizes
matching network(Vinyals et al., 2016) with BERT
embedding for classification.

TapNet+CDT(Hou et al., 2020) proposes a CRF-
based few-shot sequence labeling framework, and
introduces Collapsed Dependency Transfer to
transfer label dependencies across domains.

CONTaiNER(Das et al., 2021) incorporates the
idea of contrastive learning and optimizes the distri-
bution distance between tokens through Gaussian
distribution representation.

ESD(Wang et al., 2021) focuses on the informa-
tion interaction between spans and strengthens
the prototypical network through a series of span-
related procedures.

Hyper-parameter Value
Teacher learning rate {2e-5, 1e-4, 2e-4}
Student learning rate {2e-5, 1e-4, 2e-4}
Finetune learning rate {2e-5, 8e-5, 1e-4}
Dropout rate {0.1, 0.3, 0.5}
Weight α {0.4, 0.5, 0.6}
Weight λ {0.2, 0.3, 0.4}
Margin r {4, 5, 6}

Table 9: The searching scope for each hyper-
parameter in our experiments.

DecomposedMetaNER(Ma et al., 2022) decom-
poses NER into two submodules (span detec-
tion, entity typing) to alleviate information noise
caused by non-entity tokens and further employs
MAML(Finn et al., 2017) to enhance performance.

SpanProto(Wang et al., 2022) also splits NER
into two stages: span extraction and entity classifi-
cation.Additionally, it highlights the importance of
boundary limitation in prototypical network.

A.2. Implementation Details

We validate our model on the validation set at in-
tervals of 100 steps and the checkpoint with the
highest F1 score performance within one epoch
will be selected.For hyper-parameters tuning, a grid
search is performed, with the search space outlined
in Table 9.

A.3. Details of Span recognizer

The detailed results of MAML span recognizer,
Teacher span recognizer and Student span rec-
ognizer are listed in Table 7.
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A.4. Details of Prompt-ProtoNet
A detailed comparison of the experimental infor-
mation between conventional ProtoNet and our
Prompt-ProtoNet is presented in Table 8.
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