
From Natural Language to Databases via Ontologies

Leonardo Lesmo, Livio Robaldo
Dipartimento di Informatica - Università di Torino

Corso Svizzera 185 – 10149 Torino – Italy.

E-mail: lesmo@di.unito.it, robaldo@di.unito.it

Abstract

This paper describes an approach to Natural Language access to databases based on ontologies. Their role is to make the central part of
the translation process independent both of the specific language and of the particular database schema. The input sentence is parsed
and the parse tree is semantically annotated via references to the ontology describing the application. This first step is, of course,
language dependent: the parsing process depends on the syntax of the language and the annotation depends on the meaning of words,
expressed as links between words and concepts in the ontology. Then, the annotated tree is used to produce an “ontological query”, i.e.
a query expressed in terms of paths on the ontology. This second step is entirely language- and DB-independent. Finally, the ontological
query is translated into a standard SQL query, on the basis of a concept-to-DB mapping, specifying how each concept and relation is
mapped onto the database.

1. Introduction
One of the most relevant problems in data access is today
the one of model management. It concerns the
correspondence between models, where a model is a
specific way to describe a set of data and the way the data
are represented inside a computer. Consequently, model is
a term that encompasses DB schemas, XML schemas, and
ontologies. The mappings between models can be viewed
from two different perspectives. The first of them
concerns the ease with which the correspondences
between models is maintained. It is clear that a given
model may evolve through time, so that a change in a
model implies a corresponding change in the mapping to
any related model (Melnik et al. 2003).

The second perspective from which the mapping
between models is studied concerns its use. Such a
mapping, in fact, has the goal of enabling a “translation”
between expressions (e.g. queries) related to one model
into equivalent queries related to the other model. One of
the goals of this translation is the possibility of
“populating” an ontology with instances extracted from a
database. In order to do this, one must know which
concepts in the ontology correspond to which tables, rows,
and columns in the database (Bizer 2003), (D2R 2005). In
some cases, automatic approaches for establishing the
mapping have been proposed (Stojanovic et al 02);
however, they rely on a strong similarity between the
schema of the database and the organization of the
ontology, so that manual approaches have been proposed
to describe the mapping (Barrasa et al. 2004).

This paper addresses the problem of defining and
using the mapping as a way to access in natural language
the contents of a database. We take an ontology as the
basic repository of domain knowledge. The underlying
ontology is all the system knows about the domain, so it is
the basic knowledge source enabling the system to
understand the goals of the user. The system “thinks” in
terms of ontology concepts and relations and it expresses
the goals of the user in terms of expressions we call
“ontological queries”. It is assumed that the ontology is

language-independent, so that the user may speak English,
or Italian, but the resulting ontological queries are
equivalent. Note that it is not necessary that the ontology
of the user (i.e. her/his knowledge of the domain)
corresponds exactly to the system’s ontology: it is
sufficient that the correspondence is strict enough to
enable the system to respond appropriately to the user’s
inputs. The needed degree of correspondence is an
empirical matter that could be investigated on the basis of
the pragmatic appropriateness of the system’s behaviour.

So, the system knows the language well enough to
interpret the input sentences in terms of concepts in the
ontology, but it must also know about the organization of
the database: it acts as a human expert that supports the
user in writing the correct DB query for getting the data.
This knowledge is expressed as a mapping between
models, i.e. the ontology and the DB schema.

This paper aims at describing the way the language is
interpreted in terms of an underlying ontology, and the
way this interpretation is used to build the correct DB
query. In fig.1, we report the architecture of the NaLDaB
system. Actually, the real implementation is simpler, since

Figure 1: The architecture of the system

Ont-DB
Mapping

PARSER English

Grammar Annotated Tree

Ontological Query

English Italian

sentence

Ontology

 ONT-TO-DB
TRANSLATOR

Database Query

DBMS

Italian

Grammar

SEMANTIC
INTERPRETER

1460

we currently have just one repository of syntactic
knowledge (common to Italian and English) enabling the
system to build the parse tree for both languages. On the
other hand, this KS can hardly be called a grammar, since
it is just a set of condition-action rules specifying the most
probable attachment of words in a Dependency Grammar
framework. The parser is not the focus of this paper, so
that the parse tree is taken here as the input of the process
of DB access.

2. Input
The input to the whole process is a parse tree representing
the structure of the input sentence (some details about the
parser are reported in (Lesmo et al. 2002) (Bosco &
Lombardo 2003)). The parse tree is a dependency tree, i.e.
a tree such that, approximately, each word of the input
sentence corresponds to a node of the tree, and viceversa.
Dependency parsing has received great attention in the
linguistic literature (e.g. (Mel’cuk 1988) (Hudson 1990));
among its features, the one which is most relevant here is
the strict correspondence between a dependency tree and a
predicate-argument structure.

In this paper, we will use the following example.

• Puoi dirmi dove è la biglietteria di Settembre Musica?1
(Can [you] tell-me where is the ticket-counter of
Settembre Musica?)

The dependency tree is shown in fig.2. In each node, we
reported the input form (word), the lemma, and the
corresponding English translation. In the tree, there
appear two traces, which are inserted to refer to the
understood subject of the sentence (pro-drop in Italian)
and to the shared subject between a verb (to tell) and its
governing modal (can). They are automatically inserted in
the tree by the parser. The labels on the arcs are organized
in order to mark the syntactic/semantic role of the
dependent with respect to the governor.

Figure 2: The dependency tree of

“Puoi dirmi dove è la biglietteria di Settembre Musica?”

1 “Settembre Musica” is the collective name of a group of

concerts held in September in Torino. It is a complex event, in
the sense that it has its own organization (and a ticket counter).

3. Knowledge bases

3.1 The Ontology
A very simple ontology has been implemented in OWL
(McGuinnes et al. 2004). In OWL, both subclass relations
and properties of the individuals belonging to a class (i.e.,
OWL restrictions) are asserted by means of the
mathematical relation ⊆. Nevertheless, we adopt here a
graphical representation similar to KL-one (see fig.3) in
order to increase readability2.

Figure 3: Graphical representation of
the (partial) ontology

3.2 The meaning of the words

This is simply expressed as a mapping between words and
concepts (nodes) in the ontology. It is just a set of pairs
<word concept>, as shown in Tab.1,.where the ££ prefix
marks concepts in the ontology.3

Italian English Concept
potere can ££can

dire tell ££tell
biglietteria ticket-counter ££ticket-counter

dove where ££location
… … …

Table 1: The mapping from words to concepts.

2 The ontology includes just some individuals. for example, the

individuals corresponding to the concerts (e.g. Fidelio), the
complex events (e.g. SettembreMusica), etc., but not the ticket
counters or the addresses: we assume that a user could ask, for
example, “Can [you] tell-me where is the ticket-counter of
Settembre Musica?”, but not “Which complex event does
correspond to the ticket counter in via Verdi 12?”. Moreover,
no information is present concerning the relations among them:
these data are assumed to be present only in the DataBase.

3 Very little has been done to date to handle non-content words
(as articles), which deserve further study. The correspondence
between the English dictionary and the concept names is only
aimed at enhancing readability: nothing changes if a name
such as ££location is consistently changed into &%$X7723

Puoi (to can)

dir[mi] (to tell)

verb+modal-indcompl

/ (trace: you)

verb-subj

verb-subj

[dir]mi (to me)

verb-indobj

è (to be)

verb-obj

dove (where)

verb-indcompl-loc+in

la (the)

verb-subj

biglietteria (ticket -counter)

/ (trace: you)

det+def-arg

di (of)

rmod

Settembre (Settembre_Musica)

prep-arg

locution-contin

Musica (Settembre_Musica)

Legend

Class Individual

Restriction Subclass-of Instance-of

Thing

located-entity address

location

∃ has-location
∃ has-address

event

simple-event

 ticket -counter

office

concert

Fidelio

∃ contain
complex-event

 Settembre-Musica

∃ has-office

1461

(££event *T*main-agenda)
(££office *T*organiz (eq *A*org-class office))
(££ticket-counter *T*organiz (eq *A*org-serv tick-count))
(&has-address
 (distr (rdef (range *T*organiz *A*org-addr)
 (domain *T*organiz *A*org-addr))
 (rdef (range *T*agenda *A*place)
 (domain *T*agenda *A*place))))
(&has-location
 (path forward (££locatio n &has-address ££address))
 (distr (rdef (range *T*organiz *A*org-id)
 (domain *T*organiz *A*org-addr))
 (rdef (range *T*agenda *A*event-id)
 (domain *T*agenda *A*place))))
(&has-office
 (distr (rdef (range *T*organiz *A*org-id)
 (eq (*T*organiz *A*org-id)

(*T*organiz *A*off-of))
 (domain *T*organiz *A*org-id))
 (rdef (range *T*main -agenda *A*event-id)
 (eq (*T*main -agenda *A*event-id)
(*T*organiz *A*off-of))
 (domain *T*organiz *A*org-id))))

(db-name cultural-agenda-v0
 (table agenda

*** these are specific events (a concert, an exposition, ...)
 (event-id integer p-key)
 (event-name string)
 (event-type string) *** concert, movie, ...
 (place string) ***an address

 …..)
 (table main -agenda

 (event-id integer p-key)
 (event-name string)
 (event-type string))

 (table organiz
 (org-id integer p-key)
 (org-name string)
 (org-class string) *** instit, office, ...
 (org-type string) ***artistic, commercial, ...
 (org-addr string)
 (org-serv string) ***ticket-counter, information,
 (off-of integer s-key (organiz main -agenda))

)
)

3.3 The Ontology-to-Database mapping
This mapping (OD mapping) enables one to state how a
given concept or a given relation is represented in the
backend database. This is obtained by associating with
every element (concepts and relations) of the ontology a
description of the mapping (see fig.4).
- The *T* prefix identifies tables, while *A* refers to

attributes (columns).
- "distr" means that a concept or relation is split over

more than one table.
- For relations, "eq" means join over two tables.
- "path" specifies that the DB definition covers the

whole path from the referred concept (or relation) to
the end of the path. So, in the example, to cover the
ontological path leading from &has-location to
&address-description it is enough to use either the
*A*org-addr attribute (for organization) or the
*A*place attribute (for events).

The three examples of relations reported in fig. 4 cover
increasing levels of complexity. The first one
(&has-address) is a simple identity function. In fact, in the
ontology, the concepts associated with the location
(££location, which is the range of &has-address) and with
its address conflate into the same datum of the DB (a
location “is”, in our simplified database, the string that
describes its address).

Figure 4: The mapping between concepts in the
ontology and Database structures

The second relation (&has-location) is solved in a
single-relation access, but not as an identity. In fact, the
“location” of an organization is retrieved from the DB by
inspecting the organiz table, by using as access key the
org-id attribute, and by extracting the org-addr attribute.
Finally, the &has-office relation involves a join over two
tables. This is expressed by stating the “external”
attributes referring to the range and domain of the re lation
(range and domain) and the join attributes (eq …). Of
course, this should be extended to cover more complex
inter-table relationships.

3.4 The Database
The part of the data base schema relevant for our example
is reported, with some comments, in fig.5. Note that in the
schema, the *T* and *A* prefixes do not appear.
It includes three tables (agenda, main-agenda, and
organiz), which describe, respectively, single events (e.g.
a concert), set of events (e.g Settembre Musica), and
organizations. The latter may be cultural organizations or
other kinds of organizations (as the Public Transport
Agency, or any kind of offices). In order to make the
things more intricate, we assumed an internal join in the
organiz table, enabling one to extract the offices of a given
(cultural or other) organization. Clearly, this is a bad DB
design, but everybody knows that real DB’s are often
much worse than this.

4. The interpretation process
The construction of the query is based on a separation
between the topic and the focus of the sentence. For
instance, in our example, "Dove" is the topic, i.e. the
element asked about, while the focus is "La biglietteria di
Settembre Musica". Usually, the topic is marked by a
question element, i.e. an adverb (as in "Dove", or a
question adjective, as "Quali concerti", 'which concerts"),
while the focus is given by all other dependents (except
punctuation marks and auxiliaries). However, in order to
build up the ontological query, it is more useful to think in
terms of “goal” and “restrictions”. The goal consists in the
semantic “head” of the focus, while the restrictions are
determined on the basis of possible modifiers of the head
plus other components of the sentence. For instance, in
• Quali concerti diretti da Abbado ci sono al Regio?

[Which concerts conducted by Abbado are there at the
Regio?]

we have that the goal is “Concerti” (or, more properly, the
concert identifiers), while the restrictions include both
“diretti da Abbado” (conducted by Abbado), which is a

Figure 5: The database Schema.

1462

syntactic dependent of “concerti” and “al Regio” (at the
Regio Theater), which is a dependent of the main verb.
Finally, it is worth noting that some yes/no questions are (in
some limited cases) handled as implicit requests of
information. So, in
• Ci sono concerti al Regio domani?

[Are there concerts at the Regio tomorrow?]
In case the answer is affirmative, the list of relevant
concerts are returned.

4.1. Annotation of the syntactic tree
This first subprocess, taking in input the syntactic tree,
adds a pointer to an ontology concept for each lemma for
which the mapping described in §4.2 is defined.
Moreover, it reorganizes, when necessary, the tree by
solving co-references. Concerning sentence 1), this
subprocess adds the semantic pointers to the lemmas
where (££location) , biglietteria (££ticket-counter) and
Settembre (£Settembre-Musica)4 and associates the two
traces (you) and the clitic (to me) to the deictic elements
§myself and §speaker, respectively.

4.2 Top level elements.
The input sentence often includes elements which are not
useful for determining topic and focus, as, for instance,
"Puoi dirmi" (can you tell me), "Vorrei sapere" (I would
like to know), "per favore" (please). Some of these
elements are governors of the actual query sentence (i.e.
they occur higher in the parse tree). Others (as 'please')
depend on the main verb of the sentence. The first step of
the translator is to travel down the tree in order to skip the
upper elements. When the actual top verb (the useful one)
is found, then the query elements are sought below it. So,
the overall organization can be depicted as in fig.6. The
topic and the focus are interpreted separately, but some
join element is used. In this example, the join element is

Figure 6: Actual fragment of parse tree used
in semantic interpretation

4 No interpretation is associated to Musica, since it is taken just

as the continuation of a Multiword: all relevant information is
associated with the first word of the sequence (Settembre).

the word “biglietteria”, which, in the tree, has been
associated with the concept ££ticket-counter, during the
annotation phase. Intuitively, the sentence is interpreted as
follows:

a) what is desired is the “where” of some
“ticket-counter”

b) the “ticket-counter” is the one of “Settembre Musica”
Now, the problem is to find two subpaths, the first
describing how to reach information useful for the user
from the “where of ticket-counter” description, the second
linking ticket-counter to Settembre_Musica. We adopted
two different solutions for the two tasks.

As concerns the path from a concept to a “goal” (i.e.
useful information) we adopted a knowledge-intensive
solution, in the sense that an additional knowledge
repository must be built that contains information about the
reasonable answer. In the case of the example, it specifies
the path (££location) &has-address (££address) . This is
intended to mean that when an inquiry refers to a location,
it is an implicit request of its address.

For what concerns the “restriction” of the query, i.e.
the part regarding the fact that the location is the one of a
ticket counter (and that this latter is the one of Settembre
Musica), we adopted a substantially different approach, i.e.
we assumed that it is possible to automatically find a path
from the concept ££location and the concept ££ticket-
counter (and from ££ticket-counter to £Settembre_Musica).
This is carried out by looking for the shortest path
connecting the two concepts in the ontology (without
counting subclass-of links, in order to account for
inheritance)5. In our example ontology, this path is (fig.3).

(££location)
&is-location-of (££located-entity)

has-subclass (££office)
has-subclass (££ticket-counter)

The final ontological query obtained for the example is
reported in fig.7. Note that the default query target has been
split into two parts: The first one (consisting in the relation
leading to $string) has been left as the “select” clause,
while the second one has been inverted and attached as the
first part of the restriction: what the user actually is
assumed to desire is an address, while all the rest says
which address s/he wants.

Figure 7: The ontological query for the example

4.3 Construction of the Database query
This process is based on the Ontology-to-Database
mapping described in §4.2. The basic idea is to follow the

5 A problem that deserves further investigation concerns the

presence, in the input sentence, of prepositions. We currently
adopted “preplate tables”, i.e. contextualized references to
concepts in the ontology. Because of space constraints, we
cannot describe them here.

puoi (can)

dir[mi] (tell)

dove (where)

t (trace:you)

e' (is)

la (the)

? (?)

t (trace: you)

di (of)

Settembre (Settembre_Musica)

biglietteria (ticket-counter)

[dir]mi (to me)

Musica (Settembre_Musica)

 The ignored top-level elements

 Topic

 Focus

SELECT (££address) &is-address-of
FROM (££location) ticket-counter
WHERE (££location) & is-location-of (££located-entity)

has-subclass (££office) has-subclass (££ticket-counter)
 is-subclass-of(££office) is-office-of (££complex-event)

has-instance (£Settembre_Musica)

1463

path on the ontology and, for each step, build a
corresponding piece of database query. The "select" part
and the "where" part of the ontological query are handled
separately, and they are composed at the end of the process.

4.3.1 Moving one step
A step on the ontological path is defined as a triple:

<concept1 relation concept2>
For instance, in fig.8, we see the path <££office
&is-office-of ££complex-event>; note that this path,
because of inheritance, subsumes the (valid) path
<£$ticket-counter &is-office-of ££complex-event>
The following information is extracted from the
Ontology-to-Database mapping (§3.3):
 a. The definition of concept1, in the form (see §3.3):

<table-name conc-restriction>
where conc-restriction may be absent (ex.
<*T*main-agenda>, for ££event) or have the form
<op attr val> (<*T*organiz (eq *A*org -serv
tick -count)> for ££ticket-counter, see fig.8)

Figure 8: A path in the ontology and
 its mapping to the DB.

b. The definition of relation , given as

<relation-name [path-def] actual-def>
where the optional path-def is:

<concept1 relation1 concept2 relation2 …>
and actual-def is

<basic-def | <distr basic-def1 basic-def2 …>>
finally, a basic-def is:

<eq <table1 attr1> <table2 attr2>>
or

<table attr>

Intuitively, a basic definition (basic-def) specifies how a
relation is implemented in the database in case no
ambiguity is present. This can happen via a join operation,
so that the relation &organized-by (defined over an event
and an organization) can specify that the data about the
organization can be obtained by joining the tables agenda
(where the organizer id appears) and organiz (where all the
data about the organizing institution may be found).
Otherwise, all the data may be available inside a single
table. For instance, if no attributes are specified for a
££location, which in the database may simply appear as a
string (the address), then the location of an event may be
obtained by inspecting the agenda table.

On the basis of these data, the relation definition most
appropriate for concept1 is extracted. Now, it is possible to
compose the query, which will have the form:

<external-table-name external-attribute
external-restriction internal-restriction>

• the external-table-name is the one associated with the
concept and with the involved "direction" of the
relation (*T*organiz in fig.8).

• the external-attribute is the one associated with the
involved "direction" of the relation (*A*off-of in fig.8)

• the external-restriction is the one associated with the
concept definition (again *T*organiz in the particular
example of fig.8).

• the internal-restriction is the one associated with the
"other direction" of the relation ((*T*organiz
*A*org-id) in fig.8).

4.3.2 Composing steps
This operation is based on a recursive application of the
single-step translation process mentioned above. The
result of a single step is a full query. Consequently, the
result of a recursive call on the remaining part of the
ontological path (i.e. the one starting from concept2,
having already solved the single step <concept1 relation
concept2 ...>) is the specification of concept2, as provided
by <concept2 ...>. If we apply the translation process to
this remaining part, we obtain a full query specifying how
to extract from the backend the instances of concept2
relevant for the user. At this point, it is possible to use this
query as a further restriction for what, in the previous
paragraph, has been called internal-restriction. In our
example, the required composition is depicted in fig.9.
After removing some redundancies, as well as the
table/attribute prefix, we obtain:

(organiz org -id (eq org-serv tick -count)
(eq off-of (organiz event-id

(eq event-name Settembre_Musica))))

Figure 9: Composition of queries.

4.3.3 Composition of select and where parts
In the previous paragraph, we have described in detail the
processing of the where part of our example. The
interpretation of the select part is exactly analogous and, in
our example, it produces:

 (organiz org-addr (eq org-serv tick -count))
The merging of the two parts does not require particular
comments, since it is easy to see that it may produce (after
dropping redundant restrictions) the final query:

 (organiz org-addr (eq org-serv tick -count)
(eq off-of (main-agenda event-id

(eq event-name Settembre_Musica)))
Which corresponds to the SQL query:

select org-addr
from organiz
where org-serv =”tick -count” and

off-of in(select event-id
 from main-agenda
 where event-name=“Settembre_Musica”)

££office ££organization

££ticket -counter

&has-office

subclass-of

(eq (*T*organiz *A*org-idff id)
 (*T*organiz *A*off-ofrg id))

(*T*organiz
 (eq *A*org

serv-class))

(*T*organiz
 (eq *A*org-serv

tick-count))

(*T*organiz *A*org-id (eq *A*org-serv tick-count)
(eq *A*off-of (*T*main -agenda *A*event-id)))

(*T*main -agenda *A*event-id
(eq *A*event-name Settembre_Musica)

1464

5. Ontology as Interlingua

In this paper, we have shown that an ontological query can
be used as an abstract representation of the request of a
user asking for information. It has been stated that the
same ontological query can be obtained for Italian and
English sentences, though it is clear that this only applies
to rather simple sentences, used to query the content of a
database.
 In this application, it is assumed that the input is the
natural language query, while the output is the SQL query.
This is due to the fact that the focus of the paper is on the
interpretation of language, and not on generation.
However, the ontological query specifies the meaning of
the NL sentence, in terms of the way the computer (on the
basis of its ontology) is assumed to think about the domain
of application. In other words, the “ontology” on which
the input sentence is based is the humans’ ontology, but
the sentence is understood in terms of the computer
ontology. In some relevant sense, the database schema is
the DBMS ontology. So, the central step of the
interpretation process may be seen as a translation
between two points of view: the interpreter’s point of view
and the DBMS’s point of view. The fact the what we call
ontology has a more relevant role is only due to the
(reasonable) assumption that the interpreter is the module
which knows about the world (the domain of application).

A second comment concerns the different ways
computers may “think” about the problem. In this paper,
we focussed on the generation of DB queries, but this
system has been applied within the HOPS project (see
Acknowledgments), which is mainly devoted to dialogue
management. This has two implications: the first of them
is that the goals of the user may be expressed by means of
more than one sentence (a sequence of steps in the
dialogue); the second implication, perhaps more relevant
here, is that in many dialogue systems the final query is
not expressed in terms of a SQL-like language, but in a
much simpler form, i.e. as a set of pairs parameter-value.
This is especially true for speech interactions, and is what
is enforced in the speech documents of W3C. So, we
could say that some computers think in terms of tables and
attributes, while others think in terms of parameters. The
interesting point is that the same ontological query can be
translated either in a database query or in a set of
parameter-value pairs. This has actually been made in the
current implementation: depending on the context (single
sentence or dialogue), the system gets from the
ontological query either the SQL query or the set of
parameters. It could be said that (at least in the present
implementation) the ontological query is an interlingua at
work between two human languages (Italian and English)
and two computer languages (SQL and parameters).

6. Conclusions
This paper describes a ontology-based system for
translating NL queries into SQL queries. It has been
shown that the translation process is independent both of
the particular Natural Language and of the particular DB
schema. Moreover, it has been noted that the ontological
query that constitutes the intermediate representation that
supports the translation process can be used also for
producing different targets of the translation (parameters).
The described system is a practical implementation of the
basic role of ontologies, i.e. the one of enforcing

interoperability: once the knowledge about the domain is
represented in ontological terms the same process can be
applied to any domain and to any language. Of course, the
idea of an universal ontology has been challenged under
various respects, first of all the practical impossibility of
making people agree on the basic top-level concepts,
although some theoretical works on the well-formedness
of ontological top-levels can be viewed as a relevant step
toward the construction of such a general ontology.

We agree on the practical impossibility of a single
“standard” ontology, and the paper shows that such an
ontology is not really necessary, but what is needed is a
bridge between ontologies: natural language can help in
defining such a bridge.

7. Acknowledgements
This work described has been carried out within the HOPS
project funded by the EC (IST-2002-507967). HOPS
means “Enabling an Intelligent Natural Language Based
Hub for the Deployment of Advanced Semantically
Enriched Multi-channel Mass-scale Online Public
Services” and is devoted to the access via speech and text
to public services. Although the work described here has
been entirely carried out at the Dip. di Informatica of the
University of Torino, it could not have been possible
without the continuous interaction with the partners in the
project. All of them made significant contributions, but we
want to mention here especially Oscar Corcho (ISOCO)
and Marta Gatius (TALP, University of Barcelona). Also,
Pietro Torasso (from our Department), Morena Danieli
and Sheyla Militello (Loquendo S.p.A., Torino), helped us
to clarify some points of the approach described herein.

8. References

J.Barrasa, Ó.Corcho, A.Gómez-Pérez (2004). R2O, an
Extensible and Semantically Based Database-to-Ontology
Mapping Language.

C.Bizer (2003). D2R Map - A Database to RDF Mapping
Language. Proc. WWW 2003, Budapest.

C.Bosco, V.Lombardo (2003). A relation-based schema for
treebank annotation. In Cappelli, Turini (eds).: Advances in
Artificial Intelligence, Springer Verlag, Berlin, 462-473.

D2R (2005). site: http://www.wiwiss.fu-berlin.de/suhl/bizer/
d2map/D2Rmap.htm

R.Hudson, (1990). English word grammar. Basil Blackwell,
Oxford and Cambridge, MA, 1990.

L.Lesmo, V.Lombardo and C.Bosco, (2002):
Treebank Development: the TUT Approach, in Sangal and
Bendre (eds.): Recent Advances in Natural Language
Processing, Vikas Publ. House, New Delhi, 2002, 61-70.

D.L. McGuinness, K.Smith, C.Welty, (2004) Owl Web Ontology
Language Guide, http://www.w3.org/TR/owl-guide/.

I.Mel’cuk. (1988): Dependency syntax: theory and practice,
SUNY University Press.

S.Melnik, E.Rahm, P.A.Bernstein, (2003). Rondo: A Programm-
ing Platform for Generic Model Management. SIGMOD 2003,
San Diego CA.

1465

