
NOMOS: A Semantic Web Software Framework for Annotation of Multimodal
Corpora

John Niekrasz∗, Alexander Gruenstein†

∗ Center for the Study of Language and Information
Stanford University

niekrasz@stanford.edu

† Spoken Language Systems
Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology
alexgru@csail.mit.edu

Abstract
We present NOMOS, an open-source software framework for annotation, processing, and analysis of multimodal corpora. NOMOS is
designed for use by annotators, corpus developers, and corpus consumers, emphasizing configurability for a variety of specific annotation
tasks. Its features include synchronized multi-channel audio and video playback, compatibility with several corpora, platform indepen-
dence, and mixed display of temporal, non-temporal, and relational information. We describe NOMOS from two perspectives. First, we
present its software architecture, highlighting its principal difference from comparable systems: its use of an OWL-based semantic an-
notation back-end which provides automatic inference capabilities and a well-defined method for layering datasets. Second, we describe
how the system is used. For corpus development and annotation we present a typical use scenario involving the creation of a schema
and specialization of the user interface. For processing and analysis we describe the GUI- and Java-based methods available, including
a GUI for query construction and execution, and an automatically generated schema-conforming Java API for processing of annotations.
Additionally, we present some specific annotation and research tasks for which NOMOS has been specialized and used, including topic
segmentation and decision-point annotation of meetings.

1. Introduction
Progress in the field of human language technology has
brought about a great increase in the complexity and depth
to which multimodal language resources are being anno-
tated and used by humans and machines. An excellent ex-
ample of this is the research being done as part of the Eu-
ropean Augmented Multi-party Interaction (AMI) project1.
One major aim of this project is to enhance the value of
multimodal recordings by providing tools for their dissem-
ination, summarization and browsing. In order to accom-
plish this goal, a large corpus of multi-party meetings is
being collected and annotated for an extensive range of
inter-connected properties, including dialogue acts, emo-
tion, head and hand gestures, speech transcription, topics,
named entities, and many others (McCowan et al., 2005).
Of course, this kind of endeavor has not been exclusive to
AMI. The multi-party meeting domain has become a major
focus in the fields of speech recognition and automatic un-
derstanding of natural communication, and the AMI Meet-
ing Corpus is one of many meeting corpora which have
been collected and annotated in this manner (Janin et al.,
2003; Garofolo et al., 2004; Burger et al., 2002). Producing
rich, multi-tiered annotations of multimodal spoken lan-
guage resources such as these is difficult for many reasons:
distribution of the data and annotation work is difficult, the
annotation tasks require a tight integration between signal
and symbol, and the design of annotation tools appropriate
for specific tasks is non-trivial.

1http://www.amiproject.org

In our own research as part of the DARPA Cognitive
Assistant that Learns and Organizes (CALO) project2

(see (Niekrasz et al., 2005) for background information),
we too have been confronted with similar problems to those
faced by the AMI project and have designed an annotation
and processing framework to address them. The CALO
project has essentially two scenarios in which producing
multi-tiered annotations are an important problem: 1) dur-
ing system development and research, and 2) in the deploy-
able CALO assistant. In the development scenario, meet-
ings are recorded at several different sites, distributed, and
processed by both humans and machines. For example, the
recorded audio is processed at one site by a speech-to-text
system to produce transcriptions which are then delivered
to a site which parses this text which in turn provides in-
put to a decision detection algorithm. The recordings may
also be manually transcribed or annotated by humans at any
step in the process. Currently, manual annotations are be-
ing done for features like topics, action items, and physical
gestures, and they are being used for training the algorithms
which detect these phenomena automatically. In the de-
ployable CALO assistant scenario, meetings are recorded
by the system, automatically analyzed, and summarized for
actual users who then use this information as part of their
daily work and provide feedback to the system by means of
their interaction with the system. In this latter scenario, ex-
tracted information resides centrally in a shared ontology-
based knowledge base that uses an ontology of multimodal
discourse (Niekrasz and Purver, 2006) and is the focal point

2http://www.ai.sri.com/project/CALO

493



for knowledge sharing in the deployable system. In the for-
mer case, however, the methods for sharing data and an-
notations are not as clearly defined nor as easily managed,
since both humans and machines are doing the processing
and the process is distributed over time and space. It is
this problem for which the NOMOS software has been de-
signed: to establish a flexible framework in which CALO
researchers can produce, share, and process annotations
during system development and research, and to have this
framework use a knowledge representation back-end which
is similar to that which the deployable system employs, fa-
cilitating the transition from development to deployment.
In the remainder of this paper, we describe the NOMOS
framework in detail. In Section 2., we present its soft-
ware architecture, highlighting its principal difference from
comparable systems like the NITE XML Toolkit (Carletta
et al., 2003): its use of an OWL-based semantic annota-
tion back-end which provides automatic inference capabil-
ities and a well-defined method for layering datasets. In
Section 3., we describe how the system is used. For cor-
pus development and annotation we present a typical use
scenario involving the creation of a schema and specializa-
tion of the user interface. For processing and analysis we
describe the GUI- and Java-based methods available, in-
cluding a GUI for query construction and execution and an
automatically generated schema-conforming Java API for
processing of annotations. In Section 4., we present some
specific annotation and research tasks for which NOMOS
has been specialized and used, including topic segmenta-
tion and decision-point annotation of meetings.

2. Software Architecture
The NOMOS software architecture has been designed to
meet many key requirements identified in the literature as
being critical to effective linguistic annotation (Ide and
Romary, 2004), including expressive adequacy, media in-
dependence, semantic adequacy, incrementality, separabil-
ity, extensibility, and processability. It has also been con-
structed in accordance with many of the principles of anno-
tation tool design collected and summarized in (Reidsma et
al., 2005): the software is open-source, flexible, platform-
independent, and extensible, and it supports layered anno-
tation, transcription, configurable visualization, querying,
and a programming API. In the remainder of this section,
we discuss how the NOMOS software is implemented to
address these requirements, beginning with an introduc-
tion to the semantic annotation technology on which the
NOMOS annotation framework is built.

2.1. Semantic Annotation
NOMOS is unique among related annotation frameworks
in that it is rooted in a W3C-recommended standard for
knowledge representation called the Web Ontology Lan-
guage (OWL)3, part of the Semantic Web framework. The
OWL language is a description logic that provides a generic
and expressive formal semantics for annotation which is
not offered by languages like XML and RDF. It is designed
and supported by a large community and a rich set of Se-
mantic Web technologies. Building on OWL technology,

3http://www.w3.org/TR/owl-features/

NOMOS is able to provide capabilities similar to other no-
table frameworks like the NITE XML Toolkit (Carletta et
al., 2003), ATLAS (Bird et al., 2000), and AGTK (Maeda
et al., 2002) including layered annotation sets, a connection
between symbolic linguistic features and temporal signal
segmentation, and a query language. However, the use of
a formal logic as an annotation schema allows NOMOS to
provide mechanisms for aiding annotation tool developers
and annotators such as the ability to check the logical con-
sistency of annotations and to use reasoners to infer logi-
cally implied annotations. It also facilitates use and inte-
gration of a growing number of existing OWL ontologies
that are being used for annotation of web documents or for
linguistic annotation, e.g. the General Ontology for Lin-
guistic Description (Farrar and Langendoen, 2003).
The OWL-based semantic annotation core of NOMOS
is implemented using a mature and well-supported open-
source back-end Semantic Web implementation called the
Jena Semantic Web Framework4. The Jena framework pro-
vides the core mechanisms for storing, reasoning with, and
querying the data. The Jena architecture also abstracts the
storage method for annotations, allowing them to be stored
in a database or in files.

2.2. The Ontology Programming Interface
As an intermediate layer between the Jena Semantic Web
core architecture described above and the NOMOS system,
we have created our own ontology API called the Ontology
Programming Interface (OPI). This layer is used to sim-
plify the Jena ontology API and to provide a programming
interface for annotation tool developers and corpus con-
sumers who wish to process the annotations directly. The
OPI layer works by transforming the OWL ontology into
automatically-generated Java interfaces which encode the
classes and properties in the ontology as classes and meth-
ods in Java. This facilitates coding, enables compile-time
type-checking and guarantees ontology conformance in the
code.
The OPI framework is an important element in the config-
urability of the NOMOS framework. As will be shown be-
low, the OPI is used as the basis for creating Java plugins
for importing and processing of annotations as well as the
specialization of the user interface for particular annotation
tasks. The OPI is the sole Java interface through which an-
notations may be created, managed, layered, and processed
in NOMOS.
Following the Jena API on which it is built, at the core of
the OPI framework is the notion of a model. A model con-
sists of a set of statements which use the terminology es-
tablished in the ontology to make assertions about the data.
For example, a statement might relate one object to another
using a property from the ontology, or it may simply state
the class membership or existence of a particular object.
These statements are called triples in OWL/RDF parlance,
and they are produced by the annotator (whether human or
machine), formulated in OWL, and brought together into a
single file (or database table) to form a model. To produce
layered annotations, these models are made to be dependent

4http://jena.sourceforge.net/

494



on other models which are said to be “imported”. For exam-
ple, an annotator who is annotating a meeting for dialogue
acts will produce a new model which will be assigned a de-
pendency on the other models which contain the transcripts
and other supporting information. The necessity for this de-
pendency comes from the fact that every object (i.e., event,
entity, relation, etc.) is assigned a unique identifier which
is shared across models. In this case, an utterance event
would have been assigned a unique identifier in a previ-
ously available model, and the new statement assigning its
dialogue act property must use the same identifier. This de-
pendency structure between annotation layers can be used
by the corpus designer to manage multiple annotations of
the same features or to maintain control over versioning of
annotations. It also facilitates the selective use of particular
subsets of data.

3. Capabilities
In this section, we describe what NOMOS can do and how
it may be used by corpus developers, annotators, and cor-
pus consumers. We present these capabilities by describing
a typical use scenario which follows the process of import-
ing a corpus or input layer, creating an annotation ontology
(schema), designing a specific user interface, making the
annotations, and then processing them for the purpose of
research or dissemination. Specific examples of NOMOS
specialization, for which this process has been followed,
are reserved for the subsequent section.

3.1. Importing the Input Layer
For all annotation tasks, the process begins with an input
dataset. This may consist of unprocessed information such
as media files or documents, or it may consist of the output
layers of previously produced annotations. It is most com-
mon that the input actually includes both of these. For ex-
ample, to annotate a meeting for dialogue acts, one requires
the raw audio (and perhaps video), a speaker diarization,
utterance segmentation, and transcripts of the segments.
While it may be the case that if NOMOS is used for pre-
vious annotation tasks that some of these data will already
be accessible to NOMOS, we assume for the purpose of
illustration that they are not.
In the NOMOS framework, the importation of these data
is performed through the use of an importer plugin. To
date we have created importer plugins for the ICSI (Janin
et al., 2003), ISL (Garofolo et al., 2004), NIST (Burger et
al., 2002), and AMI (McCowan et al., 2005) meeting cor-
pora, the Meeting Recorder Dialog Act Corpus (Shriberg
et al., 2004), and the CALO dataset. Importer plugins are
Java methods which translate source information such as
the location of media files or the information contained in
an XML-formatted transcript into NOMOS annotations us-
ing the OPI framework API. As mentioned previously, an
OPI Java API is generated from and embodies a particular
ontology. It is therefore the case that any information which
needs to be imported must have an ontology which accom-
modates that information. NOMOS comes with an ontol-
ogy for the most common concepts used in multimodal dis-
course research such as Recording, Person, and Meeting,
which may be used as a basis for annotation. However, if

the input layer also consists of information not adequately
represented by the existing default NOMOS ontology, these
classes and properties must be added, and they are added in
the same manner that is done for new annotations that will
be produced as part of the annotation task. We now describe
that process.

3.2. Creating an Annotation Ontology
To create an annotation ontology which contains the
classes, subclass (taxonomic) relationships, and proper-
ties of objects that will be the subject of annotation, one
may use one of several well-supported graphical tools
designed for creating OWL ontologies, e.g. Protégé-
OWL5 (Knublauch et al., 2004). Optionally, OWL code
may also be created directly, or a simpler syntax which
has been designed for the NOMOS framework may also be
used. New ontologies may also simply extend existing on-
tologies using the model importing mechanism as they too
are considered models in the OWL/RDF framework. Upon
completion of an ontology design, a command within the
NOMOS application is used to generate the corresponding
OPI Java code. This code is then available for use by im-
porter plugins as described above, by user interface plug-
ins, or by processing plugins (each described below). For
example, from a class Utterance and property start-time in
the ontology, Java code for an interface Utterance with
method Utterance.getStartTime() would be gen-
erated into the OPI for that ontology.

3.3. Designing a User Interface
As pointed out in previous surveys of annotation tools (Rei-
dsma et al., 2005), specific designs for specific prob-
lems produce greater accuracy and efficiency of annotation.
With this in mind, the NOMOS user interface is a highly
configurable and extensible plugin-based framework. The
core interface is highly general and composed of a media-
playback interface, temporal tracks, non-temporal panels,
and objects that may be placed on those tracks and pan-
els called labels. Each of these elements are implemented
in the Java Swing framework and may be specialized for
the particular annotation task. In the NOMOS framework,
these are called label plugins, track plugins, and panel plu-
gins. Additionally, there is an interaction plugin which
manages interaction between these components. A com-
prehensive manual and API documentation is available to
developers, and some example plugins are shown in Sec-
tion 4.. Using this framework, the full set of capabilities
provided by Swing are still available to the designer, with a
very small set of required plugin points which connect the
interfaces with the NOMOS architecture. This gives tool
developers the option of leveraging existing NOMOS user
interface plugins or creating something completely new.
Once any needed user interface specialization plugins have
been created, the user then employs queries and perspec-
tives to determine which data are displayed and which in-
terface plugins should be used to display them. Queries

5For applications which will not fully employ the logical prop-
erties of the OWL language, one may consider this for instruc-
tional purposes simply as creating a typed relational database
schema.

495



Figure 1: The NOMOS interface for editing queries.

Figure 2: The NOMOS interface for editing perspectives.

extract the desired information from the annotations and
may be created using a graphical query-construction in-
terface included in the NOMOS application (see Fig. 1),
or using the SPARQL6 query language. Perspectives then
configure the manner in which the query results are dis-
played by assigning them to interface plugins, as seen in
Fig. 2, which shows the NOMOS perspective-editing inter-
face. We present examples of the user interface plugins,
queries, and perspectives in Section 4..

3.4. Performing Annotations
The manner in which annotations are performed will be
highly dependent on the specific user interface that has been
designed for the task. However, NOMOS does provide a
shared interface for common or generic interactions. For
example, media playback control employs a shared user
interface in which actions may be performed using menu
items, a toolbar, or keystrokes, depending on the user’s
preference. The NOMOS API also provides several com-
mon actions which may be used when designing the anno-
tation interface, including generic property editing for indi-
vidual objects, drag-and-drop creation of relations between
objects, and various mechanisms for modifying the tempo-
ral properties of event objects.

3.5. Querying and Processing
For consumers of annotations, the most common interest is
for statistical processing, and NOMOS provides two meth-
ods for this. In the first, the user selects a query to run
and a set of models on which to run it. The query is then

6http://www.w3.org/TR/rdf-sparql-query/

automatically executed iteratively on each model, produc-
ing flat tab-separated files containing the results. This tech-
nique facilitates processing by other programs or by statis-
tical analysis applications. The other technique available
for processing annotations is the use of processor plugins.
Processor plugins perform an operation that is essentially
the inverse of importer plugins: they read NOMOS annota-
tions and produce some output. As with importer plugins,
processor plugins may be run directly from the NOMOS
interface or executed as standalone Java processes which
use the OPI Java API to access the annotation data. This
technique circumvents the need to translate annotations and
allows the consumer to generate output of any kind using
Java. For example, Java algorithms are able to add a layer
of annotations automatically using this method, without the
need for intermediate translation steps.

4. Example Applications
Following the typical use scenario described above, the
NOMOS framework has been employed effectively for a
number of tasks as part of the CALO project and others. For
example, NOMOS specializations have been designed for
the annotation of topic segments, decision points, and ac-
tion items in meetings (Gruenstein et al., 2005). These spe-
cific annotations have been done in accordance with a rich
ontology of multimodal discourse (Niekrasz and Purver,
2006) which we have employed as part of the CALO sys-
tem ontology. This has facilitated the use of our NOMOS-
annotated data in research toward the deployable CALO
system. The following sections describe how the NOMOS
framework has been specialized for these specific tasks and
briefly describes the datasets which have been produced.

4.1. Topic Segmentation and Decision-points
In Figure 3, a screenshot of a NOMOS implementation
for the segmentation of meetings by topic and marking of
decision-relevant utterances is shown. In the implemen-
tation, a track plugin has been used to show the coarse
segmentation of the discourse and provide a specific set
of mouse actions which allows the annotator to manipu-
late those segments and their names. Additionally, the im-
plementation uses a label plugin to specialize the manner
in which utterances are displayed such that they are col-
ored based on their association to an identified action item.
These action items are also shown as a tree structure in a
panel plugin on the left side of the window. Using this
tool, 56 meetings from the ICSI and ISL meeting corpora
were annotated, and the annotations have been made pub-
licly available (see (Gruenstein et al., 2005) for full details
on the design of the tool and the resulting dataset).

4.2. Action Items
In Figure 4, a NOMOS implementation for the annotation
of meeting action items is shown. In this scheme, utter-
ances are grouped according to how they contribute to the
participants’ agreement on the description, ownership, and
due-date of an assigned action item. In the screenshot,
relations between temporal and non-temporal objects are
shown. This implementation uses a track plugin which as-
signs a display time to non-temporal entities (action items)

496



based on their relationship to temporal entities (utterances).
Label plugins are used to provide additional coloring and
to specialize the text that is displayed in the labels based on
the class of object they represent.
In both of the above implementations, a query to extract ut-
terance and transcription information has been made part of
the perspective that has been defined for the task. In the lat-
ter example, however, additional queries have been added
to the perspective in order to extract the objects which are
being displayed on the action item tracks.

5. Future Work
We are just beginning to work with several other re-
searchers on annotation tasks which use NOMOS, and a
new version of NOMOS, version 2.0, has been made pub-
licly available for download7. It is being used to collect
more action-item annotations, topic segmentations, and im-
portance labeling of utterances in meetings. In the fu-
ture, to support a broader audience for NOMOS, we hope
to concentrate on simplifying the documentation for non-
technical users. This will principally involve the integration
of more plugins in order to provide more leverage for those
interested in creating their own annotation tools. Also, an
alternate implementation of the media player for Direct X
is also being undertaken to support large-format multiple-
channel video (the current implementation uses JMF).

6. Acknowledgments
The authors would like to thank Matthew Purver and
Patrick Ehlen for their help and advice in the design and
testing of NOMOS. This work was supported by DARPA
grant NBCH-D-03-0010. The content of the information in
this publication does not necessarily reflect the position or
the policy of the US Government, and no official endorse-
ment should be inferred.

7. References
Steven Bird, David Day, John Garofolo, John Henderson,

Christophe Laprun, and Mark Liberman. 2000. ATLAS:
A flexible and extensible architecture for linguistic an-
notation. In Proceedings of the 2nd International Con-
ference on Language Resources and Evaluation (LREC
2000), Athens, Greece.

Susanne Burger, Victoria MacLaren, and Hua Yu. 2002.
The ISL Meeting Corpus: The impact of meeting type
on speech style. In Proceedings of the 6th Interna-
tional Conference on Spoken Language Processing (IC-
SLP 2002), Denver, Colorado.

Jean Carletta, Stefan Evert, Ulrich Heid, Jonathan Kilgour,
Judy Robertson, and Holger Voorman. 2003. The NITE
XML Toolkit: Flexible annotation for multimodal lan-
guage data. Behavior Research Methods, Instruments,
and Computers, 35(3):353–363.

Scott Farrar and Terry Langendoen. 2003. A linguis-
tic ontology for the semantic web. Glot International,
7(3):97–100.

7http://godel.stanford.edu/

John S. Garofolo, Christophe D. Laprun, Martial Michel,
Vincent M. Stanford, and Elham Tabassi. 2004. The
NIST Meeting Room Pilot Corpus. In Proceedings of
the 4th International Conference on Language Resources
and Evaluation (LREC 2004), Lisbon, Portugal.

Alexander Gruenstein, John Niekrasz, and Matthew Purver.
2005. Meeting structure annotation: Data and tools. In
Proceedings of the 6th SIGdial Workshop on Discourse
and Dialogue, Lisbon, Portugal.

Nancy Ide and Laurent Romary. 2004. International stan-
dard for a linguistic annotation framework. Journal of
Natural Language Engineering, 10(3–4):211–225.

Adam Janin, Don Baron, Jane Edwards, Dan Ellis, David
Gelbart, Nelson Morgan, Barbara Peskin, Thilo Pfau,
Elizabeth Shriberg, Andreas Stolcke, and Chuck Woot-
ers. 2003. The ICSI Meeting Corpus. In Proceedings of
the IEEE International Conference on Acoustics, Speech,
and Signal Processing (ICASSP 2003).

Holger Knublauch, Mark A. Musen, and Alan L. Rec-
tor. 2004. Editing description logic ontologies with the
Protégé OWL plugin. In Proceedings of the 2004 In-
ternational Workshop on Description Logics (DL 2004),
Whistler, British Columbia.

Kazuaki Maeda, Steven Bird, Xiaoyi Ma, and Haejoong
Lee. 2002. Creating annotation tools with the annota-
tion graph toolkit. In Proceedings of the 3rd Interna-
tional Conference on Language Resources and Evalua-
tion (LREC 2002), Paris, France.

I. McCowan, J. Carletta, W. Kraaij, S. Ashby, S. Bour-
ban, M. Flynn, M. Guillemot, T. Hain, J. Kadlec,
V. Karaiskos, M. Kronenthal, G. Lathoud, M. Lincoln,
A. Lisowska, W. Post, D. Reidsma, and P. Wellner. 2005.
The AMI Meeting Corpus. In Proceedings of Measur-
ing Behavior 2005, the 5th International Conference on
Methods and Techniques in Behavioral Research, Wa-
geningen, The Netherlands.

John Niekrasz and Matthew Purver. 2006. A multimodal
discourse ontology for meeting understanding. In Steve
Renals and Samy Bengio, editors, Machine Learning for
Multimodal Interaction: 2nd International Workshop,
MLMI 2005, Edinburgh, UK, July 11-13, 2005, Revised
Selected Papers, volume 3869 of Lecture Notes in Com-
puter Science, pages 162–173. Springer-Verlag.

John Niekrasz, Matthew Purver, John Dowding, and Stan-
ley Peters. 2005. Ontology-based discourse understand-
ing for a persistent meeting assistant. In Persistent Assis-
tants: Living and Working with AI: Papers from the 2005
AAAI Spring Symposium, Stanford, California.

Dennis Reidsma, Dennis Hofs, and Natasa Jovanović.
2005. Designing focused and efficient annotation tools.
In Proceedings of Measuring Behavior 2005, the 5th In-
ternational Conference on Methods and Techniques in
Behavioral Research, Wageningen, The Netherlands.

Elizabeth Shriberg, Raj Dhillon, Sonali Bhagat, Jeremy
Ang, and Hannah Carvey. 2004. The ICSI Meeting
Recorder Dialog Act Corpus. In Proceedings of the 5th
SIGdial Workshop on Discourse and Dialogue, Cam-
bridge, Massachusetts.

497



Figure 3: A topic segmentation and action-item annotation tool built with NOMOS.

Figure 4: An action-item annotation tool built with NOMOS.

498


