
Tregex and Tsurgeon: tools for querying and manipulating tree data structures

Roger Levy∗ and Galen Andrew†

∗School of Informatics
University of Edinburgh

rlevy@inf.ed.ac.uk
†Microsoft Research

galena@microsoft.com

Abstract
With syntactically annotated corpora becoming increasingly available for a variety of languages and grammatical frame-
works, tree query tools have proven invaluable to linguistsand computer scientists for both data exploration and corpus-
based research. We provide a combined engine for tree query (Tregex) and manipulation (Tsurgeon) that can operate on
arbitrary tree data structures with no need for preprocessing. Tregex remedies several expressive and implementational lim-
itations of existing query tools, while Tsurgeon is to our knowledge the most expressive tree manipulation utility available.

1. Introduction

Syntactically annotated corpora have become avail-
able for a wide variety of languages and grammatical
frameworks, and currently play a major role in much
syntactic research in theoretical linguistics, computa-
tional linguistics, and psycholinguistics. Researchers
in all of these disciplines are often interested in ex-
amples or statistics involving detailed co-occurrence
patterns, which has created a need for expressivetree
querytools. A number of such tools are already avail-
able (König et al. 2003; Cassidy and Harrington 2001;
McKelvie et al. 2001; Bird et al. 2005; see Lai and
Bird 2004 for a critical review) and in varying de-
grees of use among the research community. In ad-
dition to tree query, the need fortree manipulation
frequently arises, in systematic correction of anno-
tation errors, conversion between annotation conven-
tions, and adaptation of existing syntactic resources
for new purposes. In this paper, we show how a highly
expressive tree manipulation language can be built on
top of a tree query language, and present an open-
source implementation allowing combined tree query
and manipulation.

2. Tree query with Tregex

We model the syntax, semantics, and relational in-
ventory of our tree query language after thetgrep2
query language (Rohde, 2005), which is already in
widespread use among the linguistics community.
tgrep2 makes available a wide range of relational
operators derived from the primitive relations ofim-
mediate dominanceandprecedence. tgrep2 also al-
lows boolean conjunction, disjunction (expressed with
| ), and negation (expressed with! ) over relational
statements; regular-expression matching of node la-

bels; and tree node identity constraints enforced by
names, or handles, assigned to nodes in a pattern.
Table 1 lists a sample of the Tregex node relations.
Tregex replicates the functionality oftgrep2 , and
extends its expressivity in three key respects:

1. Constrained dominance and precedence: two
nodes can be required to be in a relation of
dominance or precedence through an unbroken
change of nodes all of whose labels match some
regular expression. For example, whereas the
query S < (VP < NP) matches any top-to-
bottom tree node path of S-VP-NP, the query
S <+(VP) NP matches any top-to-bottom path
of S-VP∗-NP, where VP∗ denotes any number
of VPs. Constrained dominance is particularly
useful in querying syntactic trees with nested ad-
junction or coordinated structures; together with
constrained precedence, it fills much of the need
for closures articulated by Lai and Bird (2004).

2. Headshipis added as a primitive relation. The
criteria determining the head of a given tree node
can be specified by the user; headship modules
are included for the Penn Treebanks of English,
Chinese, and Arabic, and for the NEGRA and
TIGER treebanks of German. Combined with
other relations and boolean operators, headship
as a primitive enables a variety of linguistically
interesting queries such as: “maximal projection
of node X”, “head terminal of node Y”, and “gov-
ernor of word Z”. For example, the pattern

(__ !< __) >># (VP < (PP <<# on))

matches at leaf nodes (i.e., words) projecting to a
VP that governs a PP headed by the word “on”—

2231



NP

NP

all

SBAR

WHNP-1

0

S

NP-SBJ

he

VP

VBD

did

NP

*T*-1

(a) normal object extraction

NP

NP

the
sailor

SBAR

WHNP-1

0

S

NP-SBJ

he

VP

VBZ

wanted

S

NP-SBJ

his
backers

VP

TO

to

VP

VB

see

NP

*T*-1

(b) deeply embedded object extraction

NP

NP

the
error

SBAR

WHNP-2

which

S

NP-SBJ

*T*-2

VP

VBZ

mars

NP

NP

the
truth

SBAR

WHNP-5

0

S

NP-SBJ

they

VP

VBP

defend

NP

*T*-5

(c) not a real object extraction

NP < (SBAR < /ˆWH. * -([0-9])+/#1%j << (VP < (NP <<: /ˆ\ * T\ * -([0-9])+/#1%j)))

Figure 1: Variable groups in Tregex.1The pattern does not match the root node of 1c, because the indices of the
top SBAR (4) and the bottom trace (5) cannot both be identifiedwith the same variable%j .

more informally, verbs taking anon-PP as an ad-
junct or complement.

3. Variable groups: when a regular expression R is
used to match a node label, any group in R can
be assigned a variable name. If a variable name
appears more than once in a given match pat-
tern, the pattern will only match if all the groups
assigned that name capture the same substring.
This facility is particularly useful for imposing
nonlocal coindexation relationships among nodes
in a pattern, such as for extraction or pronom-
inal anaphora. For example, the match pattern
in Figure 1 matches only relative clauses where
the relative pronoun is extracted from the object
of some embedded verb, because the index of
each is assigned to the same variable%j . To our
knowledge, no other tree query engine provides a
comparable facility.

1The / 〈expr 〉/ syntax for a node label means that
〈expr 〉 is to be interpreted as a regular expression. The
node label suffix#n%〈string 〉 means to assign groupn
of the regular expression to the variable%〈string 〉. Note
also that boolean relational operators are left-associative, so
the pattern asserts that both the WH-phrase and the VP are
in a domination relationship with the SBAR.

2Followingtgrep2convention, every relationR contain-
ing < has a corresponding “passivized” relationR′ where
every< is replaced with>. For example,A > B means
that A is immediately dominated by B.

A << B A dominates B
A < B A immediately dominates B
A <<: B B is a unary descendent of A
A $++ B A is a left sister of B
A $+ B A is the immediate left sister of B
A <+(C) B A dominates B through a chain of

nodes each of which matches descrip-
tion C

A . B A immediately precedes B
A .+(C) B A precedes B through a chain of nodes

each of which matches description C
A <# B B is the head daughter of A
A <<# B B heads A (through transitive closure

of <#)

Table 1: Some of the node-node relations in Tregex2

3. Tree manipulation with Tsurgeon

Despite the applicability both for machine-learning
approaches to NLP and for data management, tools
for tree-manipulation operations have not been widely
developed.3 Because Tregex pattern nodes can be as-

3To our knowledge, the most expressive previ-
ously existing tree-manipulation tools are theTrEd tree
viewer/editor (Hajic et al., 2001) andtsed(Blaheta, 2003).
TrEd was designed primarily for interactive tree manipu-
lation through a graphical interface, however, and the in-
ventory of tree-based pattern matching relations for use in
batch tree-processing is not as rich as those in Tregex. (We
are grateful to an anonymous reviewer to bringing TrEd to
our attention.) Thetsedtool is unfortunately is no longer
available. The tree-manipulation facilities of theTreeptool

2232



delete〈name1〉 . . .〈namen〉 prune〈name1〉 . . .〈namen〉
relabel〈name〉 〈new label〉 insert〈name〉 〈position〉
coindex〈name1〉. . .〈namen〉 insert〈tree〉 〈position〉
move〈name〉 〈position〉 replace〈name1〉 〈name2〉
excise〈nametop〉 〈namebottom〉 adjoin〈tree〉 〈targetname〉

Table 2: Tsurgeon operations and their syntax

signed handles, however, implementing a tree manip-
ulation engine turned out to be a relatively easy task.
A Tsurgeon pattern is defined to consist of a single
Tregex match pattern P, combined with any number
of Tsurgeon operations that are to be executed when
when P matches. Nodes in a Tregex match pattern can
be names, which can then be referred to as manipu-
lation targets in Tsurgeon operations.4 Table 2 lists
the manipulation operations available. Thedelete, re-
label, insert, move, andreplace operations are intu-
itive; the prune operation differs fromdelete in that
the former recursively deletes any nonterminal nodes
that are left with no children—preventing nonterminal
nodes from becoming terminals—whereas the latter
does not. Theexcise andadjoin operations are closely
interrelated.Excise “flattens” a tree fragment by splic-
ing out a vertical chain of nodes, and re-attaching all
children of spliced-out nodes into the parent of the
highest removed node.Adjoin reverses this process
via the formal Tree-Adjoining Grammar operation of
adjunction (Joshi, 1985), splicing a tree fragment in
at a target site. Figure 2 illustrates one of the uses of
excise andadjoin: converting between nested and flat
adjunction structures. Finally,coindex allows mul-
tiple nodes captured in a single match pattern to be
assigned a common index.
One difficulty in designing semantics for a tree manip-
ulation formalism is encountered when a single query
pattern matches a tree in more than one way. The sim-
plest alternative, to allow an operation to apply only
once per tree, is unsatisfactory: if a single tree in-
cludes two coordinated clauses, for example, the user
will almost always want all transformation operations
to apply in each clause. It would seem ideal to iden-
tify in parallel all possible matches in the tree, and
then to apply the corresponding manipulation at each
match. Determinism cannot be maintained under this
approach, however, without severely restricting the
scope of both query and manipulation operations. For

(Chiang and Bikel, 2002) are limited to node relabeling.
4The Tregex syntax for naming a node is to append

=〈name〉 to the description of the node label, as seen for
the namesnp andpp in Figure 2. The string〈name〉 can
then be referred to later in the pattern, or in asociated Tsur-
geon operations.

Tregex Pattern:
NP=np < (NP $+ (PP $+ PP=pp2))
Tsurgeon Operations:

adjoin (NP=new_np NP@) np
move pp2 >- new_np

NP

NP PP PP

NP

NP

NP PP

PP

Tregex Pattern:
NP < (NP=np < (NP $+ PP) $+ PP)
Tsurgeon operation:

excise np np

Figure 2: Tsurgeon patterns for converting between
flat and nested adjunction structures usingexcise and
adjoin5

example, if a Tsurgeon pattern of the following form

V $++ (NP=left $+ NP=right)
relabel left NP-LEFT
relabel right NP-RIGHT

were applied to a tree of the form

VP

V NP NP NP

then the final label for the middle NP would be in-
determinate. Instead, we have chosencyclical appli-
cation for Tsurgeon rules: when an initial match is
found, all manipulation operations apply immediately,
and the resulting tree is then rescanned from the be-
ginning to see whether the Tsurgeon operation can be
applied again. When a single Tsurgeon pattern ap-
plies more than once to a given tree, the order of ap-
plication is therefore determined by the order of search
specified by Tregex. It is incumbent upon the user
to write Tsurgeon patterns in a manner that prevents
unintended interactions; we have found this to be the
most flexible approach. As a simple example, suppose
we wanted to add an explicit zero copula node as im-
mediate left sister of non-verbal predicates in clauses
with no overt copula. One pattern for this might be:

S < /-PRD/=prd !< /ˆV/ !< COPULA
insert (COPULA 0) $+ prd

Without the!< COPULAportion of the Tregex pat-
tern, execution of the pattern would never terminate
after an initial successful match.

5In Figure 2, the symbol@in the adjoin operation
marks thefootnode of the auxiliary tree (the node to which
the daughters of the adjunction target are attached). Note

2233



4. Implementation and Applications
Tregex and Tsurgeon are implemented in Java and
therefore enjoy advantages of platform independence
and internal Unicode character representation, both
desirable in language technology. Unlike other
tree query tools includingtgrep and tgrep2 ,
they require no preprocessing of the input prior to
search. They can be invoked from the command
line or incorporated into Java programs through a
concise API. The Tregex API is modeled after the
java.util.regex library, providing a high de-
gree of control to the user: multiple tree matcher ob-
jects can be spawned from a single compiled match-
pattern object, and iteration over successful matches
can be controlled using ordinary Java loop constructs.
Both Tregex and Tsurgeon are already in use in a num-
ber of research projects. These include:

• Use of the API to construct feature templates
for semantic role identification (Toutanova et al.,
2005) and to transform questions into statements
for textual inference (Raina et al., 2005);

• Extraction of detailed information from relative
clauses for a psycholinguistic study of syntactic
production (Jaeger et al., 2005);

• Conversion of treebanks and Tree-Adjoining
Grammars for use in the parsing of Arabic di-
alects, and standardization and transformation of
tree annotation conventions, at the 2005 Johns
Hopkins Center for Language and Speech Pro-
cessing Summer Workshop.

Tregex and Tsurgeon are available, under the GPL, at
http://nlp.stanford.edu/software/tregex.shtml.

5. Conclusion

In Tregex and Tsurgeon we have presented an expres-
sive and flexible system for tree query and manipula-
tion. This system fills several expressive gaps in exist-
ing tree query languages, and provides a specialized
high-level interface for specifying and carrying out
arbitrary tree manipulations. The system is already
in use as a component in several research projects.
Future work will involve further refinement of both
the query and manipulation languages, and potentially

also that nodes of an auxiliary tree can be named (as in
=new np) and referred to in later operations. The>-
new np argument of themove operation specifies that the
pp2 node should move to the last daughter position of
new np . Finally, in theexcise operation, the target node
chain is of length one, so the top and the bottom node of the
chain are both thenp node in the Tregex pattern.

extensions tomultiple-tree data structures, such as
parse trees over parallel text, or overlapping phono-
logical/syntactic parses of a single linguistic string.

6. Acknowledgements
Development of Tregex and Tsurgeon was supported
by a grant from ARDA’s Advanced Question Answer-
ing for Intelligence Program, and by the JHU Center
for Language and Speech Processing Summer Work-
shop. Tregex was developed at Stanford University,
and we are grateful to members of the Stanford NLP
group for feedback during development.

References
Bird, S., Chen, Y., Lee, S. D. H., and Zheng, Y. (2005). Ex-
tending XPath to support linguistic queries. InProceedings
of Programming Language Technologies for XML, pages
35–46.
Blaheta, D. (2003).Function Tagging. PhD thesis, Brown
University.
Cassidy, S. and Harrington, J. (2001). Multi-level anno-
tation in the Emu speech database management system.
Speech Communication, 33(1–2):61–77.
Chiang, D. and Bikel, D. (2002). Recovering latent infor-
mation in treebanks. InProceedings of COLING.
Hajic, J., Vidová-Hladká, B., and Pajas, P. (2001). The
Prague Dependency Treebank: Annotation structure and
support. InProceedings of the IRCS Workshop on Linguis-
tic Databases, pages 105–114. University of Pennsylvania.
Jaeger, F. T., Levy, R., Wasow, T., and Orr, D. M. (2005).
The absence of “that” is predictable if a relative clause is
predictable. Presented at AMLaP 2005.
Joshi, A. K. (1985). How much context-sensitivity is
necessary for characterizing structural descriptions – Tree
Adjoining Grammars. In Dowty, D., Karttunen, L., and
Zwicky, A., editors,Natural Language Processing – The-
oretical, Computational, and Psychological Perspectives.
Cambridge.
König, E., Lezius, W., and Voormann, H. (2003).
TIGERSearch 2.1 User’s Manual. IMS, University of
Stuttgart.
Lai, C. and Bird, S. (2004). Querying and updating tree-
banks: A critical survey and requirements analysis. InPro-
ceedings of the Australasian Language Technology Work-
shop, pages 139–146. Macquarie University, Sydney.
McKelvie, D., Isard, A., Moller, M. B., Gross, M., and
Klein, M. (2001). The MATE workbench—an annotation
tool for XML coded speech corpora.Speech Communica-
tion, 33(1–2):97–112.
Raina, R., Haghighi, A., Cox, C., Finkel, J., Michels, J.,
Toutanova, K., MacCartney, B., de Marneffe, M.-C., Man-
ning, C. D., and Ng, A. Y. (2005). Robust textual inference
using diverse knowledge sources. InFirst PASCAL Chal-
lenges Workshop.
Rohde, D. L. T. (2005).TGrep2 User Manual, version 1.15
edition.
Toutanova, K., Haghighi, A., and Manning, C. D. (2005).
Joint learning improves semantic role labeling. InProceed-
ings of ACL.

2234


