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Abstract
We present an Open Source framework callexbD developed in order to facilitate the development of a Statistical Machine Translation
Decoder.mo0D has been modularized using an object-oriented approach which makes it especially suitable for the fast development
of state-of-the-art decoders. As a proof of concept, a clone of t#herROH decoder has been implemented and evaluated. This clone
named RMSESis part of the current distribution afooD.

1. Introduction 2. Decoding in SMT

The problem we are concerned with in this study is the

. . . maximization (argmax) — also called decoding — that
Ever since the pioneering work of IBM researchers (Brownarises in SMT and which is formulated in the following

et al., 1993), the number of Statistical Machine Transla-e Lation:
tion (SMT) practitioners have constantly increased. One q :
reason for this lies in the invaluable toolkits that are avail- translation(s) = argmaxP(t|s) (1)
able within our community. As a matter of fact, training an teT

SMT engine from a bitext is (more or less) a matter of glu_wheres is the sentence to translateis a possible transla-

ing together dedicated softwares. Word-based models, qr . . i
the so-called IBM models, can be trained using theG Yon andT is a set containing all the sentences of the lan

. guage ot.
or Giza++ toolkits (Och and Ney, 2000). One can then . . .
train phrase-based models using thedT toolkit (Ortiz- Enumerating all the valid sentences in the target language,

Martinez et al., 2005). For their part, language models cur?s Equation 1 suggests is impracticable. Therefore, the tar-

rently in use in SMT systems can be trained using pack_get sentence is usually built incrementally by transforming
ages such as SRILM (Stolcke, 2002) and the CMU-SLMZ:_rtIaI translations using an algorithm that can be outlined
toolkit (Clarkson and Rosenfeld, 1997). '

Last but not least, several available SMT decoders can ey 1+ Initialize the set of candidate’ to a blank translation

ploit trained models in order to perform translation. Most 2. select an incomplete candidate translatidrom #
notably, the RWRITE decoder (Germann et al., 2001) rec-

ognizes an IBM model 4, while theHARAOH decoder 3. for each transformatiam that applies tdn

is especially handy for phrase-based SMT (Koehn et al., .
2003). Such decoders are invaluable toolkits. For instance, @ _sethcop_yto the _re_sult of applymgr onh

they can serve as baseline or reference systems. Unfortu-  (P) if Ncopyis promising, add it to/

nately, one major drawback of these two decoders is their (c) if # contains incomplete candidates, go to 2
licensing policy. Indeed, they are both available for non-
commercial use in their binary form only. This severely

limits their use in practice (Walker, 2005). From this outline, we see that a decoder must resolve two

In this paper, we describe our efforts in designing a generié:”dependent problem_s: represen_ting the model and explor-
architecture calledtoob (Modular Object-Oriented De- ing the space of possible translations efficiently. The model

coder) especially suited for instantiating specific SMT de-nas to do with expressiveness. It defines how (complete
coders. The goal afloop is thus two-fold: offering Open or incomplete) translations and transformations are repre-

Source, state-of-the-art decoders and providing an architeS€Nted and evaluated. The first popular SMT models were
ture to easily build these decoders. word-based (Brown et al., 1993) and had a hard time trans-

lating idioms and the like. Later came the phrase-based
We recall the role of the decoder in SMT in Section 2. Inmodels (PBM), which deal with word sequences (Marcu

Section 3, we describe the main architecturgofop. We  and Wong, 2002; Koehn et al., 2003). Even though PBMs
then show in Section 4 how we us&boD to instanti- give state-of-the-art performances (Och and Ney, 2004),
ate RAMSES, a clone of IARAOH. We evaluate RMSES  they still struggle with global reorderings that must be dealt
against RARAOH in Section 5. Finally, we conclude this with when translating between languages that have differ-
work in Section 6. ent syntactical structures (SOV versus SVO languages).

4. return the best candidate #f
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One research strategy to solve this problem is to use syn-
tactic knowledge and work with parse trees instead of word

T T T T Cost|- —— — — —
sequencese(g. see (Yamada and Knight, 2001; Quirk et !
|
|

al., 2005)).

The search space exploration strategy is a compromise b
tween the decoder’s speed and the quality of the translatior] Translation |- — — — — — — = Transformation
produced. The search method decides which incomplete ‘
translations are promising, the order in which they are ex-
plored and when a solution is good enough to stop search-
ing. The problem is complex; Knight (1999) has shown
that the search space exploration is NP-complete for word-
based models.

Many different decoders have been implemented for dif
ferent models. An overview of some decoders available

\ |
\ |
[ |
— -1 TransformationGenerator |- -

for word-based models can be found in (Tillmann and Ney, | :TransformationGenerator !

2003). Several decoders have been published for phrase- ! :Hypothesis :

based models (see for instance (Koehn, 2004)). SearchStrlét-e g-y-| -----------
3. Themoob Framework " Translation

A decoder must implement a specific combination of a —— I iormacon!

model representation and a search space exploration strat- Hypothesis |

egy. In this section, we present a framework that applies
to any such combination. To do so, th@ob framework  Figure 1: The different components of the@obp frame-

clearly separates the model and the search space explgork. Arrows indicate dependencies and dashed boxes
ration strategy. Algorithm 1 presents a functional view oftemplate parameters.

how a typical decoder is implemented withirooD.

Algorithm 1 A typical decoder as implemented using the Incomplete translations are stored in a collection named
MooD framework. The algorithm takes as infutat, the  Hactive@nd complete translations are storeddmpiete

starting hypothesis angen a transformation generator. At each step, aransformationis applied to an incomplete
1: Hactive — {hstart} partial translation (line 9). This transformation will mod-
. ctive star

) ify the target sentence and the progress indicator. Usually,
21 Teompiere— 0 the parameters of a decoder are rules fiietranslation of
3: while Hgtiveis not emptydo . pd i is ¢ lleux” with bability of 0.8 A
4:  retrieve a hypothesis frofactive into h wonaeriul” IS 'merveilieux” with a probabiiity ot U. .

: o i transformation is such a rule, but instantiated on a specific

5: if h.value() is high enougtthen falt lation. likéhe t lati fwonderful” is th
6: Tt — gen findh.partialTranslation()) partial translation, likéhe translation of “wonderful” is the
7
8
9

.th . oy
forall tr e Tt do i Word of the source with a _probab|I|ty_0f Q.8s shown
h h in Figure 1, the implementation of partial translations de-
pends on the implementation of the transformations. This

: heopy-applytr)
. py. - . .
10: if heopyisCompleted()then is so becausg a part.|al translation must know how to apply
) a transformation on itself.
11: addhcopyto %omme[e . . . . .
12: else The quality of a partial translation must be quantified in

. ) order to prunefive (line 5) and to select the best trans-
13 addhcopyto %cﬂve . . . I . . .
. lation in Heomplete This quantification is carried out by a
costobject, which associates a numerical value to a partial
translation. Each time a partial translation is transformed,
The key idea behind Algorithm 1 is to manipulate a col-its cost must be updated. At the very least, the cost usu-
lection of partial translations that will be transformed until ally reflects the target sentence fluency, the probability of
they are completed or until no more transformation can behe transformations applied as well as the word reordering

applied to them. between the source and the target sentences.
_ The exploration algorithm does not need to know about the
3.1. Model representation inner workings of the model, but it must be able to retrieve

A model is implemented using four concepts : partial transthe transformations that are applicable to a partial transla-
lations, transformations, cost functions and transformationion (line 6). Thetransformation generatoserves this pur-
generators. The dependencies between those concepts giese; it offers dind function that takes as input a partial
presented in Figure 1. translation and returns a set of applicable transformations.
A patrtial translationrepresents a translation that is being .

built. It consists of a 3-tuple of the forrs,t, p) wheresis ~ 3.2. Search space exploration

the sentence to translatdas a partial translation fandp A search space exploration method is specified using two
is a progress indicator describing hdvean be extended. independent concepts: a hypothesis and a search strategy.
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The principal role of dypothesiss to synchronize a partial all but the one having the highest cost value. To handle this
translation with its cost, but it is not limited to that. It can, strategy,M00D expects each partial translation, cost and
for example, build a search graph that can be used afterwattypothesis to provide eompareStatéunction that imposes

to extractn-best translations (Ueffing et al., 2002) or it can a total ordering on their state.

also compute statistics on the exploration. A hypothesis .

able to build the search graph of any combination of modef->- Implementation

and search strategy is availableM@oD. MOOD is implemented with the C++ programming lan-
All the concepts described so far are assembledsieaach ~ guage and is licensed under the Gnu General Public Li-
strategyto form a decoder. WitiMoob, a search strategy is cense (GPL}. This license grants the right to anybody to
an object that offers decodamethod that takes as a param- use, modify and distribute the program and its source code.
eter the initial hypothesis and a transformation generatorThe only restriction is that if a modified version is dis-
The responsibility of the search strategy is the managemeftibuted, it must also be licensed under the GPL. As ex-
of Hactive and Hoomplete that is, to determine the order in Plained in (Walker, 2005), this kind of license stimulates
which the hypotheses are explored and to establish a prufew ideas and researchMooD is currently available at
ing policy (lines 4 and 5). http://smtmood.sourceforge.net .

As shown in Figure 1, the hypothesis and the search strait is our hope that the availability of the source code and
egy are independent of the model because they are templtie clean design afioob will make it a useful platform to
tized. They can thus be reused with any other model impleimplement and distribute new decoders.

menting the concepts described in the previous section.

The current distribution afioob implements a multi-stack 4. Creating a phrase-based decoder

beam search strategy (see Section 4). As a proof of concept that our framework is viable,
we reproduced the most popular phrase-based decoder:
3.3. Object-oriented architecture at work PHARAOH (Koehn, 2004). In this section, we describe how

One of the key advantage of object-oriented architecture¥® implemented RMSES, our clone, based on the com-
is an improved reusability of the different modules of the prehensive user manual OH_RRéoH' We foIIowe_d this
program. In order to illustrate this point, let us take a lookManual as faithfully as possible; the command-line syntax

at the problems an engineer faces when adapting an existifg*MSES recognizes mimics that ofHARAOH. The out-
decoder to a new problem. put produced by both decoders are compatible ansh R

The first modification that must often be made during theSES can also output itsbest lists in the same format

lifetime of a decoder is changing the cost function. Be-25 lE,*ARAOH does, t,h"’;lt s, da flormaF that th@ARMErL]
cause withMoob the different functionalities have been t0O/kit can parse (Knight and Al-Onaizan, 1999). There-

separated, the task only consists of passing a different cog?re' switching from one decoder to another should be easy.
object when creating the starting hypotheses. No existing 1. nodel representation

code needs to be changed or duplicated. It is rlOtewortWVhen a PBM decoder is launched, it takes as parameters a
that the cost function can be anything. It can even encapsu- '

N : Set of weighted rules and a language model. Each weighted
late an estimation of the future cost of a translation. .
Another useful modification of an existing decoder con—ruIe consists of a sequence of source words, a sequence of
S i . gd target words and a probability. Before a source sentence
sists in adding new search strategies. WitkiooDb, the

; ; . . S I Il the rules th I i i
inner workings of the search algorithm is cleanly disjoint Is translated, all the rules that can apply to it are indexed

.. and stored agansformationswhich are tuples containin
from that of the other modules, so one only needs to write & > P 9

: . a rule and the position where it applies in the source.
a new search strategy class that. defmelseeode_funchon As we already said in Section 3.1, partial translation
that takes as a parameter a starting hypothesis and a trar(L,Sdrresponds to a source sentence, a target sentence and a
formation generator. The search strategy does not have '

; : indi . Th h
be aware of the implementation of the hypotheses or of thgrogress indicator e source and the target sentences

. . . re sequences of words. The progress indicator contains
transformations, thus it can be used with any model (word- oo .
; . a mask indicating which source words have been translated
based, phrase-based, hierarchical, etc.).

. . nd the position of the word after the last translated one
Creating a decoder for a new model representation deman Seeded by the transformation generator). When a trans-
more effort. Handling a new model representation mean

. . : ormation is applied, the target words of its rule are ap-
that new partial translation and transformation classes mu tended at the end of the target of the partial translation and
be created. Because the cost and the transformation ge e progress indicator is updated. An example of how a
erator depe_nd on the translations and the tranSfprmat'OQ?ansformation is applied to a partial transformation can be
representation, new classes for these modules will have tf?)und in Figure 2

be created as well. CurrentitooD only supports phrase- When a transformation is applied to a partial translation,

based models, but other models will soon be supported. the hypothesis ensures thatatsstis updated. Each partial

3.4. Practical considerations translation’s cost is implemented using the following costs:

In practice, many different transformation sequences cak@nguage model The log-probability of the target created
lead to equivalent hypotheses; when this is the case, we say ~(€valuated by a trigram model).

that the hypotheses are in the same state. When two or more
hypotheses are in the same state, we can safely ignore them *http://www.gnu.org/copyleft/gpl.html
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Initial partial translation The only remaining part of the model representation is the

source  quel monde merveilleux transformation generator It consults the indexed trans-
progress 000, next=1 formations and the progress indicator to return the trans-
target formations that only translate untranslated words. Like

PHARAOH, it is possible to restrict the transformations re-

Transformation 1 turned to the ones for which the starting position is not more

rule  quel— what awith probability 0.3 thand| words away from the position right after the last
position 1 translated word, wherg! is a distortion limit.
Partial translation 1 4.2. Search space exploration

source  quel monde merveilleux
progress 100, next=2
target what a

The last building block of the decoder is thearch strat-
egy Like in PHARAOH, we implemented a beam search
strategy. Instead of treating all the hypotheses together, a

Transformation 2 beam search proceeds level by level. At each level, the
rule merveilleux — wonderful with probability hypotheses are pruned regardless of the hypotheses in the
08 other levels. The ones that are kept are expanded and stored
position 3 for treatment in a further level. The advantage of using dif-
ferent levels is that we can group and prune together com-
Partial translation 2 parable hypotheses.
source  quel monde merveilleux In PHARAOH and RAMSES, the level of a hypothesis cor-
progress 101, next=4 responds to the number of source words that are translated
target what a wonderful in its partial translation. This is so because without a very
. good heuristic, it is difficult to compare a hypothesis where
Transformation 3 one word is translated with another where, for example,
rule “monde”— “world” with probability 0.6 twenty words are translated.
position 2 The way it is designed, this search strategy can therefore be

used by any model, as long as the latter provides a policy to

Completed translation establish the level of any given hypothesis.

source  quel monde merveilleux
progress 111, next=3

5. Evaluation
target what a wonderful world

We evaluated whether theoob framework can be use

Figure 2: A possible transformation sequence that transto develop a state-of-the-art decoder. We thus compared

lates a French sentence into an English sentence usingRAMSESagainst FIARAOH.

PBM model. Because there are some places in tha®a0H manual
that left us with implementation choices, we ended up with
a clone which differs slightly from the original. To measure

Translation table The sum of the log-probabilities of the ys difference, we evaluated the translation quality of the

rules that have been applied so far. two decoders.

] ) . A good design is often a compromise between modularity,
Distortion The number of source words that were skippedynich increases code reuse, and execution speed. To mea-

between two consecutive rules. For example, in Figyre this compromise, we also compared the speed of the
ure 2, transformation 2 incurs a distortion cost of 1,4 decoders.

because the French wondondeis skipped.

5.1. Corpora
Word penalty The number of words in the target sentence.\we ysed the parallel corpora that were prepared for the

shared task of the WPT'05 ACL workshop (Koehn and
#\/Ionz, 2005). They have been extracted from the proceed-
ings of the European Parliament. We focussed our atten-
dn on two different language pairrench-to-Englistand
German-to-English If the former is a well studied lan-
uage pair, the latter presents more challenge to a phrase-
ased decoder, because German has a substantially differ-
ent word order than English has (Collins et al., 2005).

We trained (on theTRAIN section of the corpora) the
phrase-based models with one of our programs relying on a
whereh is the partial translation to evaluatécontains the  bidirectional word alignment produced byiZa ++ (Och
costs to consideralue; is the value of a cost and. isits  and Ney, 2000). Each PBM parameter was scored with
weight. Even though equation 2 is a mix of other costs, itits relative frequency as well as with an IBM1-like score
can be implemented in a cost objectMoOD a cost can be  (P(st) andP(t|s)). The only preprocessing we applied con-
arbitrarily complex. sisted in putting all the texts in lowercase.

Heuristic An estimation of the cost to complete the partial
translation. This estimation is the sum of the costs o
translating each contiguous untranslated sequence
if it were a stand-alone sentence.

All these costs are weighted and combined in an exponerﬁ
tial:

costh) = exp Z wevalue 2

ceC
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The two decoders were tuned (on thev sections) to op- BLEU  NIST states / sec states
timize the BLEU metric using the algorithm described in RAMSES  0.2908 7.2672 375708 1.39E+10
(Och, 2003). We used the implementation available in the PHARAOH 0.2897 7.2969 587704 1.16E+10
training toolkit graciously made available by the WPT'06 ) ) ) )

shared task organizers (sdwtp:/www.statmt. Table 2: Translation quality metrics and decoding speeds
org/wmt06/shared-task/baseline.html ). when translating from French to English.

The main characteristics of the corpus and the models we

used in this study are reported in Table 1. Note that al-

though theTEST sections we used here correspond to theready mentioned, German is a lot more difficult to trans-
test material that the participating systems had to translatéate than French for a PBM decoder (Collins et al., 2005),
a direct comparison between our results and the ones rend this results into lower scores. F®reU, PHARAOH
ported during the workshop is not possible since, for some&nded up with a significantly higher score, even KNR
reason, we did not use the same evaluation toolkits (see nextsexplored 40% more hypotheses thamnaRAOH for this

section). setting. The fact that we tuned both decoders on a rather
small corpus (200 sentences) might explain the difference
pair corpus sentences parameters in BLEU scores we observe. However, note that the differ-
TRAIN 688031 13190285 ence iNNIST scores is in favor of RMSES.
fr2en DEV 200 203760
TEST 2000 663042 BLEU NIST states / sec states
RAMSES 0.1994 6.4659 410363 8.16E+9
dezen TREfE”\“/ 7513583 11181562039351 PHARAOH 0.2262 6.4361 660743 5.78E+9
TEST 2000 415507

Table 3: Translation quality metrics and decoding speeds
when translating from German to English.

Table 1: Main characteristics of the corpora and models we
used in this studyparameters indicates the number of

parameters of the PBM that match the source material.  WWhen analyzing these results, we must keep in mind that

RAMSES was designed for two different reasons. First, to
offer the community an Open Source, phrase-based decoder
52 Metrics and second, to assess the usefulnessaxdp when creat-

L ing state-of-the-art decoders.
We used thesLEU (Papineni et al., 2002) amasT (Dod- a6 s no doubt that the first goal was reached. By re-

dington, 2002) metrics to automatically rate the tranSIatior]easingMooo and RAMSES source codes, new SMT prac-
qua}hty of the engines we compareq, both computed.by Mitioners do not need to start from scratch anymore when
script mteval . We used the versmml;a of the script they wish to test a new idea for the decoding process. An-
which we downloaded frorhttp:/(www.nlst.gov/ other advantage of Open Source software is that since more
speech/ tests/mt/resour(_:es/ scoring.htm ' people have the chance to read the source code, they are
To compare the decoding speed of the two decoders, Wg,,e likely to detect bugs and improve the code.

decided to compute the number of states they explored Pgfe 4150 consider that the second goal was reached. We
second. Itis indeed a better indicator of the potential of thg,5iched RARAOH'S translation quality when translating
decoder than the total number of states or the total running.o 1, French to English, and we further think that the differ-

time, because those are mainly affected by pruning and tunspces gpserved in the results when translating from German
ing. Different tunings yield different scores, thus affecting e gye to implementation details or maybe to overfitting
the number of hypotheses that are pruned. We also repo&‘uring tuning.

the total number of states considered during each trans'%urrently RIARAOH is roughly twice as fast as At-
tion session. Note that because each decoder was tungg | o’nly the features of RARAOH are needed. then
separately (on the sanmev sections with the same tool), pyaraoH should be preferred to ARMSES, but for re-

they eventually ended up with a different scoring function,a5rchers who want to experimeniWSES s a solid con-
thus affecting the number of hypotheses that were pruned;anqer.

5.3. Results 6. Conclusion

The tests were conducted on computers equipped with &ur main contribution has been to provide a general frame-
2 GHz AMD Opteron 246 processor and 8 gigabytes ofyork in order to implement a decoder. Our C++ implemen-
RAM. The results of the French-to-English experiment ar&ation of this framework is callettoop and it is released
reported in Table 2. Expectedly, the translation quality ofynder an Open Source licerd@nyone can thus view, use
the two decoders is comparable. We observe that$Es  and modify its source code freely. As a proof of concept
explores less states per second tham®AOH. However,  that this framework can be used to build a full-fledged de-
for this setting, RMSES explored 20% more hypotheses coder, we implemented &1sEs, a PBM decoder based on

than FHARAOH. PHARAOH’s manual.
The performance of RMSes and RHARAOH for the

German-to-English task are reported in Table 3. As we al- 2http://smtmood.sourceforge.net
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In its architecturemoobD cleanly separates the model from  Using Parallel Textspages 119-124, Ann Arbor, Michi-
the search space exploration strategy. It thus maximizes gan, June.

code reusability by allowing the same exploration strategyP. Koehn, F.J. Och, and D. Marcu. 2003. Statistical phrase-
to be used with many different models. Code reusability has based translation. IfProceedings of the Human Lan-
two major advantages over a complete rewrite: it is faster to guage Technology Conference (HLpages 127-133.
develop a new decoder and reduces the risk of introducin@. Koehn. 2004. Pharaoh: a beam search decoder for
bugs. phrase-based SMT. IRroceedings of AMTApages
Even though RMSES is not as fast as HARAOH, it is a 115-124.

solid tool for research projects: the code is Open Sourc®aniel Marcu and William Wong. 2002. A phrase-based,

and the architecture is modular, making it easier for re- joint probability model for statistical machine transla-
searchers to experiment with SMT. Also, the command-line tion. In Conference on Empirical Methods in Natural
interface of RMSES s very close to that of PARAOH, SO Language Processing

switching from one to the other should be easy. F.J. Och and H. Ney. 2000. Improved statistical alignment

Currently,mo0D only supports PBM and the beam search  models. InConference of the Association for Compu-

strategy. We plan to support at least word-based models tational Linguistic (ACL) pages 440-447, Hongkong,

and hierarchical models. We will also add a greedy and a China.

dynamic programming search space exploration strategy. . 3. Och and H. Ney. 2004. The alignment template ap-

Often, SMT is said to be language independant, but some- proach to statistical machine translatidomputational

times, specific problems need specific solutions. We there- Linguistics 30:417—449.

fore intend to add tamooD specialized modules for some grgnz Joseph Och. 2003. Minimum error rate training

languages. For instance, we would like to create a transfor- for statistical machine translation. Rroceedings of the

mation generator that returns transformations that respect 41st Annual Meeting of the Association for Computa-
the structure of a sentence as well as specialized costs. Be-tignal Linguistics Sapporo, Japan, July.

causemMooD is modular, these modules will be easy to papje| Ortiz-Marinez, Ismael Gaia-Varea, and Francisco

switch on or off, so the overall decoder will not lose its  casacuberta. 2005. Thot: a toolkit to train phrase-based

generality. statistical translation models. Trenth Machine Transla-
tion Summitpages 141-148, Phuket, Thailand.
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