
An Annotated Corpus Management Tool: ChaKi

Yuji Matsumoto ∗, Masayuki Asahara∗, Kiyota Hashimoto†,
Yukio Tono‡, Akira Ohtani ¦, Toshio Morita§

∗ Nara Institute of Science and Tachnology
8916-5 Takayama, Ikoma, Nara 630-0192 Japan

{matsu, masayu-a}@is.naist.jp
† Osaka Prefectural University ‡ Meikai University

hash@lc.osakafu-u.ac.jp y.tono@meikai.ac.jp
¦ Osaka Gakuin University § Sowa Giken Corp.
ohtani@utc.osaka-gu.ac.jp morita@sowa.com

Abstract
Large scale annotated corpora are very important not only in linguistic research but also in practical natural language processing tasks
since a number of practical tools such as Part-of-speech (POS) taggers and syntactic parsers are now corpus-based or machine learning-
based systems which require some amount of accurately annotated corpora. This article presents an annotated corpus management tool
that provides various functions that include flexible search, statistic calculation, and error correction for linguistically annotated corpora.
The target of annotation covers POS tags, base phrase chunks and syntactic dependency structures. This tool aims at helping develop-
ment of consistent construction of lexicon and annotated corpora to be used by researchers both in linguists and language processing
communities.

1. Introduction
Recent progress in natural language processing has made
it real to implement highly accurate natural language pro-
cessing tools such as part-of-speech (POS) tagging, phrase
and named entity chunking, and syntactic parsing, which
are now being used in various natural language processing
applications. Large scale annotated corpora are very im-
portant not only for linguistic research but also for improv-
ing accuracy of practical language processing tools since
most of the practical tools are now machine learning-based
systems which rely on accurately annotated corpora. On
the other hand, it is well-known that even widely used an-
notated corpora such as the Penn Treebank(Marcus et al.,
1993) still include a number of annotation errors. To de-
velop highly accurate annotated corpora, it is indispensable
to have a supporting environment to maintenance annotated
corpora so as to find and correct errors remaining in manu-
ally or automatically annotated corpora.
This paper presents an annotated corpus management tool
named, ChaKi, which has been developed for last three
years as a project supported by Japan Society of the Pro-
motion of Science. This tool aims at helping users in con-
sistent construction of annotated corpora and lexicons that
are to be used by researchers both in linguiscs and language
processing communities. The sysmtem will be distributed
as free software1.

2. Functions of ChaKi: Overview
Figure 1 shows the overall configuration of ChaKi. Anno-
tated corpora may be manually or automatically annotated,
and are imported into the database together with a dictio-
nary if the user has his/her own dictionary. If the user does
not have any specific dictionary, all the words contained
in the annotated corpus constitute the dictionary. ChaKi

1http://chasen.naist.jp/hiki/ChaKi/

Relational Database(MySQL)

AnnotatedcorpusText Data(raw corpus) Corpus AnnotationTools (POS tagger,Dependency parser)/ Manual annotation
ChaKi

Dictionary＋

search andcorrection
Relational Database(MySQL)

AnnotatedcorpusText Data(raw corpus) Corpus AnnotationTools (POS tagger,Dependency parser)/ Manual annotation
ChaKi

Dictionary＋

search andcorrection
Figure 1: Configuration of ChaKi

works as an interface to the database (Currently, MySQL2 is
used for the database) and provides various functions such
as searching, statistic calculation, and error correction. This
section briefly overviews those functions.

1. Coordination between annotated corpora and dictionary:
The words in annotated corpora are represented as point-
ers to the dictionary entries. This help to keep consis-
tency between the corpora and the dictionary in such a
way that all the words in the corpus should be defined
in the dictionary and correction in the corpus is always
done by selecting appropriate entries in the dictionary.

2. Variation of annotation: Part-of-speech tags, base phrase
chunks and syntactic dependency structures (depen-
dency between words or chunks) are handled. Multi-
word expressions can be defined in the dictionary to-
gether with their constituent word information. Search
can be performed either on multi-word expressions or
on the constituent words. Bibliographic information of

2www.mysql.com/

1418



document of sentences are to be annotated at the sen-
tence level.

3. Search: Three modes of search are possible. They are
string search, word search, and dependency structure
search.

4. Browsing: KWIC presentation of retrieved sentences,
and tree representation of dependency structure trees are
provided.

5. Error correction: Functions of correcting segmentation,
word information, and dependency structure errors are
provided.

6. Statistic calculation: Basic statistic calculations such as
word frequencies and collocation counts in fixed size
windows are provided.

7. Multilinguality: The system is designed as language in-
dependent, and now handles Japanese, Chinese and En-
glish corpora.

3. Detailed Description of Functions
This section describe each of the functions of ChaKi in de-
tail.

3.1. Coordination between corpora and dictionary

When an annotated corpus is imported into the database,
words in the corpus are represented as pointers to the dic-
tionary entries. When a word that does not have any entry
in the dictionary appears in the corpus, that word is tenta-
tively registered in the dictionary. Therefore, the corpus is
usually not allowed to contain any words that are not de-
fined in the dictionary. When such words appear, they are
clearly marked as exceptional. Exisiting annotated corpora
often includes impossible annotations. For example, the
most frequently used Penn Treebank includes some occur-
rences of “have” tagged as “VBD” (past tense of a verb)
or VBN (past paticiple). Such errors are easily detected
when importing the corpus into the database. Moreover,
other information described in the dictionary is automati-
cally added to the corpus when the corpus is read in the
database. For example, our current English dictionary de-
scribes the base forms for all the inflected forms of words,
so that all the words in the corpus automatically receives
its base forms even in case the original corpus doesn’t have
any such information.

3.2. Variation of annotation

The types of annotation can be divided into two: One is the
annotation within sentences, and the other is those at the
sentence level.

3.2.1. Annotation within sentences
The current system allows the following annotation within
sentences: Word (morpheme), base phrase, and depen-
dency structure. Word information includes the form of
appearance, pronunciation3, POS tag, base form, inflection
type and inflection form. This is the maximum set of in-
formation for a word, and each corpus can specify which

3For Japanese, other than pronunciation, there is a slot for
“ reading” as well, which stands for the entry of the word in or-
dinary dicitonaries

of them are included in the database. The dictionary can
describe the constituent words for a multi-word expression,
whose definition is done by pointers in a recursive manner.
For example, the multi-word expression “in respect of” is
defined as a preposition, and its constituents are also de-
fined as a preposition, a common noun and a preposition by
pointing them within the dictionary.
When the base phrase chunk and the syntactic depen-
dency relation between chunks are annotated, those are
also registered in the database. As for those annota-
tion in Japanese corpora, Japanese morphological analyser
ChaSen(Matsumoto, et al., 2003) and Japanese dependency
parser CaboCha(Kudo and Matsumoto, 2002) are used. For
English, we assume the Penn Treebank or British National
Corpus format.

3.2.2. Annotation at sentences: Bibliographic
information

Bibliographic information of the corpus (the name of the
corpus, the authors’ name(s), etc) and attribute information
of sentences (speaker, contextual information, etc) are an-
notated at the sentence level. They have no structural for-
mat and are in a simple character string form, which are
retrieved by string level partial matching. Moreover, Users
may maintain their corpora not by a single file but by a
set of files within a heirarchy of folders classifying them
so that the folder structure represents bibliographcal infor-
mation related to those files. All of those information, the
sequence of the folder names, is allocated at the sentence
level as well.
While they are not considered in the current system, there
should be more sentence level or extra-sentence informa-
tion: Discourse relaton between sentences is one of such
information. Also, links between reference expression such
as anapora and their antecidents are another example of
extra-sentence information, which the current system does
not cover.

3.3. Search functions

In the search component, the unit for search is a sentence
in all the following modes of search functions.

3.3.1. Surface character strings
All occurrences of character strings are searched in this
mode. Regular expressions can be used and the results are
displayed in the KWIC format.

3.3.2. Word sequences
When the sentences are POS tagged, any lexical informa-
tion is used to describe patterns of a word sequence. The
lexical information includes surface form, POS tag, base
form of a word, and in the case of Japanese, other infor-
mation such as pronunciation, inflection type and inflection
form can also be specified. Regular expressions can be used
in specifying any of the word information. Figure 2 shows
an example of word sequence search, in which a sequence
consistng of three words are specified. The figure shows
a Japanese word sequence search pattern. Each box corre-
sponds to a word, in which the top row specifies the surface
form and the fourth row specifies the POS tag.

1419



Figure 2: Example of Word Sequence Search

specification ofdependency structure
search results

specification ofdependency structure
search results

Figure 3: Dependency Structure Search in ChaKi

3.3.3. Word Dependency structure
When the senteces are parsed in dependency structure, they
are searched for by specifying a partial dependency struc-
ture. Any sentences that include the specified dependency
structure are retrieved. Figure?? shows a snapshot of de-
pendency structure search. The query is depicted in the up-
per part of the interface. Each shaded box shows a base
phrase chunk and a small white box in a chunk specifies a
word, in which various information of the word can be de-
scribed just like the word sequence search. Arrows between
chunk boxes describe the syntactic dependency relation be-
tween them. This example shows a Japanese case, and all
the sentences that include the specified dependency struc-
ture are retrieved and shown in the KWIC format as shown
in the lower part of the Figure.
In the case of English, the system supposes that the syn-
tactic information of a sentence is represented as a word
or base phrase dependency structure where the dependency
relation holds between a word/phrase and its modifying
word/phrase. In the current system, phrase structure trees of
Penn Treebank are transformed into dependency trees using
the head rules that specify the head constituent in phrase
structure rules(Collins, 1996).
Multiword expressions can be retrieved as their whole form
(with/without their POS tags) or by their constituents. For
example, if ”in short” is defined as an idiom and is anno-
tated as an adverb, it is retrieved as a single adverb. On
the other hand, if its constituents are defined as ”in/IN,
short/JJ” (IN stands for a preposition and JJ stands for an

Figure 4: Dependency Tree

adjective in the Penn Treebank POS tag set), this expression
can also be retrieved by those constituent words as well.

3.4. Browsing of search results

Since the search is done on sentence-wise, the search re-
sults are shown on sentence-wise, too. As seen in Fig-
ure 3, matched sentences are shown in the KWIC format.
In the search query such as Figure 2 and Figure 3, only one
word is specified as the focus word and is presented as the
center word in the KWIC in all modes of the search func-
tions. In word sequence and dependency structure searches,
any specified information can be associated with a word as
shown in Figure 3, where the POS tag is shown below its
corresponding word.
In case of dependency tree search, the user can pick up one
of the obtained sentences from the KWIC, and trigger the
TreeEditor, which presents the dependency tree as shown
in Figure 4. Each row corresponds to a base phrase chunk,
in which a sequence of words are presented in small boxes.
Arrows between chunks show syntactic dependency rela-
tions.
As explained in the preceding section, the corpus can be
retrieved by multi-word expressions as well as their con-
stituent words. The browsing function has two modes,
showing the sequence of words either in multi-word forms
or in constituent words. In the multi-word mode, the con-
stituents of multi-word expressions can be displayed in a
separate window just similarly as dependency trees.

3.5. Statistic calculation

Some basic statistics can be calculated by the system. For
example, if the user is interested in only the types and fre-
quencies of the centered word in the word sequence search,
he/she can select “Word Search” mode instead of “Tag
Search” mode. Then, all the retrieved center words and
their frequencies are presented in another table.
Another statistics provided by the system are collocations
between the centered word and the surrounding words

1420



within a specified context length window. Collocation
may be simple frequencies, mutual information, or frequent
word N-grams based on any information on words, such as
surface word forms, base forms, POS tags, etc.

3.6. Error correction functin

Error correction function is one of the most important func-
tions for developing accurately annotated corpora. Anno-
tated corpora should be corrected when annotation errors
are detected. Once an annotation error is found, it is often
the case that errors of the same type retain in other parts
of the same corpus. The search functions of the system are
effectively used for detecting similar types of errors. And
once the instances of the same error type are collected, the
error correction module helps to issue a transformation rule
so as to correct all the erroneous instances by one operation
(currently this does not apply to dependency error correc-
tion).
There are two modes of error correction corresponding to
the types of seach, the word sequence search and the depen-
dency structure search. In the former, word segmentation
errors and word related erros such as POS tag or inflection
form errors are corrected. Correction of the word informa-
tion is guided by a special interface, in which reselection
of words is basically done for error correction. This is ba-
cause the corpus is represented as a sequence of pointers
to the dictionary entries. In the latter, base phrase chunk-
ing errors and dependency relation errors are corrected. For
example, in Figure 4, any adjacent chunks can be merged
into one, and one chunk can be divided into two, which en-
able any modification of segmentation. Furthermore, the
arrows representing dependency relation can be modified,
by switching the head of an arrow from one chunk to any
other.

3.7. Other functions

3.7.1. Multilinguality
The system is designed as language independent and can be
used with any language that is only accepted by MySQL.
The current system is tested with Japanese, Chinese and
English corpora.

3.7.2. Distribution
The system is and will be distributed as free software. For
the database system we use MySQL(version 5.0), which is
also free software. The database runs on various platform,
but ChaKi’s interface runs only on Windows.

3.7.3. Interface to language analysis tools
Any corpora annotated with POS or dependency structure
can be imported to the system. At the moment, the cor-
pus is annotated as either in the standard output formats of
ChaSen and CaboCha. An interface to apply ChaSen and
CaboCha to raw corpora is provided. Also, another inter-
face is provided to import annotated corpora in ChaSen or
CaboCha format into the database. For English corpora, we
prepared a transformation program for corpora annotated in
Penn Treebank or British National Corpus formats.

4. Conclusions
In this paper we presented our annotated corpus manage-
ment system, ChaKi. The aim of the system is to develop an
environment that helps users to construct, use and manage
accurately annotated corpora. It is important not only to de-
velop high performance natural language analysis tools but
also to provide tools that search for erroneous patterns and
correct such errors in annotated corpora. ChaKi provide
various functions for these purposes.
In any languages, there are idiomatic or collocational ex-
pressions that are formed by multiple words. Especially in
Japanese and Chinese, it is hard to define proper segmen-
tation of sentences uniquely since definition of words may
vary according to the grammar system or to applications.
We decided to describe multi-word expressions and their
constituent words in the dictionary and define the corpus
as a sequence of pointers to the dictionary. By doing this,
it becomes possible to search patterns either in multi-word
expression or in constituent words. Also, we could provides
two modes of displaying the search results accordingly.
Currently we work on three languages, Japanese, Chinese
and English. We assume that extension of the target lan-
guages is easy since most of the tools are designed to be
language independent.
The system will be distributed as a free and open source
software. ChaKi and the interface to the database are de-
veloped in C, C++, Ruby and VisualC++.

5. Acknowledgements
We would like to thank our colleagues who helped and
inspired us in developing the corpus management tool.
We are very grateful to the former and current members
of Computational Linguistics Lab at NAIST, especially to
Kentaro Inui, Kazuma Takaoka, and Taku Kudo. Devel-
opment of ChaKi is supported by JSPS Grants-in-Aid for
Scientific Research (B) No.15300046.

6. References
M.J. Collins. 1996. A New Statistical Parser Based on Bi-

gram Lexical Dependencies.ACL-96, 184-191.
T. Kudo, Y. Matsumoto. 2002. Japanese dependency anal-

ysis using cascaded chunking.6th Conference on Natu-
ral Language Learning, 63–69.

M. Marcus, B. Santorini and M. Marcinkiewicz. 1993.
Building a Large Annotated Corpus of English: The
Penn Treebank.Computational Linguistics, 19(2):313–
330.

Y. Matsumoto, et al. 2003.Morphological Analysis System
ChaSen 2.3.3 Users Manual. NAIST Technical Report.

1421


