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Abstract
This work adresses the use of confidence measures for extracting well recognized words with very low error rate from automatically
transcribed segments in a unsupervised way. We present and compare several confidence measures and propose a method to merge
them into a new one. We study its capabilities on extracting correct recognized word-segments compared to the amount of rejected
words. We apply this fusion measure to select audio segments composed of words with a high confidence score. These segments
come from an automatic transcription of french broadcast news given by our speech recognition system based on the CMU Sphinx3.3
decoder. Injecting new data resulting from unsupervised treatments of raw audio recordings in the training corpus of acoustic models
gives statistically significant improvement (95% confident interval) in terms of word error rate. Experiments have been carried out on
the corpus used during ESTER, the french evaluation campaign.

1. Introduction

Confidence measures are used on various applications of
speech processing like speech recognition(Wessel and Ney,
2005; Cox and Dasmahapatra, 2002), dialog (San-Segundo
et al., 2001) and language identification (Metze et al.,
2000). They help to decide if an hypothesis is right or
wrong.
Moreover, to train models for a new recognition system,
we need large amounts of speech data. Nowadays, large
collections of speech data are available but unfortunately,
most of them are without transcriptions and has to be tran-
scribed manually. Manual transcription of audio recordings
is high-cost, which limits the size of the training corpora for
the models. Performances of a speech recognition system
rise mainly from the quality of the acoustic models. These
stastistical models are more robust as their training corpora
are important and close to the application task. A low-
cost method to increase the size of the training corpora is
to add automatic transcriptions (Deléglise et al., 2005) but
this method can introduce ’noise’ in modeling due to errors
in the recognizer transcriptions. For filtering those tran-
scriptions, we can use closed captions (Chen et al., 2004).
But this method imposes additional information about tran-
scriptions. To avoid this problem, we can use confidence
measures to select training hypothesis. In (Wessel and Ney,
2005), the authors use confidence measure estimated with
posterior probabilities given by the recognizer. A disad-
vantage of word posteriors is the strong sensitivity of this
measurement to the topology of the search space on which
it is computed. This topology is affected by heurisitcs used
during the search space generation to reduce its size and
make the recognition possible on a reasonable time. More-
over, non negligible time processing is needed to compute
word posteriors.
We propose in this article a preliminary study for automatic
detection of well recognized words with confidence mea-
sures which are easilly computable and not affected by the
search space size before testing word posteriors as confi-

dence measure for the same task. Those measures come
from two parts of the recognizer in order to merge them
usefully. While the first measure is based on acoustic like-
lihood, the other one is computed from the language model
thanks to the observation of the back-off behavior. We de-
velop a fusion method to use a single metric for filtering.
We evaluate the measures quality (fusion and single ones)
on french broadcast news by using the Normalised Cross
Entropy (NCE). We compare them by testing their ability
to minimize the WER at constant rejection rate. We use
the best fusion measure to choose audio segments which
are automatically transcribed by our recognizer. The add of
these data resulting from automatic treatments in the train-
ing corpus of acoustic models is used to improve our system
performances. Finally, we show a new measure improving
word posteriors taken as a confidence measure in terms of
NCE which let us believe further future improvements for
filtering data.

2. Confidence measures
Let a set composed ofN recognized words{w1, . . . , wN}.
Each wordw is associated with a confidence measurem(w)
following suitable properties: the measure should be in the
usual domain[0, 1] and the measure should be interpretable
as a probability that the wordw is correct. In consequence
of the last property, we have:1N

∑N
i=1 m(wi) ≈ CWRR,

where CWRR (Correct Word Retained Rate) is the correct
recognition rate on the emitted words (deletions are not
counted).

2.1. Acoustic confidence measure
This measure is based on the comparison of the acoustic
likelihood provided by the speech recognition system for a
given hypothesis to the one that would be provided by an
unconstrained phone loop model (Cox and Dasmahapatra,
2002):

m∗
ac(w) =

1
Nf (w)

[log P (Y |λC)− log P (Y |λL)] (1)
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wherew is the recognized word withNf frames,Y is the
sequence of acoustic observations,P (Y |λC) is the acoustic
score given by the recognizer model, andP (Y |λL) is the
acoustic score given by an unconstrained phone loop.
The measure proposed above does not belong to[0, 1].
Thus, we propose to add a new normalization using the
sigmoid-like transformation presented at equation 2:

mac(w) =
exp

(
mac(w)−µ

σ

)
+ a

exp
(

mac(w)−µ
σ

)
+ 1

(2)

whereµ, σ are the average and the standard deviation of
the initial acoustic measure anda = 2CWRR− 1: the sec-
ond property approximation (see the begining of the sec-
tion) with the development corpus.

2.2. Language confidence measure

Usually, a speech recognition system combines scores pro-
vided by acoustic models with probabilities given by an-
gram language model. Section 2.1. presented a confidence
measure to evaluate the relevance of the acoustic models.
It seems interesting to have an equivalent measure for the
language model. In this part, we introduce a new measure
designed for back-offn-gram language models.
In the linguistic confidence measure we introduce, we
propose to use as information the LM back-off behavior
(LMBB) (Uhrick and Ward, 1997): a given word recog-
nized with a given left context is associated with the highest
order ofn-grams seen in the training corpus with this word
and this context. For example, if the sequence of words ’it
is the ninth time’ is recognized using a quadrigram model
and if the quadrigram [is the ninth time] was observed in
the training corpus, ’time’ will be associated with the or-
der 4. But if this quadrigram was not observed, whereas
the trigram [the ninth time] was, ’time’ will be associated
with the order 3. This is recurrent down to order 1 (or 0 if
out-of-vocabulary words can be processed).
Moreover, it is known that an error occurring on a word
has an impact on the correctness of the words located in
the immediate context of this erroneous word. According
to that, and assuming that the LM back-off behavior is an
acceptable criterion to predict the correctness of a word,
our measure considers the LM back-off behavior of left and
right neighbors of a word in addition to the highest order of
n-grams this word is associated with.
So, each word of a recognized hypothesis is associated with
three values: the highest order of observedn-grams which
the left neighbor word and its context are associated with,
the corresponding word order itself and its context, and the
corresponding order of the right neighbor word and its con-
text.
These triplets can be used as classes. In order to reduce the
number of classes, each word of a recognized hypothesis is
finally associated with a three components label:

1. the symbol -, =, or + when the highest order ofn-gram
associated with its left neighbor word is respectively
lower than, equal to, or higher than the highest order
of n-gram associated with the considered word,

2. the highest order of observedn-grams which the word
and its context are associated with

3. the symbol -, =, or + when the order of the right neigh-
bor word is respectively lower than, equal to, or higher
than the one of the considered word.

This label corresponds to a class of recognized words, de-
coded in the same context in terms of LM behavior.
By comparing a set of automatic transcriptions with words
labeled with these triplets, with a manual transcription of
the same set of sentences, we compute the error rate of each
class of words. The error rate is the ratio of the number of
misrecognized words (substitutions or insertions) included
in this classvs. the number of recognized words in this
class. The estimated error rate for a given class will later be
used as the confidence measure for words of this class dur-
ing processing of test data. This measure will be called the
LMBB confidence measure, and the value of this measure
for a wordw will be notedmlmbb(w).
Figure 1 shows that there is a correlation between the LM
back-off behavior around a recognized word and the WER.

Figure 1: Error rate and word distribution per LM back-off
behavior (LMBB) class on the training data

3. Corpus and system training
Experiments have been carried out on the ESTER corpus.
ESTER is an evaluation campaign of french broadcast news
transcriptions systems which started in 2003 and completed
in January 2005 (Galliano et al., 2005). The system used
there by the Laboratoire d’Informatique de l’Université du
Maine (LIUM) is based on the CMU Sphinx 3.3 decoder.
The data were recorded from six radios:France Inter,
France Info, RFI, RTM, France Cultureand Radio Clas-
sique. The data are divided into three sets; only the two
first ones are annotated1. Shows (10 minutes up to 60 min-
utes) from those two first sets contain few silence, music
and advertisements. The majority of the shows contains
prepared speech like news and few conversational speech
like interviews. Only 15% of the corpus is narrow band
speech. Those data are split in three corpora:

• The training corpus calledESTERtrain corresponds
to 81h (150 shows) composed of 8547 segments in
which 3297 full names are detected.

1they are officially denoted Phase I and Phase II
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• A development corpus2 corresponds to 12.5h (26
shows) split into 2294 segments containing 920 full
names.

• A test corpus calledESTERtest contains 10h (18
shows) split into 1417 segments in which 507 full
names are detected. it corresponds to the official ES-
TER evaluation corpus. This corpus contains two ra-
dios that are not present in the training corpus. It was
also recorded 15 months after the previous data.

This system was competitive: it reached the second position
in the ESTER evaluation campaign with 23.6% word error
rate (Deĺeglise et al., 2005; Galliano et al., 2005).

3.1. Acoustic and language models

The vocabulary used by the LIUM system (Deléglise et
al., 2005) contained about 65K words. Acoustic models
were trained usingΩ containing 81h of data with manual
transcriptions from four different radios. Those broadcast
news are generally wide band but are also composed of
phone speech (narrow band). Trigram and quadrigram lan-
guage models were trained using manual transcriptions of
81 hours of radiophonic broadcast news provided by the
ESTER organization resulting in 1.35M words. We add
articles from french newspaper “Le Monde” resulting in
319M words.

3.2. Training parameters for confidence measures

Confidence measures are estimated from 4h of same radio
stations composing the training corpus for acoustic and lan-
guage models. We will note this new corpus CTrain. It is
independent of the training corpus and we have its man-
ual transcription. We have also an automatic transcription
thanks to the recognizer. From the two transcriptions at
the same time, we can compute the various features of our
measures. For the acoustic confidence measure, we ob-
tain the parametersµ, σ anda of the equation 2. For the
LMBB confidence measure, we compute the confidence
scores from the error rate obtained with the various LMBB
classes (see figure 1).

4. Merging confidence measures
Combining multiple features to result in a single metric can
be made in many ways (Schaaf and Kemp, 1997). The
most popular used operators are: minimum, maximum,
(arithmetic) average, product (or geometric average) and
quadratic average. The resulting measure is:

m(w) = O (m1(w), . . . ,mK(w))

whereO is the respective operation. As we have noticed
before, our combination rule should respect several con-
straints. Particularly, the final confidence measure should
not alter the global prediction of the average probability of
an hypothesis word is correct. The minimum, maximum
and product operators do not respect this constraint but can
be used when the resulting bias is acceptable.

2it is the official ESTER phase I development corpus merged
with the official ESTER phase II development corpus

To take into account the quality of each measure, we can
use the weighted average:

m(w) =
1
K

N∑
i=1

qkmk(w), with
K∑

k=1

qk = 1.

In this case, the weightsqk can be learnt empirically by
cross-validation with the results of the obtained measure
on the Normalized Cross Entropy (NCE) on CTrain. This
metric is used by NIST to assess the quality of a confi-
dence measure and to score evaluations. This is an esti-
mation of how much additional information the confidence
tags provide (Evermann and Woodland, 2000; Maison and
Gopinath, 2001). Thanks to this metric, we will be able to
know the most relevant measures to merge with to obtain a
better one.
We can also choose approaches of merging coming from
the evidence theory the and probability theory. In fact, we
tried this different approaches during our experiments: the
approach giving the best results on CTrain in terms of NCE
during our experiments on merging the LMMB measure
and the acoustic measure probability was a simple linear
interpolation:mAC/LMBB(w) = ν ∗mAC(w) + (1− ν) ∗
mLMBB(w). With CTrain, we obtainν = 0.7.
Table 1 shows that, on CTrain, acoustic and LMBB mea-
sures give real information on the word correctness. By
merging them, we hope to improve qualities of each one of
them. We take the fusion which gives the best results with
NCE. This fusion improves the performances ofmac and
mlmbb.

Measure NCE
acousticmAC(w) 0.035

LMBB mLMBB(w) 0.072
fusionmAC/LMBB(w) 0.087

Table 1: Comparison of confidence measures on CTrain

5. Validation of confidence measures
Before filtering words and thus carrying out a new step in
training the acoustic models, we check the influence of the
confidence measure on the error rate3 (deletions are not
counted) on the test corpusESTERtest.

5.1. Evaluation with reject rate vs.error rate

To evaluate the relevance of our fusion measurem (table 1),
we put a threshold on the scores to accept only the words
which confidence score is higher than it. Thus, we can ob-
serve the misrecognized words which should have been re-
jected among the words we have nevertheless accepted.
Figure 2 shows the rejection and error rates on the test data.
The words are accepted/rejected using a threshold on their
confidence score withm measure. For example, rejecting

3in this paper, ’errors rate’ term refers to insertions and sub-
stitutions, whereas ’word error rate’ refers to the common met-
ric refering to insertions, substitutions and deletions. We need to
make this distinction to study only recognized words
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Figure 2: Rejection rate and error rate for the accepted
words onESTERtest according to the threshold value.

33% of the words with a threshold at 0.82 means an im-
provement of the WER from approximately 42% in rela-
tive.

Figure 3: Error ratevs. Reject rate: comparison of confi-
dence measures onESTERtest.

Figure 3 shows the comparison between the fusion measure
and the two measures which compose it. The fusion mea-
sure is more effective: by rejecting less words or the same
quantity, this measure reaches a better error rate than each
of two measures taken one by one.

6. Word-segment based filtering
In this part, we select the best audio segments recognized
from a data set of audio files by applying a threshold to each
word confidence score (Wessel and Ney, 2005). We noticed
during our experiments that the hypotheses with less error
rate were made of high confidence word groups. More-
over, it seems better for training algorithms of the acoustic
models to preserve long duration segments. This is why
we keep only segments of more than 5 seconds and which
words have confidence scores higher than a threshold noted
α. Plus, if only one word comes to disturb this high-score
group with a score slightly lower than the threshold (less
than 4%), we preserve it in the segment.
Indeed, we checked that the acceptance of only one word
among a high-score group enables us to preserve more rel-
evant segments with only a slight increase of error rate.
For example on test data, table 2 shows that segments of
more than 5 seconds and for which all the words have con-
fidence scores higher than0.7 represents 62.3% of the rec-
ognized words. This set of segments is noted SEG1. The

Words Acceptation rate Error rate
no filtering 100.0% 16.9%

with filtering α > 0.7 α > 0.77 α > 0.7 α > 0.77

no Seg 92.0% 79.0% 14.3% 11.8%
SEG1 62.3% 35.7% 11.9% 6.9%
SEG1* 71.4% 42.0% 12.5% 8.8%

Table 2: Acceptation and error rates of recognized words
according to the filtering method on test data. SEG1 is the
set of words which are included in segments during more
than 5 seconds and composed only by words whose the con-
fidence scores are greater than a thresholdα. SEG1* has
the same constraints as SEG1, but accepts only one word
by segment with a score slightly lower thanα.

error rate for the words of SEG1 is 11.9% (the entire rec-
ognized words have an error rate of 16.9%). Adding seg-
ments whose only one word has a confidence score smaller
than 0.7, and verifying that this word has a confidence score
higher than 0.672 (4% of 0.7), the acceptation rate repre-
sent71.4% of the recognized words, for an error rate of
12.5%. This set of segments is noted SEG1*. We can no-
tice that the constraint on the minimal duration of confident
word-segment is restrictive: table 2 shows that according to
the same value ofα, the acceptation rate of SEG1* is very
smaller than the acception rate of SEG1. On the other side,
the error rate of recognized words decreased too. This con-
firms that the confidence score of the context of a word is
helpful to process this word.

7. Injecting recognized words into training
data

In this part, we select the best audio segments recognized
on a new data set of 54h from various radio stations by
applying a the confident word-segment-based filtering de-
scribed above. These segments are added to the training
corpus of acoustic models, getting then a more significant
training corpus for parameters estimation.
The method to choose the value of thresholdαx for filtering
is simple:αx is the value which allows to obtain an accepta-
tion rate ofx%. We have used this way to avoid to choose
a value too close to the development corpus used to tune
parameters of confident measures. So we expect that the
more we reject recognized words, the more the error rate of
accepted words is low, as shown in results in sections 5.1.
and 6.. Here, we cannot evaluate the error rate of accepted
words because manual transcriptions are not avalaible for
this 54h of data.
Table 3 shows the impact of injecting segments on training
corpus of acoustic models in terms of word error rate: the
LIUM speech recognition system was used on the ESTER
test data using the different acoustic models trained. It is
shown in table 3 that injecting 27 hours of non-filtered data
into the train corpus of the acoustic model doesn’t decrease
the word error rate comparing to the acoustic model trained
only with the initial corpus. Injecting all the recognized
segments (54h of data) allows only a gain of 0.1% absolute
(0.42% relative) which is not an improvement statisticaly
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significant according to the 95% confidence interval: com-
puted with a word error rate of 23.7% and a set of data
composed by 114,000 words, the 95% confidence interval
is included in [23.45; 23.95]. Results with a word error rate
included in this interval are considered as non-statistically
significant ones (Simonin et al., 1998).

Training corpus WER
Initial 81h (ESTERtrain) 23.7%
ESTERtrain + 27h non-filtered 23.7%
ESTERtrain + 54h non-filtered 23.6%

ESTERtrain + 28h filtered (α50) 23.3%

ESTERtrain + 11h filtered (α20) 23.4%

Table 3: Final WER on test data according to injected seg-
ments on training corpus of acoustic models

Injecting about the best 50% automatically transcribed data
in terms of confident measure allows a gain of 0.4% abso-
lute (1.69% relative) word error rate which is a statisticaly
significant result. More interesting, injecting only the best
20% automatically transcribed data improve the word error
rate too. These results show the importance of the quality
of the injected data compared to their amount. Another in-
teresting result is the fact that the filtering concerns narrow-
and wide- band both as shown in table 4.

Training corpus Narrow band Wide band
Initial 81h (Ω) 12h 69h
Ω + 28h filtered (α50) 15h (+25%) 94h (+36%)
Ω + 11h filtered (α20) 14h (+17%) 78h (+13%)

Table 4: Repartition of training corpus according to the
bandwidth

8. Improvements
After a preliminary study for automatic detection of well
recognized words with confidence measures which are eas-
illy computable and not affected by the search space size,
we try to improve the results by merging measures with
word posteriors. As they come from different parts of
the system, they should offer complementary information
about the word correctness.

8.1. Word posterior probability

Word posterior probabilities can be computed from N-best
lists (Stolcke et al., 1997), word-lattices (Evermann and
Woodland, 2000) or confusion networks (Mangu et al.,
2000). Roughly, the word posterior probability is the ra-
tio of thea priori probability of a word and the sum of the
a priori probabilities of all the alternatives. Thesea priori
probabilities are given by a combination of values given by
acoustic and language models. Thus, word posteriors can
be seen as a summarization of acoustic scores, linguistic
scores and search space topology.
In N-best lists, the word posterior probability of a word is
approximated with the ratio of the sum of thea priori prob-
abilities of the occurrences of this word in the N hypotheses

in a given position, and the sum of all thea priori probabili-
ties of occurrences of words in this same position, including
occurrences of the given word.
In word-lattices- and confusion networks- based ap-
proaches, the word posterior probability can be seen as
a generalization of the N-best approach, where word-
segmentations and search space deepth are better consid-
ered.
Unfortunately, this measure is affected by pruning heuris-
tics reducing the size of pruned word-lattices generated dur-
ing the recognition process and in practice the use of this
measure can be biased. To overcome this problem, a deci-
sion tree can be trained to transform the posterior probabil-
ities in better confidence scores (Evermann and Woodland,
2000).
In this paper, we use a confusion networks based approach
directly derived from (Mangu et al., 2000) to compute word
posteriors.

8.2. Fusion

Techniques for merging confidence measures are the same
than in section 4. The approach giving the best results
terms of NCE on CTrain was also a simple linear interpola-
tion between only the LMBB measure and word posteriors
(WP), the acoustic measure is not discriminative enough for
word correctness (see table). This fusion measure is called
WP/LMBB: mWP/LMBB(w) = λ ∗mWP (w) + (1− λ) ∗
mLMBB(w). On CTrain, we obtain,λ = 0.7.

Measure CTrain ESTERtest

acousticmAC(w) 0.022 0.019
LMBB mLMBB(w) 0.081 0.063

word posteriorsmWP (w) 0.169 0.187
fusionmAC/LMBB(w) 0.087 0.072
fusionmWP/LMBB(w) 0.276 0.270

Table 5: Comparison of related confidence measures on
train and test data for confidence measure using normalized
cross entropy (NCE)

Table 5 shows that on both corpora, the word posterior
probability gives real information on the word correctness
in a really better way than the single LMBB measure. But,
merging this two measures into the WP/LMBB measure
provide a very good measure which outperforms the sin-
gle word posterior probability with a NCE value of 0.270
compared to 0.187 onESTERtest. This can be explained
by the fact that LMBB and word posterior probability of-
fer complementary information. Plus, we observed a high
amount of words for word posteriors scores beyond 0.9
which were not correct. One explanation is that those
words do not have much competition in the search space
and nevertheless obtain a high word posteriors score. But
those word can have a low confidence level according to the
LMBB. Thus, the LMBB measure can help word posteriors
to be more discriminative.
Figure 4 shows the quality of the WP/LMBB measure. It
have the same behaviour of word posteriors but it can reject
more words than word posteriors with lower error rate than
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Figure 4: Error ratevs. Reject rate: comparison of confi-
dence measures on test data.

the measure AC/LMBB. This new measure let us believe a
bigger impact on large scale filtering data.

9. Conclusion
In this article, we propose new confidence measures based
on the back-off behavior of language model, a normaliza-
tion of an existing acoustic confidence measure: their fu-
sion by linear interpolation improves their capacities to de-
tect and reject incorrect words. Separately, thes two first
measures are not expensive in computing time, as well as
their fusion. We introduce a word-segment -based filtering
using the fusion of these confident measures and show that
this filtering can extract recognized words with very low
rate from automatically transcribed segments in a unsuper-
vised way. In this paper, we use filtered words from audio
data with no manual transcription available to increase the
size of the training corpus of acoustic models. But other ap-
plications exploiting this kind of filtering can be proposed,
particularly applications processing the ouput of a auto-
matic speech recognition system (dialog system, named
entities extraction, topic detection, ...). Experimental re-
sults show a statistically significant improvement of the fi-
nal word error rate compared to results obtained by using
only the initial corpus or by adding data without filtering.
A confidence measure improving word posteriors abilities
is also presented, improving results of the first fusion. It
seems relevant to continue our work to measure the impact
of our method on a large scale with our new measure merg-
ing word posteriors with an language model-based mea-
sure: it should be interesting to know what amount of data
filtered in a very restrictive way is necessary to reach the
limit of possible improvements.
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