
A Corpus Search System Utilizing Lexical Dependency Structure

Yoshihide Kato∗, Shigeki Matsubara†, Yasuyoshi Inagaki‡

∗ Graduate School of International Development, Nagoya University
† Information Technology Center, Nagoya University

Furo-cho, Chikusa-ku, Nagoya, 464-8601 Japan
‡ Faculty of Information Science and Technology, Aichi Prefectural University
1522-3 Ibaragabasama, Kumabari, Nagakute-cho, Aichi-gun, 480-1198 Japan

yosihide@gsid.nagoya-u.ac.jp

Abstract
This paper presents a corpus search system utilizing lexical dependency structure. The user’s query consists of a sequence of keywords.
For a given query, the system automatically generates the dependency structure patterns which consist of keywords in the query, and
returns the sentences whose dependency structures match the generated patterns. The dependency structure patterns are generated by
using two operations: combining and interpolation, which utilize dependency structures in the searched corpus. The operations enable
the system to generate only the dependency structure patterns that occur in the corpus. The system achieves simple and intuitive corpus
search and it is enough linguistically sophisticated to utilize structural information.

1. Introduction

Large text corpora increasingly become important re-
sources for linguistic research, development of natural lan-
guage processing systems, language teaching, etc. Corpus
search systems are necessary to utilize text corpora effec-
tively.
Several corpus search systems have been presented. Most
systems provide keyword-based search functionality. The
search is simple and intuitive, but not enough linguistically
sophisticated to utilize structural information.
On the other hand, (Corley et al., 2001) and (Resnik and
Elkiss, 2005) have presented corpus search systems utiliz-
ing syntactic structure, Gsearch and Linguist’s Search En-
gine (LSE), respectively. These systems can search cor-
pora by using phrase structure patterns. In the Gsearch,
the user gives a phrase structure pattern and a grammar to
the system. The system constructs parse trees of the sen-
tences in the corpus by using the given grammar, and re-
turns the sentences whose parse trees match the given pat-
tern. In the LSE, the user first gives an example of sen-
tences which he/she needs. The system parses the example
by using a statistical parser and returns the parsing result.
The user edits the resulting parse tree to specify a structural
query. The system finally returns the sentences whose parse
trees match the structural query. The Gsearch and LSE can
search corpora by utilizing syntactic information. However,
they do not achieve simple search like keyword-based sys-
tems.
This paper presents a corpus search system which auto-
matically generates structural queries from keyword-based
queries. The system searches corpora based on lexical de-
pendency information. The user’s query is a sequence of
keywords. For a given query, it generates dependency struc-
ture patterns by using two operations: combining and inter-
polation. The user need neither to build a grammar like the
Gsearch nor to edit structural query like the LSE, because
of the automatic pattern generation. The system achieves
simple and intuitive corpus search and it is enough to lin-
guistically sophisticated to utilize structural information.

2. Corpus Search based on Dependency
Structure

This section presents a corpus search system based on de-
pendency structure.
We assume that corpus sentences are annotated with depen-
dency structures. The user’s query consists of a sequence of
keywords (words or POSs). For a given query, the system
tries to generate dependency structure patterns and returns
the sentences whose dependency structures match one of
the generated patterns.

2.1. An Algorithm of Generating Dependency
Structure Patterns

This section proposes an algorithm of generating depen-
dency structure patterns. The inputs are as follows:

query: q1 · · · qm (q1, . . . , qm are keywords)

sentence:s = w1 · · ·wn (w1 . . . , wn are pairs of words
and POSs)

dependency structure (a set of dependencies):D

whereD is a set of dependencies between words ins. If wi

depends onwj , the pair of the positions(i, j) is a element
of D. We writei → j for (i, j).
We define the dependency structure pattern as a 3-tupled =
(h,L,R), whereh is a word position andL andR are lists
of dependency structure patterns.h is called theheadof
d. The dependency structure patternsd represents that the
heads of dependency structure patterns inL depend onh
from left. Similarly forR, from right.
Our proposed algorithm generates dependency structure
patterns by using the following two operations:combining
andinterpolation.

combining: Let d = (h, L,R) and d′ = (h′, L′, R′)
be dependency structure patterns forqi · · · qj and
qj+1 · · · qk, respectively. Ifh → h′ andR′ = ε, then
generate a dependency structure pattern(h′, d ·L′, R′)
(see Fig 1a)). Ifh′ → h, then generate a dependency
structure pattern(h,L,R · d′) (see Fig 1b)).

2269

L R
h

a) h→h' b) h'→h
... ...

L' R'
h'

L'
h'

...h
... ...
L R

h
... ...

L' R'
h'

... ...

... ...

L R

d=(h, L, R) d'=(h', L', R')

Figure 1: Combining

h'
h

a) h<h' b) h>h' h'
h

L R
... ...

L R
... ...

Figure 2: Interpolation

interpolation: Let d be a dependency structure pattern for
qi · · · qj whose head ish. Forh′ such thath → h′, if
h < h′, then generate a dependency structure pattern
(h′∗, d, ε) (see Fig. 2a)). Ifh > h′, then generate a de-
pendency structure pattern(h′∗, ε, d) (see Fig. 2b)). A
symbol∗ means thath′ is introduced by interpolation.

By applying the combining operation to the given query,
all dependency structure patterns that directly connect key-
words in the query can be generated. The generated pat-
terns are guaranteed to match the dependency structureD,
so the system returns the sentences for which some patterns
are generated.
In some cases, the user may not intend that some keywords
in the query directly depend on the other keywords. To
process such queries robustly, we introduce the interpola-
tion operation. This operation can generate the dependency
structure patterns which include words not occurring in the
query.
To avoid useless application of the operation, we intro-
duce a cost defined as the number of occurrence of * in
the dependency structure pattern. The algorithm does not
generate the dependency structure patterns whose costs are
greater than a threshold.
Figure 3 illustrates the algorithm of generating dependency
structure patterns.θ is the threshold of cost.D[i, j, c] is
used for recording the dependency structure patterns with
costc for qi+1 · · · qj . rm(d) andlm(d′) are the rightmost
word position ind and the leftmost word position ind′, re-
spectively. These positions are used for checking the order
of keywords in dependency structures patterns generated.

input: queryq1 · · · qm,
sentencew1 · · ·wn,
dependency structureD

initialization:
for i = 1 to m

for each j s.t.wj = qi do
push(j, ε, ε) to D[i − 1, i, 0];

for cost = 0 to θ
combining:
for k = 2 to m

for j = k − 1 down to 1
for i = j − 1 down to 0

for c = 0 to cost
for eachd = (h, L, R) ∈ D[i, j, c],

d′ = (h′, L′, R′) ∈ D[j, k, cost − c]
s.t. rm(d) < lm(d′) do

if h → h′ ∈ D ∧ R′ = ε then
push(h′, dL′, R′) to D[i, k, cost];

if h′ → h then
push(h, L, Rd′) to D[i, k, cost];

interpolation:
for j = 1 to m

for i = j − 1 down to 0
if i 6= 0 ∨ j 6= q then

for eachd = (h, L, R) ∈ D[i, j, cost]
for h′ s.t.h → h′ ∈ D

if h < h′ then
push(h′∗, d, ε) to D[i, j, cost + 1];

else
push(h′∗, ε, d) to D[i, j, cost + 1];

return D[0, m, 0] ∪ · · · ∪ D[0, m, cost];

Figure 3: An algorithm of generating dependency structure
patterns

It is important for us to have such technology1 2 3 4 5 6 7 8 9
Figure 4: Dependencies for “It is important for us to have
such technology”

2.1.1. An example of combining operation
Let us consider an example of generating dependency struc-
ture patterns for the following query:

it is for to (1)

and the following sentence:

It is important for us to have such technology. (2)

Assume that the dependencies are as illustrated in Figure
4.
The first keyword “it” matches the first word in sentence
(2), so the following dependency structure pattern is gener-
ated:

(1, ε, ε) (3)

2270

Opera combines music and drama1 2 3 4 5
Figure 5: Dependencies for “Opera combines music and
drama”

Similarly, the following dependency structure patterns are
generated for keywords “is”, “for” and “to”, respectively:

(2, ε, ε) (4)

(4, ε, ε) (5)

(6, ε, ε) (6)

For the heads of dependency structure patterns (3) and (4),
the dependency1 → 2 holds. Therefore, the following
dependency structure pattern is generated:

(2, (1, ε, ε), ε) (7)

Similarly, the following dependency structure pattern is
generated for “for to”:

(4, ε, (6, ε, ε)) (8)

Furthermore, since4 → 2, dependency structure patterns
(7) and (8) are combined and the following dependency
structure pattern is generated:

(2, (1, ε, ε), (4, ε, (6, ε, ε))) (9)

This means that “it is for to” occur in sentence (2) in the
form of dependency structure pattern (9).
On the other hand, for sentences in which some keywords
do not depend directly on the others (for instance, “Itis
clear whether support forthe proposal will be broad enough
to a serious challenge”), the algorithm generates no depen-
dency structure pattern.

2.1.2. An example of interpolation operation
Let us consider another example of dependency structure
pattern generation. The query and the sentence are as fol-
lows:

combines and (10)

Opera combines music and drama (11)

The dependencies are as illustrated in Figure 5.
For “combines” and “and”, the following dependency
structure patterns are generated:

(2, ε, ε) (12)

(4, ε, ε) (13)

Since neither2 → 4 nor 4 → 2, no dependency structure
pattern is generated by the combining operation.
By applying the interpolation operation to dependency
structure pattern (13), the following pattern is generated:

(3∗, ε, (4, ε, ε)) (14)

Table 1: Precision and recall for a query “it is for to.”
thresholdθ precision recall

0 100.0% (17/17) 81.0% (17/21)
1 90.5% (19/21) 90.5% (19/21)
2 70.0% (21/30) 100.0% (21/21)
3 60.0% (21/35) 100.0% (21/21)

baseline 27.3% (21/77) 100.0% (21/21)

Since3 → 2, the algorithm combines (12) and (14) to gen-
erate the dependency structure pattern:

(2, ε, (3∗, ε, (4, ε, ε))) (15)

This example demonstrates that the interpolation operation
allows the generation of the dependency structure pattern in
which some keywords indirectly depend on the other key-
word.

3. Implementation and Evaluation
The system is implemented in CMUCL1. The system pro-
vides a simple KWIC display of the result. The returned
sentences are classified according to the dependency struc-
ture patterns matched. Figure 6 shows a screen shot of the
system.
To evaluate the performance of our proposed system, we
performed an experiment. We searched Penn Treebank
(Marcus et al., 1993), which is annotated with phrase struc-
tures. The phrase structures in the corpus are converted to
dependency structures by using the method in the literature
(Collins, 1999).
We built several queries and assigned relevant sentences to
each query manually. We measured the precision and recall
of the search system for the cost threshold of 0 to 3. The
precision and recall are defined as follows:

Precision=
the number of relevant sentences returned

the number of sentences returned

Recall=
the number of relevant sentences returned

the number of relevant sentences
Moreover, we measured the precision of the search which
returns the sentences including all keywords in the query in
the order. The recall of the search is always 100%. We call
it the search baseline.

3.1. The result for a query “it is for to”
Let us consider the result for a query “it is for to.” The
precision and recall are shown in Table 1. Whenθ = 0,
the system achieves high precision and recall, and all the
dependency structure patterns that the system generated are
the same as the example of Section 2.1.1. The relevant sen-
tences for which the system does not generate the depen-
dency structure pattern with cost 0 have the dependency
structures where “for” depends not on “is” but on a com-
plement. However, these relevant sentences were able to be
found by using the interpolation operation.

3.2. The result for a query “combine and”
Let us consider the result of a query “combine and.” The
precision and recall are shown in Table 2. No relevant sen-

1http://www.cons.org/cmucl/

2271

Figure 6: A screen shot of the system

Table 2: Precision and recall for a query “combine and.”
thresholdθ precision recall

0 0.0% (0/ 2) 0.0% (0/11)
1 55.0% (11/20) 100.0% (11/11)
2 42.3% (11/26) 100.0% (11/11)
3 32.4% (11/24) 100.0% (11/11)

baseline 24.5% (11/45) 100.0% (11/11)

Table 3: Precision and recall for a query “have
preposition mind.”

thresholdθ precision recall

0 100.0% (10/10) 90.9% (10/11)
1 73.3% (11/15) 100.0% (11/11)
2 61.1% (11/18) 100.0% (11/11)
3 61.1% (11/18) 100.0% (11/11)

baseline 50.0% (11/22) 100.0% (11/11)

tence was found by using the dependency structure patterns
with cost 0. However, all the relevant sentences are found
by using the dependency structure patterns with cost 1. The
result demonstrates that the interpolation operation is nec-
essary for the system to process such queries robustly. The
precision is not good, but we expect that the user can seek
relevant sentences easily because the returned sentences are
classified according to the patterns and relevant sentences
are expected to belong to a few classes. In this example,
the relevant sentences belonged to 2 classes.

3.3. The result for query “havepreposition mind”

Let us consider the result for a query “havepreposition
mind”. preposition is not a word but a part of speech.
Table 3 shows the precision and recall. The system achieves
high precision and recall for the query. Moreover, we can

know the instance ofpreposition from the result (in
this example, most words matchingpreposition were
“in”).

4. Conclusion
This paper presents a corpus search system based on de-
pendency structure. The system automatically generates
dependency structure patterns by utilizing corpus anno-
tated with dependency structures so the user needs not
to construct a structural query. The experimental results
demonstrated that the system achieves high precision cor-
pus search.
We would like to evaluate the system performance from the
viewpoint of not only the precision and recall but also the
usability.

Acknowledgments
This work is partially supported by the Grant-in-Aid for
Young Scientists (B)(No. 17700145) of JSPS.

5. References
M. Collins. 1999. Head-Driven Statistical Models for

Natural Language Parsing. Ph.D. thesis, University of
Pennsylvania.

S. Corley, M. Corley, F. Keller, M. Crocker, and S. Trewin.
2001. Finding syntactic structure in unparsed corpora:
The gsearch corpus query system.Computers and the
Humanities, 35:2:81–94.

M. P. Marcus, B. Santorini, and M. A. Marcinkiewicz.
1993. Building a large annotated corpus of English: the
penn treebank.Computational Linguistics, 19(2):310–
330.

P. Resnik and A. Elkiss. 2005. The linguist’s search en-
gine: An overview. InProceedings of the 43rd ACL
Interacrive Poseter and Demonstration Sessions, pages
33–36.

2272

