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Abstract
In this paper, we present PYCOT, a pronoun resolution toolkit. This toolkit is written in the Python programming language and is
intended to be an addition to the open-source NLTK collection of natural language processing tools. We discuss the design of the module
as well as studies of its performance on pronoun resolution in English and in Korean.

1. Introduction
Pronoun resolution is an important subtask within many
language processing applications, including semantic in-
terpretation, translation, question answering, etc. Al-
though there are a number of widely-known techniques
for performing pronoun resolution (Brennan et al., 1987;
Tetreault, 2001; Kennedy and Boguraev, 1996; Hobbs,
1986), there has been a lack of shared pronoun resolution
software available for those researchers who do not wish
to implement a pronoun resolution component themselves.
This paper presents a pronoun resolution toolkit, called PY-
COT, which can be used either as an off-the-shelf pronoun
resolution module, or can be easily extended and modified
to implement different pronoun resolution algorithms, or
even a wider range of anaphora resolution tasks. The imple-
mentation is written in the Python program language, which
allows it to be embedded within the processing pipeline
of the NLTK open-source collection of natural language
tools1.

After examining other available anaphora resolution com-
ponents (GuiTAR2, Lingpipe3), RAP (Qiu et al., 2004), we
felt there was a need for a well documented, modular pro-
noun resolution toolkit which allowed the user to easily
modify the behavior of the resolution algorithm, and which
could also be adapted for use with different languages or
data formats without requiring the developer to alter sig-
nificant amounts of code. The modular nature of PYCOT
allows these customizations, when necessary, to be isolated
to only certain functions within the overall program.
A novelty in this toolkit, compared to other anaphora res-
olution components, is that it is constructed using an Op-
timality Theory design, in which a collection of separate

1http://nltk.sourceforge.net
2GuiTAR, reported at LREC2004 (Poesio and Kabadjov,

2004), is not yet available to download
3www.alias-i.com

constraints are evaluated to judge pronoun resolution pref-
erences. The basic module that we provide implements
the Centering pronoun resolution algorithm from (Bren-
nan et al., 1987), as re-formulated into Optimality The-
ory by (Beaver, 2004). As we report in (Byron and Gegg-
Harrison, 2004), the modular, declarative style of algorithm
implementation has several benefits, and seems particularly
suited towards a flexible pronoun resolution module that
can be easily tailored to work across languages and input
formats. The module has been used by our team to perform
pronoun resolution on both English and Korean bracketed
trees (Byron and Gegg-Harrison, 2004). Although these
two languages are quite different, we found the OT-inspired
code very simple to port from English to Korean.

2. Overall Goal
Our goal in creating this software is to distribute a work-
ing pronoun resolution module that could be used as-is by
developers who need access to an off-the-shelf pronoun res-
olution component, and that could also be easily modified
be those researchers who want to change the pronoun res-
olution algorithm implemented in the module, for purposes
of experimentation or system development. To achieve our
goal of creating a flexible, user-friendly system, we chose
to implement our module using Python, a popular, easy-
to-learn programming language, so that the resulting code
would be easy to understand and modify. In addition, the
modular, constraint-based resolution algorithm, inspired by
the OT reformulation of Centering Theory presented in
(Beaver, 2004), creates a particularly flexible and easy to
modify resolution engine.

2.1. Python Programming Language

We chose to implement PYCOT using the Python program-
ming language for a number of reasons. Python is a free,
powerful, portable, easy to use and easy to learn program-
ming language (Lutz and Ascher, 2004). In our own expe-
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Table 1: Cospecification hypotheses for sentence (2).The preferred hypothesis is indicated with �
(1) Jane � likes Mary� .
(2) She � often brings her � flowers.
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rience, we have found that code written in Python is easy to
understand and modify and that we are able to develop code
very quickly due to Python’s clear syntax; in fact, it is said
that Python is “optimized for speed of development” (Lutz
and Ascher, 2004). Python is popular among computational
linguists, as evidenced by the existence of the open-source
NLTK collection of natural language processing tools, and
its use in introductory computational linguistics courses at
a number of universities including our own (Bird, 2006).

2.2. Optimality Theory Modular Design

PYCOT uses as its starting point the restatement of pronoun
resolution as a set of Optimality Theory constraints (Prince
and Smolensky, 1993) described in (Beaver, 2004). Opti-
mality Theory (henceforth OT) requires that the preferences
for pronoun resolution be stated as a set of independently-
functioning constraints, which are ordered in terms of their
importance. Constraint functions can calculate either bi-
nary distinctions or continuous variables modeling stochas-
tic processes (Boersma, 2005). An advantage of OT is that
constraints are violable. OT uses a shared memory struc-
ture called a tableau to store the results of constraint evalu-
ation. An example tableau (from Beaver, 2004) is shown in
Figure 1. This tableau compares 10 different hypotheses for
co-indexing of entities ) and * in sentence (2) with referents+

and , introduced in sentence (1). Each possible interpre-
tation is represented as an alternate hypothesis. Each con-
straint is evaluated against each hypothesis, and the result
is recorded in the tableau, where the constraint’s ranking
within the tableau controls the magnitude of the value con-
tributed to the overall evaluation value (in the right-most
column). The hypothesis with the smallest number in the
evaluation column is selected as the preferred hypothesis.
We find the constraint-based design produces modularity
and transparency in the resolution process; it is easy to see
exactly what caused a particular pronoun to be matched
with a particular antecedent by examining the tableau gen-
erated for that hypothesis. The set of constraints included
in the program together formulate the pronoun resolution
algorithm that PYCOT implements. The distribution ver-
sion of PYCOT includes the constraints required to imple-
ment Beaver’s COT algorithm (Beaver, 2004). To change
the behavior of the algorithm, additional constraints may
be added, or the constraints may be re-ordered to reflect a

different relative preference ranking on the constraints.

3. Architecture and Implementation
According to (Byron and Tetreault, 1999), the processing
for anaphora resolution is broken into two stages: an initial
preprocessing phase which converts the original source text
into a set of discourse entity tokens, and a second phase
which contains core pronoun resolution processing. This
architecture is depicted in Table 1. We discuss the details
of our implementation in the remainder of this section.

3.1. Preprocessing Phase

The preprocessor takes the source text as input and reduces
it to a list of items to be resolved and candidate antecedents.
This design places all dependencies on the input text for-
mat in the preprocessor, thus isolating the resolution engine
from variations due to tagging schemes, bracketing guide-
lines used for different corpora, morphological analysis for
different input languages, etc. Because this module must
work with the formatting style of the source text, modifi-
cations may be required if a developer wishes to customize
the system to run against a new input source. The prepro-
cessor is responsible for turning the data with pronouns to
be resolved into a sequence of lists of Referring Expres-
sion Tokens, or RETokens, described below. We use the
term Referring Expression for these items rather than Noun
Phrase, because an RE might be either an overt noun phrase
or an unexpressed argument that needs to be resolved. The
distribution version of PYCOT includes preprocessors to
convert data from the English-language Wall Street Jour-
nal articles from Treebank-3 (Marcus et al., 1993) and data
from the Penn Korean Treebank (Palmer et al., 2002) into
RETokens. Despite the fact that both of these datasets are
formatted as treebanks, there were enough differences in
the formatting to require that we write two different, albeit
very similar, preprocessors.
The basic preprocessing algorithm for parsed input involves
searching the syntactic tree for base noun phrases or phono-
logically null elements and creating a new REToken for
each item encountered in the source text. An REToken is an
object class that captures all of the fields of interest from the
referring expression, such as its lexical content, determiner,
semantic information such as agreement features, etc. In
Treebank data, this information is gleaned from both the
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Source text � Preprocessor � list of RETokens � Resolution Engine � output

Figure 1: Dataflow architecture of PYCOT

lexical string comprising the RE and the POS tags. In ad-
dition, during the search, information regarding each noun
phrases’ syntactic context, such as unique identifiers for its
parent constituents, its linear position in the sentence, and
depth in the syntactic tree is placed in the relevant fields
in its REToken representation, as described below. These
fields are used to determine anti-coindexing based on coar-
gument relations. Gold-standard information from corefer-
ence annotation can also be included in the RETokens, if the
code is being used for experimental evaluation purposes.

3.2. Referring Expression Tokens

The REToken class described above is a subclass of
NLTK’s Token class. It is essentially a Python dictionary,
wherein each field represents a piece of data (ie., gender,
number, syntactic parents, etc) about the referring expres-
sion the token represents. Our implementation currently
contains two subclasses of REToken, one with fields and
functions specific to English, and one with fields and func-
tions specific to Korean, as well as the general REToken,
whose fields should be seen as a suggestion about the types
of information that would be useful to pronoun resolution
in general. Each REToken represents a referring expres-
sion, either a pronoun or null argument to be resolved or
a non-pronominal base noun phrase that might serve as an
antecedent. An instance of the English-specific subclass of
REToken is shown in Figure 2.
New languages can be supported either by extending the
general REToken, or by creating a new subclass of it with
fields specific to the new language, which requires only
that a new set of fields to be filled by the preprocesser
(and any functions which use those fields, if desired) be
defined. When creating our Korean subclass of REToken,
it was possible to reuse many of the relevant fields (ie, the
fields for syntactic parents, depth in the tree, etc) from our
general RETokens. In order to keep track of information
specific to anaphora in Korean, we added fields for mor-
phological endings and functions for determining whether
certain markers (particularly the topic marker nun/un) were
present in the morphology, as well as a function for deter-
mining whether the given referring expression was a null
element. The REToken format makes porting PYCOT to
new languages very easy, in that adding new fields to cap-
ture language-specific information is as simple as adding
a field to a Python dictionary. Figure 3 shows a sample
Korean REToken. Unlike English, where the ‘LEX’ field
simply contains the string comprising the referring expres-
sion, in Korean, the corresponding entry consists of a list of
morphemes with their tags, since morphological informa-
tion such as topic-marking is relevant to pronoun resolution
in Korean.
After preprocessing converts the input text into a sequence
of lists of RETokens, the Resolution Engine performs pro-
noun resolution on the sequence. The current implementa-

� AGR= � ’PERSON’: 3,
’NUM’: ’S’,
’GENDER’: ’M’ �

DEPTH= 1,
DET= None,
DIS= 1,
ID= ’N1’,
LEX= ’MR.-VINKEN’,
MENTION= 2,
PARENTS= [’S1’],
POSITION= 1,
QUOTED= False,
REF= 2,
TYPE= ’NP-SBJ’,
UTT= 2 �

Figure 2: Sample English REToken

� DEPTH= 1,
DIS= ’08’,
LEX= [[’(character1)’, ’NNC’],

[’(character2)’, ’NNC’],
[’(character3’, ’NNC’],
[’(character4)’, ’PAD’],
[’(character5)’, ’PAU’]],

MENTION= ’1’,
PARENTS= [’S1’],
POSITION= 1,
REF= ’100’,
ROLE= ’COMP’,
TYPE= ’#n’,
UTT= ’1’ �

Figure 3: Sample Korean REToken

tion includes a Centering-based algorithm, which only re-
solves pronouns with antecedents in the prior sentence, us-
ing the constraints, described below, to rank and select the
optimal resolution. While Centering-based pronoun resolu-
tion algorithms are inherently limited by the fact that Cen-
tering theory does not make any predictions about pronouns
whose antecedents are not in the previous sentence, the con-
straints that embody Centering’s predictions can be com-
bined with other constraints, for example preferring an an-
tecedent from the current sentence over an antecedent from
the previous sentence.

The constraint-based implementation makes it possible to
test other factors that are claimed to play a role in local
coherence and to test the relative importance of these fac-
tors against a corpus, as in (Byron et al., in press). For our
own experimentation purposes, we have implemented both
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the LRC-algorithm (Tetreault, 2001) and Hobbs’ seman-
tically naı̈ve pronoun resolution algorithm (Hobbs, 1986)
by adding new constraints into PYCOT. The results are re-
ported in (Byron and Gegg-Harrison, 2004). Other types of
anaphora resolution could also be added to the Resolution
Engine.

3.3. Resolution Engine

The resolution engine contains functions to drive the reso-
lution process as well as the pronoun resolution evaluation
code which can be used for experimentation and evaluation
purposes. The control flow encoded in the distribution ver-
sion of PYCOT is a batch process which expects to receive
the entire batch of sentences to be processed as one large
list, in which each sublist of RETokens represents the dis-
course entities in a sentence. This processing flow can be
customized by other developers wishing to create a more
incremental process. The batch driver code works through
the list developing pronoun resolution hypotheses for one
sentence at a time, and evaluating those hypotheses using
the OT constraint-checking functions. As the constraints
are evaluated on each possible interpretation, an OT-style
tableau is constructed containing the results. The preferred
interpretation is the one whose constraint-violations, if any,
are in the lowest-ranking constraints.
The driver code has access to one global variable, CON-
STRAINTS, which is a list containing the strings of names
of the constraint-checker functions to be run, in ranked
order. This list controls which constraints the algorithm
uses and the placement of their output into columns in the
tableau. The behavior of the algorithm can be modified
simply by changing this list of constraint-checking func-
tion names, either by adding/deleting entries or re-ordering
the function names within the list.

3.4. Constraint implementation

def Disjoint(hypothesis, thisS, prevS):
total = 0
for pair in hypothesis:

if pair[0].contind(pair[1]):
total += 1

return total

Figure 4: Sample Constraint Function

The Resolution Engine program includes a set of
optimality-theory constraint evaluation functions. Each
constraint is implemented as an individual function within
the program. Crucial to the design is that all of the
constraint-checking functions that will be used to evalu-
ate the hypothesis expose an identical interface: they each
receive the same input parameter list and they each re-
turn a numeric value representing how many violations of
the constraint are present in each hypothesis they evaluate.
An example constraint function is shown in Figure 4. In
our implementation, the constraints each take three argu-

ments: the set of possible pairings between pronouns and
antecedents, the list of tokens in the current sentence, and
the list of tokens in the previous sentence.
In the Disjoint function shown above, the hypothesis is
a complete pairing of each pronoun in the current sen-
tence with a candidate antecedent from the prior sentence.
The constraint code can rely on additional methods imple-
mented in the resolution engine, such as determining the
topic of the current sentence (the backward-looking center,
in Centering terms), performing unification on agreement
features, calculate co-argument relations, etc.
Because of the modularity of the constraint functions, port-
ing the algorithm to new languages is quite simple. The
Resolution Engine remains the same, but new constraints
relevant to the resolution of pronouns in the new language
can be defined and added to the constraint list used by the
Engine.

3.4.1. Centering and Optimality Theory
The basis of the algorithm that is coded in the distribu-
tion version of PYCOT is the OT formulation of Center-
ing Theory presented in (Beaver, 2004). Centering The-
ory (Grosz et al., 1995) is a theory of discourse coherence
which has been used in the computational literature (start-
ing with (Brennan et al., 1987)) to aid in determining the
referents of anaphoric elements in discourse. Since many
theoretical claims about anaphora are couched in terms of
Centering Theory, this Centering-based module is also a
useful tool for testing such claims against a corpus, as in
(Byron et al., in press). Centering assumes that topical con-
tinuity is necessary for producing coherent discourse, and
prescribes a set of rules that can be used to evaluate pro-
posed pronoun resolutions in terms of topical continuity vs.
topical transitions.
In the OT-based restatement of centering, the transition
preferences are encoded in terms of a set of ranked con-
straints (Beaver, 2004). The constraints used in the imple-
mentation of Beaver’s basic reformulation of Centering are
discussed in (Byron and Gegg-Harrison, 2004).

�
AGREE: Anaphoric expressions agree with their antecedents
in terms of number and gender

�
DISJOINT: Co-arguments of a predicate are disjoint

�
PRO-TOP: The topic is pronominalized

�
FAM-DEF: Each definite NP is familiar

�
COHERE: The topic of the current sentence is the topic of
the previous one

�
ALIGN: The topic is in subject position

Although Beaver proposes that the list of constraints which
replicates centering-based pronoun resolution is [Agree,
Disjoint, ProTop, Local, Cohere, Align], our experiments
with the Wall Street Journal portion of the Penn Treebank
indicate that the best performing ranking is [Agree, Dis-
joint, ProTop, Local, Cohere].
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3.4.2. Additional Korean Constraints
To port PYCOT to process Korean anaphors annotated in
the Penn Korean Treebank, we created a new preprocessor
which was modified to handle this input format, and also
added the following constraint-checking functions:

�
GTOPIC: is violated if a discourse-topic has appeared in the
current discourse (marked with nun or un) and the highest
ranking zero pronoun in the current sentence does not refer
to it. GTopic is vacuously satisfied if no entity in the current
discourse was marked as a topic.

�
ZEROALIGN: is violated if the previous sentence contains a
zero anaphor and the highest ranking zero pronoun in the
current sentence does not refer to it. ZeroAlign is vacu-
ously satisfied if the current sentence does not contain a zero
anaphor.

�
DELETION: is violated if two pronouns in the sentence have
the same proposed antecedent and one of them is not a zero
pronoun (from (Lee, 2003)).

def GTopic(hypothesis, thisS, prevS):
zeros = findzeros(thisSent)
if globnun is None and zeros:
for pair in hypothesis:

if pair[0] in zeros and
pair[1].refersto(globnun):

return 1
return 0

Figure 5: Sample Korean Constraint Function

Figure 5 shows the code for the GTopic constraint, which
compares proposed antecedents to the global topic, stored
in a variable named globnun. Our experiments included
determining the optimal ordering of the constraints we de-
veloped for Korean. Using a small annotated subset of the
Penn Korean Treebank for evaluation, the optimal ordering
we determined was: [Agree, ProTop, GTopic, Local, Co-
here, Align].

4. Testing PYCOT
We have used PYCOT to perform pronoun resolution in En-
glish (Byron and Gegg-Harrison, 2004) and Korean (Byron
et al., in press). These studies demonstrate PYCOT’s use-
fulness and the simplicity of porting between languages.

5. Distribution
The code and documentation for PYCOT is available from
our lab’s webpage, at http://slate.cse.ohio-state.edu/pycot.
The user agreement allows the code to be freely used for
non-commercial research purposes only. Licensing ar-
rangements are possible if any user wishes to incorporate
PYCOT into a commercial product.

6. Conclusions
Our goal with PYCOT is to provide a useful tool for pro-
noun resolution that can be easily tailored to work for a

variety of natural languages without requiring the user to
rewrite significant amounts of code, or that can be simply
used out-of-the-box for users who wish to add a centering-
style pronoun resolution module into an existing language
processing pipeline. We hope we have achieved this goal
by creating PYCOT with the following properties:

1. The use of Python as the implementation language
makes the code simple to understand and modify.

2. The overall program is separated into a preprocessing
stage, which can process a variety of different input
formats, tagging schemes, etc. and a pronoun resolu-
tion engine which implements the pronoun resolution
algorithm. This design encapsulates the pronoun res-
olution code from variations in input formats, and, we
hope, makes the pronoun resolution process more eas-
ily customized for different pronoun resolution tech-
niques.

3. The modular, constraint-based OT approach makes
altering the behavior of the algorithm a simple task
and provides a means for testing theoretical claims
about constraints and preferences for the resolution of
anaphora against a corpus.
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