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Introduction 
 

'Multimodal Corpora' target the recording and annotation of several communication modalities such as speech, hand gesture, 
facial expression, body posture, etc. Theoretical issues are also addressed, given their importance to the design of multimodal 
corpora. 

This workshop follows similar events held at LREC'2000, LREC'2002 and LREC'2004. There is an increasing interest in 
multimodal communication and multimodal corpora as visible by recently launched European Networks of Excellence and 
integrated projects such as HUMAINE, SIMILAR, CHIL and AMI, and similar efforts in the USA and in Asia. Furthermore, 
the success of recent conferences dedicated to multimodal communication (ICMI'2005, IVA'2005, Interacting Bodies'2005, 
Nordic Symposium on Multimodal Communication 2005) also testifies the growing interest in this area, and the general need 
for data on multimodal behaviours. 

The focus of this LREC'2006 workshop on multimodal corpora is on non-verbal communication studies and their 
contribution to the definition of collection protocols, coding schemes, inter-coder agreement measures and reliable models of 
multimodal behaviour that can be built from corpora and compared to results that can be found in the literature. 

Topics to be addressed in the workshop include, but are not limited to: 

- Studies of multimodal behaviour 

- Multimodal interaction in groups and meetings 

- Building models of behaviour from multiple sources of knowledge : manual annotation, image processing, motion capture, 
literature studies 

- Coding schemes for the annotation of multimodal video corpora 

- Validation of multimodal annotations 

- Exploitation of multimodal corpora in different types of applications (information extraction, information retrieval, meeting 
transcription, multi-modal interfaces, translation, summarisation, www services, communication and clinical studies, HCI 
design) 

- Methods, tools, and best practices for the acquisition, creation, management, access, distribution, and use of multimedia and 
multimodal corpora 

- Metadata descriptions of multimodal corpora 

- Benchmarking of systems and products; use of multimodal corpora for the evaluation of real systems 

- Automated multimodal fusion and/or generation (e.g., coordinated speech, gaze, gesture, facial expressions) 

We expect the output of this one day workshop to be 1) a deeper understanding of the theoretical issues and research 
questions related to verbal and non-verbal communication that multimodal corpora should address, 2) how such corpora 
should be built in order to provide useful and usable answers to research questions, 3) an updated view of state-of-the-art 
research on multimodal corpora. 

17 papers were submitted, of which 13 were accepted as oral presentations and covering several areas such as meeting 
analysis, metadata, hand gestures, multimodality during conversation and multimodal Human-Computer Interaction. 

Looking forward to an exciting workshop ! 

Jean-Claude MARTIN 

Peter KÜEHNLEIN 

Patrizia PAGGIO 

Rainer STIEFELHAGEN  

Fabio PIANESI 
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Working with Very Sparse Data to Detect 
Speaker and Listener Participation in a Meetings Corpus 

Nick Campbell & Noriko Suzuki 
Department of Cognitive Media Informatics, 

ATR Media Information Science Labs, Keihanna Science City, Kyoto, 619-0288, Japan, 
fnick,norikog@atr.jp 

 
ABSTRACT 
At ATR, we are collecting and analysing `meetings' data 
using a table-top sensor device consisting of a small 360-
degree camera surrounded by an array of high-quality 
directional microphones. This equipment provides a 
stream of information about the audio and visual events of 
the meeting which is then processed to form a 
representation of the verbal and non-verbal interpersonal 
activity, or discourse flow, during the meeting. In this 
paper we show that simple primitives can provide a rich 
source of information.  

INTRODUCTION 
Several laboratories around the world are now collecting 
and analysing “meetings data” in an effort to automate 
some of the transcription, search, and information-
retrieval processes that are currently very time-
consuming, and to produce a technology capable of 
tracking a meeting in realtime and recording and 
annotating its main events. One key area of this research 
is devoted to identifying and tracking the active 
participants in a meeting in order to maximise efficiency 
in data collection by processing inactive or 
nonparticipating members differently. [1, 2, 3, 4, 5, 6, 7, 
8]. At ATR we are now completing the second year of a 
threeyear SCOPE funded project to collect and analyse 
such data. This paper reports an analysis of material 
collected from one such meeting in terms of speaker 
overlaps and conflicting speech turns. Our goal is to 
determine whether it is necessary to track multiple 
participants, or whether processing can be constrained by 
identifying the dominant member(s) alone. The results 
show that in a clear majority of the cases, only one 
speaker is active at any time, and that the number of 
overlapping turns, when two or more participants are 
actively engaged in speaking at the same time, amount to 
less than 15% of the meeting. This encourages us to 
pursue future research by focussing our resources on 
identifying the single main speaker at any given time, 
rather than attempting to monitor all of the speech activity 
throughout the meeting. The second part of the paper 
shows that a change in speaker might be predicted from 
the amount and types of body movement. These 
movements are speaker-specific and not uniform, but 
systematically increase in the time immediately before 
onset of speech. By observing the bodily movements of 

the participants, we can form an estimate of who is going 
to speak next, and prepare to focus our attention (i.e., the 
recording devices) accordingly. 

 

Figure 1. The camera's-eye view of a meeting (top), showing 
the annotated movement data for three participants (D,I,L) 

using the wavesurfer video plugin (bottom) 

CATEGORIES OF SPEECH ACTIVITY 
We have regularly been recording our monthly project 
meetings, where research results and project planning are 
discussed, to provide a database of natural (non-acted/no 
role-playing) speech and interaction information. The 
number of members attending each monthly project 
meeting can vary between four and twelve. Participation 
is voluntary, but since the research is being carried out by 
three teams at different locations (ATR, NAIST, and 
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Kobe University) the meetings provide an essential focus-
point for coordinating the research activities. All meetings 
are recorded on both video and audio, using purpose-built 
equipment that has been described elsewhere [9, 10, 11]. 
All visible body-movements of the participants (head, 
hands, and torso) are annotated from observation of the 
video recordings, topic changes are noted, and the 
categories of speech activity are tagged by human 
labellers working interactively with the data. 

 

Table 1. Topics that arose during the July meeting, with 
durations, showing the division between researcher-centred 

and technology-centred discussions 

The speech is not yet being transcribed verbatim, but tags 
are assigned per topic and per activity type. We consider 
it necessary to distinguish (i) “on-topic” speech from (ii) 
“personal” speech, and also (iii) “backchannel utterances” 
and (iv) “laughter”. We had also proposed (v) “yes” and 
(vi) “no” as relevant categories, but our experience with 
annotating these further two types of speech event 
suggests that they will not be easily recognisable using 
automatic processing, and we currently limit our tagging 
of speech activity to types i-iv above. 

OVERLAPPING SPEECH 
This paper reports the results of an analysis of one such 
meeting. Eight members were present at the meeting, 
which was held at NAIST in July 2005. They included the 
research director (s1), two team leaders (s3,s8), two 
researchers (s2,s4) two administrative assistants (s6,s7) 
and a guest researcher visiting from Ireland (s5). An 
observer was also present to monitor the recordings. The 
statistics of speech activity reported below clearly reflect 
the different roles of the participants, and the importance 
(in terms of time devoted to each) of the various topics.  

Topics of discussion (see Table 1) included (a) 
progressupdates (approx. 36%) where one speaker tended 
to dominate, with the others listening and asking 
occasional questions, and (b) technical topics (approx. 
64%), where more members became involved in the 
discussions. There were 2513 different “speech events” in 
the meeting, which lasted approximately 45 minutes 
altogether. Here, a speech-event is defined as a block of 
continuous speech, bounded by a cessation of speech 
activity, from one speaker, as indicated by `+' = start and 
`-' = end markers in the columns of figure 2. A brief 
silence after a burst of speech is marked by the `-' label. 

 

Figure 2. A sample of the audio labelling, showing three 
categories of speech sctivity: o=opinion, or public speech, 

p=private or personal speech, and b=backchannel 
utterances. A `+' indicates onset of speaking, `=' 

continuation, and `-' cessation of speech. The time in seconds 
of each event is shown on the left, and absolute time on the 

right 

 

Table 2. Counts of speech events per participant 
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The distribution of events per speaker is shown in Table 
2. Tables 3 and 4 detail the types of speech activity and 
times spent on each per speaker. Mean event duration is 
0.7 seconds (sd=0.78), with the longest recorded event 
being 17 seconds. The 25th quantile of event durations is 
at a quarter of a second, and the 75th at 1 second. There 
were in addition 1730 points throughout the meeting 
during which no-one spoke. Both total utterance counts 
and overall speaking times indicate that s1 (the project 
leader), and s2 (a guest researcher expert in graphics 
processing) dominated the meeting. It is also evident from 
tables 2 & 3 that s5, the observer, also took an active part 
in the discussion. The administrative assistants spoke least 
at this research-based meeting. 

 

Table 3. Utterance timings for each participant for three 
categories of activity: O; on-topic talk, P: private talk, B: 
backchannel utterances. All timings are rounded to whole 

seconds. 

 

Table 4. Number of events for each speaking type on-topic 
backchannel private laugh 

The count of participants actively speaking during each 
turn is given in Table 5. It shows that by far the majority 
of turns are single-speaker events. It is 6.5 times more 
likely that any given utterance will be single-speaker, and 
only 15% likely that more than one speaker will be active. 
There is only a 7% chance of more than 2 people speaking 
at any time in this meeting of 8 researchers. These figures 
may of course be culture-specific, and even meeting-
specific. It might be supposed that backchannels 
contribute to the majority of overlapping utterances, but a 
count of singlespeaker backchannel utterances (n=134) 
versus a count of multi-speaker, overlapping backchannel 
utterances (n=74) shows this not to be the case. If we 
exclude from this s1's overlapping backchannels to s2 
(n=19) then the ratio becomes 55:134, and it is 2.5 times 
more likely that a bakchannel utterance will be spoken 
without overlap. 

 

Table 5. Number of participants active at each turn silent 
solo two three four 

SPEECH & MOVEMENT 
It has often been observed (e.g., [12, 13, 14]) that people 
move more when they speak. To determine whether these 

two types of activity had any useful correlation, we also 
examined the physical activity of all participants that was 
visible to the camera. We looked both at activity prior to 
speaking, and at activity while speaking. Since all were 
seated around a table, this study is limited to upper-body 
movement. Figure 1 shows the multi-tiered annotation 
that we use for labelling body movements which are 
apparent to a human observer when viewing the 360-
degree camera output. In addition to a speech-related tier, 
separate tiers are available for “head”, “hands”, “body”, 
and “other”, where the last can be used for complex 
gestures such as “play with pencil”, “scratch head”, “fix 
glasses”, “stroke beard”, etc. For this paper, we simply 
counted the number of active labels at each moment of 
time and categorised them as follows: “Motion 1: only 
one body part is moving (e.g., the head or a hand), 
“Motion 2”: two body parts moving (e.g., head and hand, 
or two hands), “Motion 3”: three body parts moving (e.g., 
head and hand and body), and “Motion 4”: four or more 
body parts moving. The data from three speakers (those 
circled in the figure) were then compared for the periods 
immediately prior to onset of speech. Figure 3 clearly 
shows a rise in the amount of activity as the person 
prepares to speak. However, we can see individual 
differences, and it appears that two speakers reach a peak 
of activity shortly before speaking, while the third 
continues to increase up to the onset of speech. We can 
also note differences in parts of the body moved: 
Participant I, for example (the centre portion of figure 3), 
appears to move his head much more than the others (as 
indicated by the white portion of the bars). Figure 4 
provides a breakdown of the types of activity per 
participant. It shows that for all speakers, the occurrance 
of speech having no overlap with body movement 
accounts for less than 20% of the total speaking time. It 
also shows that speakers behave differently; with all 
speakers moving 2 or more body parts at least 50% of the 
time, but one speaker (the centre column) moving 3 or 
more body parts more than 50% of the time while 
speaking. 

DISCUSSION 
The above analysis of the audio data shows that in a clear 
majority of the cases, only one speaker is active in any 
given turn. This implies that we will only lose a small 
amount of relevant information if we limit our processing 
to the single most dominant member at any one time. This 
will considerably reduce the work-load of the processing.  

Furthermore, from an examination of the video data, we 
confirmed that people do tend to move more when they 
speak, and found that there is a steady rise in the amount 
of movement of all participants particularly in the 10 to 
15 seconds preceding the onset of speech.  
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Figure 3. Rising amounts of bodily movement for 3 
participants across a period of 16 seconds prior to onset of 
speech. Two speakers show a peak of activity a few seconds 
before speaking. Here “H” represents head movement, “T 

represents hand movement, “B” represents body movement, 
and “E” represents particular gestures (see text for details). 

The rightmost column shows onset of speech, and the 
leftmost sums all movements since last speech event. 

 

From the two above findings, we conclude that it is 
feasible to design technology, based on the very simple 
presence or absence of speech noise and movement in the 
video signal, that will be able to detect and track the 
speakers in such a meeting situation. However, it will 
require development of separate technology to be able to 
determine the reactions of the other participants to any 
particular utterance or topic. This remains as future work. 
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Figure 4. Number of major body parts that move while 
speaking. Non-overlap indicates that the speaker spoke while 

remaining relatively still. Participant I (centre) differs in 
moving more than the other two. 
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ABSTRACT 
In this paper we present an annotated audio-video corpus of 
multi-party meetings. The multimodal corpus provides for 
each subject involved in the experimental sessions 6 
annotation dimensions referring to group dynamics; speech 
activity and body activity. The corpus is based on the audio 
and video recorded eleven sessions which took place in a 
lab setting appropriately equipped with cameras and 
microphones. Our main concern in collecting this 
multimodal corpus was to explore the possibility of 
providing feed-back services to facilitate group processes 
and to enhance self awareness among small groups engaged 
in meetings. 

Author Keywords 
Meetings, multimodal corpus, annotation. 

ACM Classification Keywords 
H5.m. Information interfaces and presentation (e.g., HCI): 
Miscellaneous.  

INTRODUCTION 
In this paper we present an annotated audio-video corpus of 
meeting activities. The present annotations focus on 
information that can be used to monitor and understand 
group dynamics and personal behaviors. The multimodal 
corpus was developed with two goals in mind. First, the 
collection of the data has to support the design and 
development of systems and tools capable of monitoring 
and tracking individual and group behavior, to foster better 
interaction styles, group satisfaction and productivity. 
Second, the multimodal data collected are meant to enhance 
the corpus of empirical data in human interaction as well to 
improve our understanding in the multiple social, 
psychological and emotional aspects involved in multiparty 
meetings. The former goal has been discussed in [7, 11] 
where we a study of the users acceptance of a simulation of 
an automatic relational report aiming at enhancing reflexive 
thinking and self-awareness among small groups. This 
study demonstrated an high degree of acceptance of the 
aspects concerning automatic multimodal coaching. 
Several multimodal corpora have been already developed to 
analyse meetings. In particular the MM4 corpus [10] and 
the VACE corpus [5] are closed the one proposed here 
since they annotated low-level cues, such as speech, 

gesture, posture, and gaze in order to interpret high level 
meeting events. Brdiczka and colleagues [4] proposes a 
fusion algorithm to detect subgroup activities in a meeting. 
Our research aims at a step further, namely the automatic 
annotation of group dynamics.  

METHODS AND PROCEDURES FOR DATA 
COLLECTION 
The multimodal annotated corpus is based on the audio and 
video recorded during eleven meetings, which took place in 
a lab setting appropriately equipped with cameras and 
microphones (see below). 
In order to provide for as much uniform context as possible, 
our groups were engaged in the solution of one of two 
versions of the Survival Task.  

Interaction context – the Survival Task  
The Survival task is frequently used in experimental and 
social psychology to elicit decision-making processes in 
small groups. Originally designed by National Aeronautics 
and Space Administration (NASA) to train astronauts 
before the first Moon landing– the Survival Task proved to 
be a good indicator of group decision making processes [8]. 
The exercise consists in promoting group discussion by 
asking participants to reach a consensus on how to survive 
in a disaster scenario, like moon landing or a plane crashing 
in Canada. The group has to rank a number (usually 15) of 
items according to their importance for crew members to 
survive  
Consensus decision making scenario was chosen for the 
purpose of meeting dynamics analysis mainly because of 
the intensive engagement requested to groups in order to 
reach a mutual agreement, thus offering the possibility to 
observe a large set of social dynamics and attitudes. In 
consensus decision making processes, each participant is 
asked to express her/his opinion and the group is 
encouraged to discuss each individual proposal through 
weighing and evaluation of decision quality. 

In our setting, we retained the basic structure of the 
Survival Task. In particular, a) the task was competitive 
across groups/team, with a price being awarded to the group 
providing the best survival kit. b) The task was 
collaborative and based on consensus within the group, 
meaning that a participant’s proposal became part of the 
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common sorted list only if he/she managed to convince the 
other of the validity of his/her proposal. 

Experimental protocol  
Before starting each recording sessions, participants were 
given general information about the task filled a consent 
form. Each participant was equipped with close-talk 
microphones and asked to sit around a round-shaped table 
without restrictions concerning their positions and 
movements around the table (see Figure 1).  

 
Figure 1. Experimental setting 

A document was given to the group containing the items 
that were the objects of the discussion, and the instructions 
concerning the task. The experimenter sat in the room away 
from the table, without participating to the discussion, and 
collecting information and observations on an experimental 
sheet. 
All the participants (40% males and 60% females) involved 
in the study were clerical people working at ITC-irst. In all 
cases they knew each other, and had often been involved in 
common group activities in the past. The average age was 
35 years. 

Setting and recording procedure 
Each session was recorded in the specially-equipped CHIL 
room at ITC-irst (see Figure 2), by means of five Firewire 
cameras (AVT MARLIN), four placed on the four corners 
of the room while one lied the table. Four Web (SONY 
SNC-RZ30P) were installed on the walls surrounding the 
table.  
Speech activity was recorded using four closed-talk 
microphones, six tabletop microphones and seven T-shaped 
microphone arrays, each consisting of four omni directional 
microphones installed on the four walls in order to obtain 
an optimal coverage of the environment for speaker 
localization and tracking.  

 

 
Figure 2. The experimental setting in the CHIL room  

THE CORPUS 
Eleven groups of four people each were recorded. The 
average duration was 25 minutes, the range being 0.13.08’’ 
- 0.30.06''. The total length of the audio-video corpus is 
3.44.55" hours. See Table 1 for details. 

Groups Sessions length 
1 0.29.00" 
2 0.18.24" 
3 0.26.10" 
4 0.15.49" 
5 0.19.06" 
6 0.22.15" 
7 0.30.06" 
8 0.18.04" 
9 0.13.08" 

10 0.17.23" 
11 0.15.30" 

Total 3.44.55" 

Table 1. Durations of the sessions 

Data annotation 
Each subject is identified according to cardinal points (N, S, 
E, W).  
Currently, the following annotations are available for the 
data: functional relational roles (task roles and socio-
emotional roles), which address facets of the group 
dynamics; speech activity; body activity (head position, 
head orientation and fidgeting activity). 
In the following, we describe for each category the 
procedures and the annotation output. 

Functional role annotation 
As stated before, our main concern in developing a 
multimodal corpus was training a system able to 
automatically recognize group behaviour for the shake of 
the implementation of a automatic facilitator. Categories 
developed by Benne and Sheats concerning functional roles 
in small groups [2] and the two dimensional approach 
developed by Bales [1] revealed suitable both for a) 
mapping onto constellations of low-level observable 
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arrays 
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(AVT MARLIN) 
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SNC-RZ30P) 
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patterns that can be detected through vision and speech and 
b) for presenting individual profiles to participants through 
the relational report.  The Functional Role Coding Scheme 
(FRCS), consisting of five labels for the Task Area and five 
labels for the Socio Emotional Area. The Task Area 
includes functional roles related to the facilitation and 
coordination of the tasks the group is involved in, as well as 
to the technical skills of the members as they are deployed 
in the course of the meeting. The Socio Emotional Area 
involves roles oriented toward the functioning of the team 
as a group. The reliability of the scheme was assessed on a 
subset of the corpus consisting of 130 minutes for the 
Socio-Emotional Area and 126 minutes for the Task Area. 
Two trained annotators coded five participants on the 
Socio-Emotional Area and five in the Task Area. The 
Cohen’s K (Cohen, 1960) was used to assess inter-
annotator agreement. Following [9] the agreement on the 
roles of the Task Area is good (0.6 < k < 0.8) while the 
agreement on the roles of Socio-Emotional Area is on the 
borderline between being good and moderate (0.4 < k < 
0.6). For a more detailed description of the coding scheme, 
including information about its reliability, see [7, 11].  

A synthetic description of FRCS follows. 

The Task Area Functional Roles 
Orienteer (o). S/He orients the group by introducing the 
agenda, defining goals and procedures, keeping the group 
focused and on track and summarizing the most important 
arguments and the group decisions.  
Giver (g).  S/He provides factual information, states his/her 
beliefs and attitudes about an idea and answers to questions.  
Seeker (s). S/He requests suggestions and information, as 
well as clarifications, to promote effective group decisions..  
Procedural technician (PT). S/He uses the resources 
available to the group, managing them for the sake of the 
group.  
Follower (f). S/He listens, does not participate actively to 
the interaction. 

The Socio-Emotional Functional Roles  
Attacker (a). S/He deflates the status of others, expresses 
disapproval, attacks the group or the problem.  
Gate-keeper (gk). S/He is the moderator within the group, 
who mediates the communicative relations: s/he encourages 
and facilitates the participation and regulated the flow of 
communication.   
Protagonist (p). S/He takes the floor without need to be 
consulted driving the conversation, assuming a personal 
perspective and asserting his/her authority.  
Supporter (su). S/He shows a cooperative attitude 
demonstrating understanding, attention and acceptance as 
well as providing technical and relational support.  
Neutral (n). S/He passively accepts the idea of others, 
serving as an audience in group discussion. 

Functional role annotations consists of tuples 〈role-type; 
participant-code; role-code; start: start-time; end: end-time; 
duration: duration〉 (Table 2). 

 
Table 2. Sample annotation of meeting video recordings 

For instance, the tuple 〈task: w; o; start: 621.466; end: 
645.965; duration: 24.499023”〉 refers to the role of 
orienteer (‘o’) belonging to the ‘task’ area, as played by 
participant w  from time 621.466 till time 645.965, for a 
duration of seconds 24.499023.  

Speech activity 
Speech activity here refers to the identification of the 
presence or absence of human speech, without 
distinguishing between verbal and non-verbal activity. 
Each session was segmented by first automatically labeling 
the speech activity recorded by the close-talk microphones.  
The voice activity detector (VAD) is based on the time 
energy of the signal [3]. For each speaker, VAD identifies 
the amount of speech activity, and produces an output such 
as 〈participant-code, start time, end time, label〉, where 
label takes on the value ‘speech’ and ‘no-speech’.   
VAD’s output was then manually checked and improved. In 
the first place, errors of the automatic annotation were 
removed; in particular, since subjects were close to each 
other, the speech activity of a subject often entered the 
close-talk microphone of the subject sitting nearby, giving 
raise to a wrong assignment.  
Secondly, VAD is based on time energy, and it is not able 
to distinguish between verbal activity and other acoustic 
non-verbal events. Manual annotation purified the VAD 
annotation from breaths, yawns, coughing, and noises 
caused by the subjects when touching the microphones. 
Laughs were retained and annotated by means of the 
additional label la.  

3D tracking of body activity  
Visual cues were employed to derive head position and 
orientation as well as body activity.   

Head position 
The subjects’ position in the room is tracked through head 
position identification. All of the 3D positions have an 
absolute timestamp and are referenced to an origin which is 
on the floor under the centre of the table. The 3D co-
ordinate system for the room is oriented in the following 
way: X axis represents a Westerly direction, Z axis 
represents a Northerly direction, Y is the height from the 
floor. For each participant the 3D tracking produces a tuple 
〈timestamp; x axis; z axis; y axis 〉, where an absolute 
timestamp is followed by the cardinal point which identifies 
head position in the room. Αn example of the output is 
presented in table 3.  
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Timestamp [µs] X Y Z 

1124351961 746271  -1179.47 1086.32 -128.697 
1124351961 839697 -1200.04 1131.63 -165.695 
1124351961 935088 -1170.6 1064.99 156.321 

Table 3. Sample of head position tuple 

Head orientation  
Stiefelhagen and colleagues [12] estimated the potential of 
head orientation in detecting who is looking at whom in 
around-a-table setting. Starting from head position 
detection, color and hedge features were used to track head 
orientation and to estimate focus of attention.  

 
Figure 3. Head orientation and head position detection 

The output from the 3D tracking consists for each subject of 
tuples such as 〈timestamp; head orientation〉. Head 
orientation can take on one of the following values: 
“down”, when subject head is oriented toward the table, 
“S”, “N”, “W”, “E”, when the head is oriented toward 
South, North, West or East, each of them referring to one of 
the other participants (see Figure 3). 

Fidgeting 
Fidgeting refers to localised repetitive motions such as 
when the hand remains stationary while the fingers are 
tapping the table, or playing with glasses, etc.  
Fidgeting has been tracked by using skin region features 
and an MHI of the convex skin polygons and temporal 
motion as the trigger is used. For a more detailed 
description see [6]. 
For each subject, the output of the analysis consists in the 
tuples 〈timestamp; fidgeting energy; hand/arm activity〉. An 
example of the output is the following: 
〈1124358961419507; 16; 1〉, in which an absolute 
timestamp is followed by two normalised fidgeting values. 
The first (‘16’) represents the fidgeting energy of the 
person's body and the second (‘1’) represents his hand/arm 
activity. The normalised values are referenced to that 
person's most vigorous fidgeting during the entire recorded 
sequence, hence they are person specific.  

CONCLUSION 
We presented in this paper a multimodal corpus of 
annotated consensus decision making meetings. The corpus 
provides for each subject six annotation levels: manual 
annotation of the participants functional role and speech 
activity and automatic annotation of body activity during 

meetings, head position and orientation and fidgeting 
activity. 
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ABSTRACT 
At the MPI multimodal research has a long history. An 
increasing amount of resources is created to test scientific 
hypothesis. This requires proper methods and 
technologies to manage these resources. During the last 
five years mature tools1 were developed for these 
purposes that guide the resources during their whole life-
cycle; ELAN can be used to create accurate and complex 
annotations; IMDI helps the user to create useful metadata 
descriptions, to model the underlying relations between 
the resources and to search for suitable resources; 
LAMUS is used to upload and manage large language 
resource repositories and finally ANNEX and LEXUS can 
be used to access multimodal resources via the web. 

INTRODUCTION 
Investigating multimodal behavior was and is one of the 
key pillars in psycholinguistic research to get a deeper 
understanding of the mental processes underlying speech 
production and speech comprehension, and to better 
understand the relation between language and cognition. 
Therefore, at the Max-Planck-Institute for 
Psycholinguistics many studies were and are carried out 
using a number of modalities such as speech, prosody, 
gestures, signs, eye movements and body movements [1-
11]. Different recording techniques such as video, audio, 
eye trackers, data glove, motion trackers, and ultrasonic 
and infrared marker devices were and are used to gather 
multimodal data.  

As a result of the various research projects carried out at 
the MPI for Psycholinguistics its language resource 
archive now covers about 150.000 objects most of which 
are sessions that are linguistically meaningful units such 
as interviews, route descriptions, narratives etc. This is 
covered in about 15 Terabytes of data, a large amount 
since much data is digitized video. Only video (including 
audio) signals, sometimes taken from different 
perspectives, carry the rich information that is necessary 

                                                                                                                     
1 All tools are available or will soon be available under 
Open Source license. For details we refer to the following 
web-site: www.mpi.nl/tools 

to analyze and annotate human communicative behavior. 
In general the annotation is a manual process since these 
signals are often recorded in natural environments and 
contain utterances in minority languages or spoken by 
children, second language learners etc, i.e. there are no 
proper language models, the corpora are in general too 
small to estimate parameters for stochastic recognition 
machines and the signals contain too rich information. 
Signals such as eye tracking data is normally not 
annotated, but just used to determine relevant points in 
time where for example the eyes fixate a certain pattern.  

A large part of this archived data is well-organized and 
described with the help of the IMDI (ISLE Metadata 
Initiative) metadata infrastructure. Although the IMDI set2 
contains elements that are typical to describe 
multimodality it is difficult to guess how much of the data 
in the archive is actually used for multimodality research. 
In principle, any video recording can be used to carry out 
such studies and researchers often forget to mark 
multimodality in the metadata descriptions. Therefore, we 
can only refer to institute projects that are started 
purposefully to include multimodal analysis (see annual 
reports3).  

This paper will focus on the aspects of managing the 
technical complexity that naturally evolves when doing 
multimodal research, i.e. during annotation, during 
resource management and during analysis. It will present 
a framework that allows researchers to carry out 
multimodality work with a high accuracy and efficiently. 
It will not focus on either scientific results, models of 
multimodal behavior in production and comprehension, 
and encoding schemes that are used to encode human 
behavior. For further information about the more 
scientific aspects we refer to the annual reports of the 
MPI. 

ANNOTATION SCHEMES 
Despite some research projects in the area of iconic 
gestures, stereotypical tasks such as “route description” 

 
2 www.mpi.nl/IMDI 
3 www.mpi.nl/research/publications/AnnualReports 
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where speech and gestures are recorded and annotated 
according to a more general schema [11,12] we cannot 
speak about the emergence and broad usage of generic 
schemas for the encoding of linguistic phenomena. It is 
understood that a bottom up description of multimodal 
streams starting with articulator movements is 
enormously complex and therefore not tractable. Instead 
of that researchers are looking for encoding schemes at 
the semantic level that allow them directly to test their 
scientific hypothesis. Therefore, almost all studies invent 
new schemes to do the linguistic encoding.  

However, it was of great importance to define an 
annotation scheme at the structural level which is 
powerful enough to represent the linguistically interesting 
phenomena with the required flexibility and time 
granularity. Therefore, a.o. the EAF XML (ELAN 
Annotation Format) schema was developed and improved 
over time. It allows the researcher to define (and modify) 
his/her own tier setup to encode the behavior at any 
linguistically relevant level, to encode dependency 
relationships between them and to connect them where 
necessary to the time axis. Although all meaningful 
behavior is generated by mental processes we cannot 
speak about dependent streams, multimodal streams such 
as for example speech, eye movements and gestures have 
to be treated as completely independent, i.e., all types of 
timing relationships can occur [13]. Therefore, EAF has 
the notion of “time references” so that any single 
annotation can be associated with a period of time on the 
axis4. On the other hand, there will be hierarchical 
relations such as between the movement of the whole arm 
and that one of the hand in gestures or between the spoken 
words included in a verbal utterance. To cope with these 
phenomena EAF has the notion of “hierarchical relations” 
that can evolve to trees of different depth during 
encoding. Often phenomena are not linked to the time 
axis, but refer to an element on another tier such as in 
interlinearized representations. To cope with this EAF 
introduced the notion of “symbolic references”. In 
linguistic encoding often phenomena are related that are 
on the same tier but non-adjacent time periods or that are 
on different tiers. An annotation format therefore has to 
support the encoding of such phenomena as well. 

To normalize the timing encoding we should add that 
points in time that are used to anchor annotations are 
shared and stored as ordered sequence. This is in 
accordance with the Annotation Graph model from Bird 
and Liberman [14].  

                                                           
                                                          

4 It is assumed that preprocessing is used to unify the time 
axis underlying different recordings. The ELAN tool for 
example has a few operators to carry out this unification. 

The archive still contains many multimodal annotations 
that were created with the MediaTagger tool [15] which 
was one of the first supporting flexible multimodal 
annotation. However, the underlying model had 
limitations [16] and it was not compliant with the 
Annotation Graph model. Due to changes in the internal 
Quicktime representation and due to operating system 
peculiarities5 the conversion process to the more generic 
and XML-based EAF format turns out to be a time 
consuming process. Some limited multimodal annotations 
are also done by making use of CHAT [17]. Import 
modules are available to easily convert them into EAF 
format. With the exception of the MediaTagger resources 
we can argue that all multimodal annotations are available 
in archivable formats. 

MANAGEMENT AND ACCESS ARCHITECTURE 
Given the large amount of (multimedia/multimodal) 
resources created and stored at the MPI we had to work 
out an architecture that supports their whole life cycle 
from creation to usage and long-term preservation. The 
following figure gives an overview of the architecture and 
except the web-based annotation creation and 
commentary all components have been implemented and 
are in operation. 

In the following we will briefly describe the architecture 
and then explain some components in more detail. The 
user can:  

• off-line annotate and analyze recordings by 
ELAN (not included in the figure) 

• describe them with metadata using the IMDI 
Editor (Metadata Tools) 

• upload them into the archive with LAMUS (Data 
Ingestion and Management) 

• define suitable access policies with AMS (User 
Authentication and Access Rights) 

• search and browse for suitable resources with the 
IMDI tools (local and web-based, Metadata 
Tools) 

• download one or complete sub-archives with the 
IMDI tools (Metadata Tools) 

• carry out content searches on the annotations and 
visualize the annotated media recordings with 
ANNEX (Annotation Utilization, Media 
Annotation)  

• manipulate lexica with LEXUS if applicable 
(Lexical Utilization, Lexical Encoding). 

 

 
5 Former MAC-OS version made a difference between 
data and resource fork information being both crucial for 
a correct interpretation. However, copying activities were 
carried out without awareness of this relation. 
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In addition, services take care that several instances of the 
recordings are stored at different locations in the 
Netherlands and Germany to ensure long-term survival. 

CREATING MULTIMODAL RESOURCES  
The latest version of ELAN offers many advanced 
features that facilitate the time-consuming manual 
annotation work. It not only supports the flexible 
annotation model described above, but it also deals with 
different types of media streams or time series as they 
occur in multimodal observations. Video signals resulting 
from several cameras can be displayed and analyzed 
together with time series data created by the many 
channels of for example a data glove device. All streams 
and the created annotations are time synchronized, i.e. 
selecting a time fragment in one viewer will directly 
update the position in the other viewers. Different options 
for visualizing the complex annotations that easily can 
contain more than 20 layers help users while navigating, 
comparing instances of similar phenomena etc. In many 
studies of multimodal interaction precise time accuracy in 
the order of video-frames is of greatest importance. This 
is the reason why we asked SPEX, the Dutch center for 
evaluations, to carry out measurements about the accuracy 
of ELAN. While earlier versions of ELAN made use of 
JavaMediaFramework the later versions make use of the 
native media libraries on the Windows platform. Together 
with well-chosen MPEG codecs it was shown that this 
solution offers the required frame accuracy in annotation 
and in playing. For other research projects where time 
accuracy is not that important, but where efficiency is the 
primary criterion ELAN offers a fast tagging mode. 

For a detailed description of the features of ELAN we 
refer to the manual which is available on the web. Now 
ELAN has reached a level of maturity that it is a tool 
widely used for multimodal and sign language studies. All 
annotations are represented in XML which makes it a 
suitable candidate as well for data that has to be archived.  

MANAGING RESOURCES 
Multimodal research is accompanied in general by 
a large amount of resources that are related in 
various ways: media recordings from different 
devices are related since they share the same time 
axis, annotations are linked with specific 
recording channels, recording sessions are 
embedded in experimental setups etc. It is very 
important to store this relation information. In the 
MPI setup this is done by using the IMDI 
framework. IMDI allows users not only to 
carefully describe the sessions, but also to express 
the different type of relations. In doing so 
metadata descriptions are supporting the user in 
creating a well-organized browsable archive that 

can be accessed by searching as well as by browsing. 
IMDI therefore is the basis for managing a large amount 
of closely related resources as they are typical for 
multimodality research. The possibility of fine-grained 
metadata descriptions can be used to formulate 
scientifically interesting queries, in particular in 
conjunction with queries about the content of annotations. 
Also IMDI files adhere to a publicly available XML 
schema and therefore are in an archivable format. 

The LAMUS system (Language Archive Management 
and Upload System) is used as a gate keeper for the 
language resource archive at the MPI. It allows depositors 
and managers to add new resources to the archive and to 
update existing ones in a way that the archive remains 
coherent and consistent. A user can request a workspace 
for some period of time, define an uplink in the archive as 
anchor point for new resources, create corpus structure, 
add metadata descriptions and integrate resources. Once 
all manipulations in the workspace have been carried out 
to the satisfaction of the user or after a validation 
procedure has been taken place, the workspace content 
can be uploaded to become part of the archive. LAMUS, 
therefore, controls the consistency of the archive and with 
the help of configurable resource type files its coherence. 
The configuration file specifies the accepted formats and 
when parsers are available checks the formal correctness 
of the ingested files.  

LAMUS has an access management component that 
allows depositors or managers to define access policies 
and rights with powerful commands such as “make all 
audio resources in this sub-corpus available to all”. 
Policies can be defined that determine the kind of 
declarations (code of conducts etc) users have to accept 
before getting access to resources that are protected. 
Another important aspect is that LAMUS initiates the 
creation and updating of indexes for fast searching in 
metadata and annotations whenever a new resource is 
uploaded.  
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ACCESSING RESOURCES 
The MPI archive provides a number of access methods 
knowing that researchers have different wishes. The most 
simple is to browse and search in the metadata domain to 
find useful resources. Once found they can be 
downloaded or viewed with a normal plug-in. Many 
researchers, however, want to carry out analysis on their 
computer by using own software and therefore want to 
access and operate on a number of files. They are offered 
a Tree-Copier option in the metadata browser that allows 
them to specify a sub-corpus in 
the archive and download all 
resources (or only those of 
specific type). The metadata 
and corpus structure 
information is also copied so 
that the user has a complete 
local copy of this sub-archive, 
that can also be browsed and 
searched using local tools just 
as the mother archive. Tools 
can then be used to carry out 
some manipulations off-line 
and later, with the help of 
LAMUS, that part could be 
uploaded again. 

More interesting, however, are w
that allow the user to immediat
objects such as multimedia l
annotations. ANNEX is a flexible t
on annotations in a similar way as
the functioning of the web, no guar
the smoothness of the media prese
the reasons that ANNEX does no
annotating. Also ANNEX comes a
viewers, different viewers for an
search capabilities on the ann
following figures give two views 
ANNEX. Again the further detail
manual. 
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LEXUS lexicon tool which allo
modification of lexical informatio
is abstracted from the indiv
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multimedia signals (photos, audios
for example to store typical signs 
based on LMF (Lexical Markup F
generic model currently being 
TC37/SC4. Therefore, LEXUS ca
range of different lexical structu
LEXUS has advanced search fu
other features and a first interact
been implemented. The following
impression of the look and feel of

offers too many features amongst which is web-based 
structure and content manipulation and collaboration so 
that we like to refer to the manual for details.  

 

 

 

 

 

 

The right part shows a view on the structure and the 
information about the data categories used in a typical LMF-
based lexicon with LEXUS. The left part gives one of the 
possible views of the content which can be easily browsed for 
example by selecting the begin character. 
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CONCLUSIONS 
For the many multimodal research projects carried out at 
the MPI and in collaboration with other institutions a 
complete set of technologies was developed that can 
support the whole life-cycle of multimodal annotations. 
The lack of agreed linguistic annotation schemes in 
multimodal research due to the specificity of the research 
questions increased the necessity to define and apply a 
flexible annotation format such as EAF and to apply a 
flexible lexicon format such as LMF (for the rare cases 
where lexical abstractions are required in multimodality 
projects). In ever growing corpora with many interrelated 
resources IMDI is an excellent way to not only create a 
meaningful organize, but to carry out scientifically 
relevant searches in combination with searches on the 
annotation content.  

The language resource archive serves as a reliable 
repository that can be accessed in several ways leaving 
enough flexibility for the individual researcher. Its 
dynamic nature and the move towards web-based 
applications require the introduction of Unique Resource 
Identifiers and a smart linguistically motivated versioning. 
Both will be included in the next LAMUS versions. Still 
many checks have to be added to ensure consistency of 
the representations at the structural, format and metadata 
level. But this has to be balanced with the requirement of 
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flexibility. Still many tools generate formats that are not 
schema-based and therefore difficult to validate.  

The MPI will continue to develop its technology and 
continue to make it available to other interested 
institutions under Open Source licenses. A first external 
installation was finished successfully at Lund university, 
other external setups will follow.  
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ABSTRACT 
In this paper, we describe a gesture expressivity analysis of 
a character in a conversational interaction. To determine 
gesture properties that attract and maintain perceptual 
attention, we study if there exists some effects in the field 
of gesture expressivity modulations. We study this role at a 
low level (gesture phase) and at a higher level (discourse 
structure) based on a corpus annotation of Tex Avery 
(MGM) cartoons. First results of the analysis point out 
synchronization properties between modulations and 
gesture phase or discourse structure.  

Author Keywords 
Gesture expressivity, gestures and discourse, corpus 
annotation, visual attention, 2D and 3D animations.  

INTRODUCTION 
We are currently developing an embodied conversational 
agent ECA endowed with an expressive and communicative 
behavior (Hartmann et al., 2005; Poggi & Pelachaud, 
2000). Our aim is to endow an ECA animation system with 
the capability to attract the attention of a user at specific 
points of the ECA animation. At the gesture level we have 
to set which gestures provide semantic information 
(Kendon, 2004), and which gestures attract the gaze of the 
other interactant: as Cosnier said in preface of Calbris 
(2003), there are gestures that carry a meaning, and gestures 
that manage communication and have pragmatic functions.  

We look at how gesture expressivity varies in the 
animation. We also investigate how gesture expressivity 
properties can act as a pragmatic tool. Our hypothesis is 
that gesture expressivity modulations could partly play this 
role. These modulations could provide, by a sudden change 
in the perceived behavior of the speaker, some of her 
intentions to the listener.   

Our approach is based on the analysis of traditional 
animations: animators have developed sharp skills over 
decades in elicitating empathy and in regulating attentional 
behavior of spectators through character’s movement and 
expressions; we aim at taking into account theses skills to 
develop our application. 

To get precise data on gesture expressivity modulations, we 
annotate each expressivity parameter defined in Hartmann 
et al. (op. cit.), not at a gesture unit or phrase level, but at a 
gesture phase level. We describe our choices for each of the 
annotated parameters.  

In the remaining of this paper, we first present a state of the 
art of the works that apply traditional animation features to 
3D animation, and that study more specifically gesture 
abilities to attract listener’s gaze attention. Then we 
describe our corpus we used to analyze gesture expressivity 
in cartoons, and we precise our annotation methodology. 
Finally we describe the results that were observed in the 
analysis process, and that give a first view on the role 
played by gesture expressivity modulations during a 
conversational interaction. 

STATE OF THE ART 
Some previous works already tried to produce 3D 
animations based on traditional animation. Several 
fondamental principles of traditional animation (Thomas & 
Johnston, 1981) have been applied to 3D animation: Choi et 
al. (2004) proposed a system able to computationaly apply 
the principle of anticipation on a 3D animation: through the 
production of a backward movement over the following 
movements, this principle leads to direct the spectator’s 
attention towards the place of the action. Lance et al. (2004) 
studied animators’ abilities to express emotion and empathy 
in cartoon characters, and built up a system able to generate 
an expressive gaze for a virtual character. Bregler et al. 
(2002) captured the animations of 2D objects (deformable 
or not) by following some feature points; this follow-up 
allows one to animate in the same way different kinds of 
2D or even 3D objects. Not only the movement is 
identically produced, but it also preserves the same 
expressivity. But theses works do not resolve the question 
whether imitating 2D animation onto 3D animation is 
perceptually acceptable by a spectator or not. Lasseter 
(1987) pointed out how the principles from 2D animation 
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could be successfully applied in 3D animation; however the 
perception that the spectator has could change if we limit 
3D animation to a 2D imitation and if we do not look at 
finding to which extent the 2D animation principles could 
be interpreted. In our work, we try to find some new rules 
of 2D animation that could be applied in a gestural 
animation of 3D characters. 

In the domain of human gesture study, there exists works 
dealing more specifically with gesture ability to attract 
listener’s attention. Eye tracking techniques allow 
researchers to follow where and when a listener gazes at, 
and in particular on which gestures he gazes at. This type of 
disposal was adopted by Gullberg & Holmqvist (1999) to 
study which are the elements that lead to gaze at a 
particular gesture; laterality seems to play a preponderant 
role, as opposed to self centred gestures. With the same 
kind of disposal, Barrier et al. (2005) have determined that 
through the use of deictic signals, a speaker is able to 
redirect listener’s focal attention toward his gestures, or 
toward a virtual space built by his gestures. In cartoons 
(Thomas & Johnston, op. cit.) noticed how efficient an 
animation that could be understood from its silhouette is; 
this observation complements results from Gullberg & 
Holmqvist by adding a notion of point of view: a same 
body gesture can change silhouette type depending from 
where we are looking at it. Our work aims at determining 
new criteria that could attract spectator’s gaze attention 
through some kinds of gesture expressivity properties, and 
to implement these criteria in an ECA. 

CORPUS 
We base our corpus on two videos from Tex Avery 
cartoons (MGM). Each of theses videos lasts about ten 
seconds. Our choice of a low level analysis (described later) 
leads to a corpus with little data. In regard of our aim to 
animate conversational agents, we chose sequence showing 
a conversational interaction between characters; the first 
one serves as basis for our analysis, the second has been 
used to verify the results from the first one. One of theses 
videos comes from the cartoon Blitz Wolf (1942): it displays 
a pig character trying to convince two other pigs to protect 
their selves against a wolf’s threat6. The other video comes 
from Henpecked Hoboes (1946): in this cartoon, the main 
two characters are George and Junior7 who are trying to 
                                                           
6 Produced right in the middle of WW2, this cartoon is a 
short propaganda film: the animators are displaying Big 
Bad Wolf under A. Hitler’s features and are warning how 
dangerous he is. The main pig figures the judgement value 
of the American state. Animators are figuring this pig to 
display to American people what kind of behavior they 
have to adopt towards WW2: they have to support war 
effort. Obviously, the title of Blitz Wolf directly refers to the 
“Blitz Krieg” practiced by Hitler.  
7 Refers to George and Lennie characters from J. 
Steinbeck’s novel “Of Mice and Men” (1937).  

catch an hen to feed themselves; in the sequence that we are 
interested in, George explains to Junior the set of actions 
they will have to perform to reach their goal. Theses two 
sequences exhibit two different discourse goal: in the first 
one the pig aims to incitate and advice; in the second one 
George aims to communicate informations.  

ANNOTATION DESCRIPTION 
To get precise data on the modulations of gesture 
expressivity, we annotate the expressivity on a gesture 
phase level. Kendon defines gesture unit, gesture phrase, 
and gesture phase, as three different levels in the gesture 
production (2004, chap. 7). There are different kinds of 
gesture phase; Kendon organizes them around the phase of 
stroke recognized as the expressive part of the gesture: 
preparation, stroke, post-stroke-hold, and recovery. Kita et 
al. (1997) refine theses phases and distinguish: preparation, 
stroke, hold and independent hold, retraction, and partial 
retraction.  

In our analysis, we are using most of the phases described 
by Kita et al. For sake of simplicity we consider 
‘independent hold’ as having the same function as ‘hold’; 
no distinction in both terminologies is made. And we add 
the phase of anticipation: it refers directly to one of the 
fundamental principles of animation as described in 
Thomas & Johnston (1981); from our point of view it seems 
necessary to add this phase in the analysis. Thus, we 
consider the following set of gesture phases (Kita et al., op. 
cit., Kendon, op. cit., Kipp, 2003):  

• Anticipation: preceding a gesture phase, the arm 
may produce a backward movement. This happens 
due to motor constraints, but also to get spectator’s 
attention focusing on the following movement;  

• Preparation: the arm moves to the location where 
the speaker wants to produce his stroke;  

• Stroke: expressive phase of gesture, it is produced 
synchronously or anticipates the verbal referent;  

• Hold: the stroke may be hold for a while;  

• Recoil: following the stroke, the arm may recoil to 
emphasize this stroke;  

• Retraction: the arm moves to a rest position;  

• Partial retraction: before the arm finishes moving 
to a rest position, another gesture starts and thus 
ends up the retraction.  

The expressivity parameters we chose for our annotation 
are those implemented by Hartmann et al. (2005) in their 
conversational agent Greta. They correspond to: fluidity is 
the smoothness and continuity of overall movement (e.g. 
smooth, graceful versus sudden, jerky); power is the 
dynamic properties of the movement (e.g. weak/relaxed 
versus strong/tense); spatial extend is the amplitude of 
movements (e.g. amont of space taken up by body); 
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repetitivity is the tendency to rhythmic repeats of specific 
movements along specific modalities.  

Three values are available for each parameter: positive, 
neutral, negative. And we define parameters with a set of 
criteria: 

• Fluidity: it corresponds either to the level of 
continuity between successives phases, or to the 
movement curvature, or even to presence of an 
anticipation phase;  

• Power: it stands for the shape opening (opened / 
closed), or the acceleration of the arm, or even for 
the continuity in tension at the end of the 
movement;  

• Spatial expansion: we define it as the gestural 
space, or the swivel angle, or even as the point of 
view from which the gesture is seen ie. with a high 
or a low silhouette (Thomas & Johnston, op. cit.);  

• Repetitivity: repetition of the gesture stroke.  

Both analyzed videos are annotated using Anvil tool (Kipp, 
op. cit.), which allows us to precise each value of 
expressivity parameter for each of the gestural phases. 
Then, we observe and notice the modulations in gesture 
expressivity: that is, we analyze the variation over time of 
each expressivity parameter. We are not interested in 
finding out which particular parameter varies. Rather we 
concentrate on the variation itself of the parameters.   

On the one hand we try to find some kinds of correlations 
between theses modulations and the production of the 
corresponding gesture. On the other hand we try to find 
some correlations between theses modulations and the 
structure of the verbal utterance, in order to observe if there 
is any regularity in it.  

OBSERVATIONS 
We have annotated for each gesture of our corpus the value 
of each expressivity parameter. When analysing the data we 
do not consider the annotated value of each parameter as 
such but we look at the variation over time of these values. 
This analysis is based on one of the two annotated videos; 
the second is used to verify the results we obtain. We 
observe two types of variations that are found over each 
expressivity parameter. We, now, consider no more the 
value of each expressivity parameter but these variations 
which are: 

• Irregularities: it corresponds to a brief time period 
(a single gesture phase) in which the annotated 
modality has a sudden change of value, and then 
comes back at the original one just after this phase. 
For example, it happens when a character produces 
a powerful sequence of movements, except for a 
single phase that is produced with a low power 
(Figure 1a);  

• Discontinuities: it corresponds to a sudden change 
in the annotated modality. For example, it happens 
when a character of the animation produces a 
sequence of movements with a low power, 
succeeding to a sequence with powerful 
movements (Figure 1b). 

That is, each time a sudden variation in gesture expressivity 
occurs, it is defined as a discontinuity; but if this variation 
directly precedes another sudden variation we will speak in 
terms of irregularities. Figure 1 illustrates graphically these 
concepts. 

 

Figure 1a and 1b: Irregularities and Discontinuities 

Each occurrence of these two modulation types have been 
noticed 8: (4; 8) for irregularities, and (10; 6) for 
discontinuities. Some invariance appear to inform on their 
role in a conversational interaction in a cartoon, as 
described in the following sections. There is differences in 
results quantity of the two videos; this is partly due to a 
difference in the quantity of gesture repetitions for each 
video and the structure of their utterances. 

THE FUNCTIONS OF IRREGULARITIES 

From the annotation, we observe that irregularities seem to 
play a role of anticipation by linking similar elements of the 
enunciative structure as: occurrences of gesture repetitions 
(2; 7), performatives of a same general class (Poggi & 
Pelachaud, 2000) (1; 1), gesture phrase (1, 1).  

By linking similar structures, irregularities are able to 
perform the role of an AND connector that allows the 
spectator to anticipate the behavior the character will 
display. Following the principle of anticipation (Thomas & 
Johnston, 1981), this property should enhance the visibility 
of gesture, ie. to enhance our propensity to gaze at this 
particular gesture. 

                                                           
8 In the form (2; 3), we indicate that in the analyzed video 
there were two occurrences of a modulation type involved 
in a particular property, and three occurrences in the video 
used to verified results.  
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CONCLUSION 
We have presented an annotation schema to study gesture 
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Nevertheless it appears that the modulations are a kind of 
pragmatical resource that could have an interest in the 
animation of ECA, and that could act on the attention that 
the spectator bears on a gesture. In the near future, an 
evaluation process will simulate the previous results in an 
ECA application to test whether they are efficient or not for 
attracting one’s gaze attention and interest.  
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ABSTRACT 
In this paper we describe an approach to synthesize gestures 
via the tools provided in the MPEG-4 standard, using the 
output of the analysis and taking into account the extracted 
values of expressivity parameters. We animate emotional 
gestures, using a symbolic representation of human 
emotion, based on real video sequences and we extract 
conclusions regarding the performance of every gesture. 
The results of the synthetic process can then be applied to 
emotional ECAs.  

Author Keywords 
Gesture analysis, MPEG-4, expressivity parameters 

INTRODUCTION 
Both analysis and synthesis of hand gestures constitute an 
important part of human computer interaction (HCI) [1]. 
Sometimes, a simple hand action, such as placing a person’s 
hands over his ears, can pass on the message that he has had 
enough of what he is hearing; this is conveyed more 
expressively than with any other spoken phrase. To benefit 
from the use of gestures in HCI it is necessary to provide 
the means by which they can be interpreted by computers.  

Since the processing of visual information provides strong 
cues in order to infer the states of a moving object through 
time, vision-based techniques provide at least adequate, 
alternatives to capture and interpret human hand motion. At 
the same time, applications can benefit from the fact that 
vision systems can be very cost efficient and do not affect 
the natural interaction with the user. Analyzing hand 
gestures is a comprehensive task involving motion 
modeling, motion analysis, pattern recognition, machine 
learning, and even psycholinguistic studies.  

Our system uses as input image sequences and tracks the 
head and the hands of the actor. Following, we can estimate 
the MPEG-4 BAP (Body Animation Parameters) for every 
gesture and extract some important expressivity features. 
All the results are used to the synthetic and lifelike 
reconstruction of every gesture. 

The presented system of the synthetic gesture reconstruction 
is illustrated in Figure 1: 
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Figure 1: Synthetic Gesture Reconstruction 

GESTURES ANALYSIS USING EXPRESSIVITY 
PARAMETERS  

The System Input 
The input image sequences of the presented system are 
videos captured at an acted session including 7 actors, every 
one of them performing 7 gestures. Each gesture was 
performed several times with the student-actor 
impersonating a different situation. Namely the gestures 
performed are: “explain”, “oh my god” (both hands over 
head), “leave me alone”, “raise hand” (draw attention), 
“bored” (one hand under chin), “wave”, “clap”. 

The different acted situations-emotions are illustrated in 
Table 1: 

Gesture class quadrant of Whissel’s wheel [2] 
explain (0,0), (+, +), (-, +), (-, -) 
oh my god (+, +), (-, +) 
leave me alone (-, +), (-, -) 
raise hand (0,0), (+, +), (-, -) 
bored (-, -) 
wave (0,0), (+, +), (-, +), (-, -) 
clap (0,0), (+, +), (-, +), (-, -) 

Table 1: Acted Emotions 
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Some of the gesture-emotion combinations were not 
performed since it did not make much sense reproducing, 
for example, a “bored” gesture expressing joy. That led us 
to a whole of 7 actors x 20 variations (Table 1) of the 7 
basic gestures =140 image sequences.  

Head and Hand tracking 
Several approaches have been reviewed for the head-hand 
tracking module. The major factors taken under 
consideration are computational cost and robustness, 
resulting in an accurate near real-time skin detection and 
tracking module. The general process involves the creation 
of moving skin masks, namely skin color areas that are 
tracked between subsequent frames [9]. By tracking the 
centroid of those skin masks, we produce an estimate of the 
user’s movements. A priori knowledge concerning the 
human body and the circumstances when filming the 
gestures was incorporated into the module indicating the 
different body parts (head, right hand, left hand). For each 
frame (Figure 2) a skin color probability matrix is 
computed by calculating the joint probability of the Cr/Cb 
image values (Figure 3a). The skin color mask is then 
obtained from the skin probability matrix using thresholding 
(Figure 3b). Possible moving areas are found by 
thresholding the pixels’ difference between the current 
frame and the next, resulting in the possible-motion mask 
(Figure 3c). This mask does not contain information about 
the direction or the magnitude of the movement, but is only 
indicative of the motion and is used to accelerate the 
algorithm by concentrating tracking only in moving image 
areas. Both color and motion masks contain a large number 
of small objects due to the presence of noise and objects 
with color similar to the skin. To overcome this, 
morphological filtering is employed on both masks to 
remove small objects. All described morphological 
operations are carried out with a disk-structuring element 
with a radius of 1% of the image width. The distance 
transform of the color mask is first calculated (Figure 3d) 
and only objects above the desired size are retained. These 
objects are used as markers for the morphological 
reconstruction of the initial color mask. The color mask is 
then closed to provide better centroid calculation. For the 
next frame, a new moving skin mask is created, and a one-
to-one object correspondence is performed. Object 
correspondence between two frames is performed on the 
color mask and is based on object centroid distance for 
objects of similar (at least 50%) area. In the case of hand 
object merging and splitting, e.g., in the case of clapping, 
we establish a new matching of the left-most candidate 

object to the user’s right hand and the right-most object to 
the left hand. The described algorithm is lightweight, 
allowing a rate of around 12 fps on a usual PC during our 
experiments, which is enough for continuous gesture 
tracking. The object correspondence heuristic makes it 
possible to individually track the hand segments correctly, 
at least during usual meaningful gesture sequences. In 
addition, the fusion of color and motion information 
eliminates any background noise or artifacts, thus 
reinforcing the robustness of the proposed approach. 

The tracking algorithm is responsible for classifying the 
skin regions in the image sequence of the examined gesture 
based on the skin regions extracted from the described 
method. Skin region size, distance wrt the previous 
classified position of the region, flow alignment and spatial 
constraints. These criteria ensure that the next region 
selected to replace the current one is approximately the 
same size, close to the last position and moves along the 
same direction as the previous one as long as the 
instantaneous speed is above a certain threshold. As a result 
each candidate region is being awarded a bonus for 
satisfying these criteria or is being penalized for failing to 
comply with the restrictions applied. The winner region is 
appointed as the reference region for the next frame. The 
criteria don't have an eliminating effect, meaning that if a 
region fails to satisfy one of them is not being excluded 
from the process, and the bonus or penalty given to the 
region is relative to the score achieved in every criterion 
test. The finally selected region's score is thresholded so 
that poor scoring winning regions are excluded. In this case 
the position of the body part is unchanged wrt that in the 
previous frame. This feature is especially useful in 
occlusion cases when the position of the body part remains 
the same as just before occlusion occurs. After a certain 
number of frames the whole process is reinitialized so that a 
possible misclassification is not propagated. 

 

 
Figure 2 
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(a) (b) (c) (d) 

   Figure 3 

Gesture Expressivity Features Extraction 
To define the expressivity parameters we searched through 
the literature of perception studies to see which parameters 
were investigated [3, 4]. Six dimensions representing 
behavior expressivity are defined. The expressivity 
dimensions have been designed for communicative 
behaviors only. Each dimension acts differently for each 
modality. For an arm gesture, expressivity works at the 
level of the phases of the gesture: for example the 
preparation phase, the stroke, the hold as well as on the way 
two gestures are co-articulated [5, 6]. We consider six 
dimensions of expressivity: 

• Overall activation 
• Spatial extent 
• Temporal 
• Fluidity 
• Power/Energy 
• Repetitivity 

Overall activation is considered as the quantity of 
movement during a conversational turn. In our case it is 
computed as the sum of the motion vectors’ norm: 

. Spatial extent is modeled by 

expanding or condensing the entire space in front of the 
agent that is used for gesturing and is calculated as the 
maximum Euclidean distance of the position of the two 
hands: 

∑
=

+=
n

i

ilirOA
0

|)(||)(|
rr

|)))()((max(| ilirdSE
rr

−= . The average spatial 
extent is also calculated for normalization reasons. The 
temporal parameter of the gesture determines the speed of 
the arm movement of a gesture’s meaning carrying stroke 
phase and also signifies the duration of movements (e.g., 
quick versus sustained actions). Fluidity differentiates 
smooth/graceful from sudden/jerky ones. This concept 

seeks to capture the continuity between movements, as 
such, it seems appropriate to modify the continuity of the 
arms’ trajectory paths as well as the acceleration and 
deceleration of the limbs. To extract this feature from the 
input image sequences we calculate the sum of the variance 
of the norms of the motion vectors. The power actually is 
identical with the first derivative of the motion vectors 
calculated in the first steps.  

The testbed used for comparing the emotionally enriched 
gestures is GRETA [7]. The mechanisms employed to 
animate all the expressivity features described above are 
partly based on the attributes of the TCB Splines used to 
animate the virtual character. Details about the actual 
implementation can be found in [8].  

EXPERIMENTAL RESULTS 
Figure 4 illustrates the gesture “oh!my god”. The values for 
the six dimensions for two different subjects are presented 
in the diagram of Figure 5. The values shown are 
normalized. 

The values of the results for the different gestures for a) 
overall activation, b) spatial extent, c) fluidity, d) 
power/energy are illustrated in Figures 6(a-d), while Figure 
7 illustrates the mean values of the six expressivity 
parameters for three actors and Figures 8(a) and (b) 
illustrate respectively the mean values of Overall Activation 
and Power for positive and negative values of activation. As 
expected, the values of gestures lying in first and second 
quadrants (positive activation) are higher. 

Some of the frames of the synthesized gesture are illustrated 
in Figure 9. The tool used for the synthesis is GretaPlayer 
[7]. 

 

  

Figure 4 Frames from the video of subject 21 Figure 5 
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(a) overall activation (b) spatial extent (c) fluidity (d) power/energy 

Figure 6 
 

 
(a) mean values of Overall 

Activation (b) mean values of Power 

Figure 7: Mean values of the six expressivity parameters for three 
actors 

Figure 8 

 

  
 

Figure 9 

 

CONCLUSIONS 
Analysis and expressivity features extraction of a broader 
set of gestures are necessary in order to evaluate our results. 
The conclusions concerning the gestures belonging to 
different quadrants are very useful to further analysis but 
also to the synthesis of these gestures. The results of the 
synthetic process can then be applied to emotional ECAs 
and make the interaction more lifelike. 
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Figure 1. Selected frames of a source video (top) and a kinematic animation (bottom). The animation re-created the motion of the 

gesturing arm/hand of the original video from a manual annotation of the video which is based on our annotation scheme.

ABSTRACT  
The empirical investigation of human gesture stands at the 
center of multiple research disciplines, and various gesture 
annotation schemes exist, with varying degrees of precision 
and annotation effort. We present a gesture annotation 
scheme for the specific purpose of automatically generating 
and animating character-specific hand/arm gestures, but 
with potential general value. We focus on how to capture 
temporal structure and locational information with 
relatively little annotation effort. The scheme is evaluated 
in terms of how accurately it captures the original gestures 
by re-creating those gestures on an animated character 
using the annotated data. This paper presents our scheme in 
detail and compares it to other approaches.  

Author Keywords 
Embodied Agents, Gesture Generation, Multimodal 
Interfaces 

ACM Classification Keywords 
H5.m. Information interfaces and presentation (e.g., HCI): 
Miscellaneous.  

INTRODUCTION 
Animated characters are useful in a wide range of 
applications like interfaces, games and movies. Generating 
nonverbal behavior for artificial bodies remains a 
challenging research task. One important technique for 
reproducing human-like gestures is to analyze original 
human behavior [7,9]. This can be done using motion 
capture or by manually annotating video data. While 
motion capture has unequalled precision, the video 
annotation approach has other advantages: it is an indirect 
observation method where people are less aware or unware 

of the observation, and arbitrary material (e.g. TV shows) 
can be analyzed, even of people otherwise unavailable. 
Moreover, the acquired data is usually encoded on an 
abstract level that can be understood and analyzed by 
conversational analysts, linguists, ethologists and computer 
animators alike, whereas motion captured data can only be 
interpreted with significant computational and human 
effort.  

If the annotated data is to be used with an animation system 
that can create arbitrary motions for a humanoid character, 
the need for precise positional data becomes highly 
important, especially if you want to capture the specific 
style of a speaker. Speakers do not only differ in what and 
when they gesture, but also where they gesture. For 
instance, the “raised index finger” can be displayed quite 
shyly near the chest or dominantly above the head. We 
believe that such locational variation is integral to personal 
style. When encoding positional information, the question 
arises as to how faithfully that encoding reflects the original 
movement. Successfully re-creating the original motion 
from the encoded data would prove that something essential 
must have been captured by the annotation (see Figure 1). 

Annotation schemes for human movement can be classified 
according to the amount of detail they capture, where high 
detail seems to be proportional to high annotation cost and a 
low level of abstraction. On one side of the spectrum lies 
the Bern system [2,3], where a large number of degrees of 
freedom are manually annotated, thus resembling modern 
motion capture techniques. While it results in fine grained, 
purely descriptive and reliably coded data which can be 
reproduced easily with a synthetic character, annotation 
effort is immense. In addition, the resulting data is hard to 
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interpret. It does not abstract away from even minor 
variations and the amount of data is so massive that it is 
hard to put it in relation to the accumulated knowledge 
about gesture structure and form found in the literature. On 
the other end of the spectrum, lies Conversational Analysis, 
where the written speech transcription is used as a basis and 
gestures are annotated by inserting brackets in the text for 
beginning and end of the gesture [4]. Gesture form is 
captured by either a free-form written account or by 
gestural categories which describe one prototypical form of 
the gesture. Such information would be too informal or too 
imprecise for automatic character animation. Thus, a key 
decision in annotation is: how much do you abstract? Or, 
how large are your equivalence classes? 

We propose a scheme that makes a conscious compromise 
between purely descriptive, high-resolution approaches and 
abstract interpretative approaches. We restrict ourselves to 
hand/arm movement to identify the most essential features 
of a gesture before moving to other body parts. Our scheme 
encodes positional data but relies on an intelligent “time 
slicing”, based on the concept of movement phases, to 
determine the most relevant time points for position 
encoding. It is based on the observation that transition 
points between phases correspond to key frames in 
traditional animation. Moreover, we use the concept of a 
gesture lexicon, well known in Conversational Analysis, 
where each lexeme contains some generalized information 
about form. Lexemes can be taken as prototypes of 
recurring gesture patterns. When encoding lexeme type for 
an annotated gesture in the video material all this general 
data is implicitly encoded as well. 

TARGET SCENARIO 
Our annotation scheme aims at the specific application of 
gesture generation for an animated character. However, we 
think that the annotation scheme will be of general interest 
in the interdisciplinary fields of multimodal and gesture 
research. The needs that arise from animating gestures on 
the basis of manual annotation provide good guidance on 
the essential descriptive parameters of human gestures. 

The generation approach we aim at “imitates” a human 
speaker’s gesture behavior using statistical models and a 
database of sample gestures, both extracted from video 
annotations [7]. For this application, the annotation scheme 
must capture the temporal and spatial structure of a gesture, 
and its relation to speech. Since original gesture samples are 
re-used in generation, the annotation should make it 
possible to re-create original gestures in synthetic 
animation. On the other hand, the annotation should be as 
economical as possible in terms of annotation effort. 

Our video corpus consists of selected video clips from two 
TV talk shows, featuring two different speakers. 

ANNOTATION SCHEME 
While gestures appear to be quite arbitrary in form at first 
glance various researchers found them to have fairly stable 

form, even if they are not clear emblems [5]. 
Conversational gestures have no clear meaning and may 
even be a byproduct of speech. However, there seem to be 
shared lexica or inventories of conversational gestures [12]. 
For instance, the metaphoric gesture “progressive” [11], 
where a speaker makes a circular movement with the hands, 
seems to occur when talking about progress, movement or 
the future [1]. Another universal gesture is the “open hand” 
where the speaker holds the open hand in front of the body, 
showing the palm [4,11]. While such forms appear to be 
universal, there is still much inter-speaker and intra-speaker 
variation in terms of the exact position of the hands and 
their ensuing trajectory. To investigate and capture these 
variations was one driving force of our work. 

We use the Anvil video annotation tool [6] for our 
purposes, which allows annotation on multiple tracks. 
Coding consists of adding annotation elements which can 
be complex attribute-value objects. 

Capturing Temporal Structure 
We capture the temporal structure of a gesture by first 
identifying the basic movement phases [4,8,11]: 

preparation > hold > stroke > hold > retraction 
where the stroke is the most energetic part of the gesture 
while the preparation moves to the stroke’s starting 
position. Holds are optional still phases which can occur 
before and/or after the stroke. Kita et al. [8] identified 
independent holds which can occur instead of a stroke. The 
retraction returns to a rest pose (e.g. arms hanging down, 
resting in lap, or arms folded). Kita et al. refined the notion 
of stroke by defining a multiple stroke that includes small 
beat-like movements that follow the first stroke, but seem to 
belong to the same gesture. In our scheme, a stroke contains 
a “number” attribute to capture the number of within-stroke 
movements. 

 

Figure 2. Gesture Annotation on Three Anvil Tracks. 

To annotate phases in Anvil, the coder specifies beginning 
and end times of a phase as well as phase type (prep, stroke, 
etc.) and stroke number. On a second track, the coder 
combines phases into gestures, also called gesture phrases 
(Figure 2). In this way, we store the gesture’s internal 
temporal structure, most importantly begin/end times of the 
stroke or independent hold. On a third track, we combine 
gestures into gesture units. A gesture unit is a sequence of 
contiguous gestures in which the hands do not return to a 
rest pose until the end of the last gesture [4,11]. This allows 
us to examine a speaker’s g-unit structure. For instance, the 
average number of gestures, patterns of recurring lexeme 
sequences etc.  
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Capturing Spatial Form 
In order to capture the spatial form we aimed at the best 
compromise between exactness and economy. For the sake 
of economy we make two important assumptions: (1) the 
most “interesting” configurations occur exactly at the 
beginning and at the end of a stroke, and (2) bihanded 
gestures are symmetrical. Although many gestures are 
actually asymetrical, most of them can be approximated 
quite well with symmetrical versions. 

 

Figure 3. Our three dimensions for hand position. 

The first two parameters encoded are handedness and 
whether the trajectory of the hand(s) in the stroke phase is 
straight or curved. Next, we have to capture the start and 
end positions of the hands/arms for the stroke. For a single 
position we encode three dimensions for hand location 
(Figure 3) and encode elbow inclination in a fourth 
dimension (Figure 4). The dimensions were chosen such 
that (1) we have sufficient granularity for later animation 
and (2) it is quick and reliable to annotate video, which 
explains the selection of landmarks like “shoulder”, “belt” 
and intuitive terms like “normal”.  For bihanded gestures, 
we also encode hand-to-hand distance for added precision 
by marking the hands on the video screen; we extended 
Anvil to handle this new kind of “spatial annotation” 
(Figure 5). The hand-to-hand distance is normalized by 
dividing it by the shoulder width which must be encoded 
each time the size of the displayed speaker changes due to 
camera movement. 

 
Figure 4. A fourth dimension encodes elbow inclination. 

In summary, for each stroke based gesture we encode 2 
positions where each position is expressed by 5 attributes. 
Adding handedness and trajectory gives us 12 attributes to 
code for the spatial form of a gesture. Independent holds 
only require 1 position, for the beginning of the hold.  

 
Figure 5. Annotating 2D points in Anvil: Shoulder width (top 
arrow) and hand-to-hand distance (bottom arrow). 

Capturing Membership to Lexical Category 
A number of parameters are determined by the gesture’s 
lexeme, including: handshape, palm orientation and exact 
trajectory. For each lexeme, these parameters can be either 
fixed (definitional parameter), restricted to a range of 
values, or arbitrary. To annotate lexemes on the phrase 
track, we rely on a simplified version of the gesture lexicon 
collected in [7] where 79% agreement in lexeme coding 
experiments is reported. Typical lexemes include: 
RaisedIndexfinger, Cup (open hand), FingerRing (thumb 
touches index finger) and Progressive (circular movement). 
We found 31 and 35 different lexemes for our two speakers 
with an overlap of 27 lexemes between the two. 

Capturing the Relationship To Speech 
Once shape and lexeme are determined, the gesture must be 
connected to speech. When annotating real data, we found 
that the claim that gesture stroke and lexical affiliate always 
co-occur [11] is often wrong. Therefore, we encode co-
occurrence and lexical affiliate in different attributes. Co-
occurrence is not trivial. The gesture stroke has a temporal 
extension and may overlap with many co-occurring words. 
Choosing every overlapping word does not reflect our 
intuition of gesture-word co-occurrence. We use the 
following heuristics to automatically annotate co-
occurrence: From the words overlapping with the stroke, 
choose (1) the word carrying the emphasis, if present, or 
else (2) the last word. Lexical affiliation is a more difficult 
task. We rely on the gesture literature and sometimes 
intuition when it comes to connecting gestures to the 
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speech’s semantics (cf. [7]). The lexeme usually gives some 
direction: for pointing gestures look for personal pronouns 
like “you”, “his” etc., for the metaphoric “Cup” gesture 
look for the closest noun, for the metaphoric “Progressive” 
gesture look for the closest verb or noun that expresses 
movement or temporal relation. 

EVALUATION BY RE-CREATION 
Any transcription scheme must be measured by two factors. 
First, how well the annotation reflects the original motion 
(usually dependent on application or experiment). Second, 
how reliably the annotation can be performed by human 
coders. While we have not yet tested reliability, we propose 
a method for the first criterion: re-creating the gestures with 
an animated agent [2]. Using only the pure annotation 
information already produced satisfying results. Adding 
information that had been manually collected for specific 
gesture lexemes (hand shape/orientation, trajectory) 
produced animations that very precisely matched the 
original motions. See Figure 1 for an impression of our re-
creation experiments. 

RELATED WORK 
In this section we focus on two highly related schemes (for 
a general overview see [13]). The Bern scheme [2,3] is an 
early, purely descriptive scheme which is reliable to code 
(90-95% agreement) but has high annotation costs. For a 
gesture of, say, 3 seconds duration, the Bern system 
encodes 7 time points with 9 dimensions each (counting 
only the gesture relevant ones), resulting in 63 attributes to 
code. In comparison, our scheme needs a maximum of 12 
attributes for a gesture’s positional information. FORM is a 
more recent descriptive gesture annotation scheme [10]. It 
encodes positions by body part (left/right upper/lower arm, 
left/right hand) and has two tracks for each part, one for 
static locations and one for motions. For each position 
change of each body part the start/end configurations are 
annotated. Coding reliability appears to be satisfactory but, 
like with the Bern system, coding effort is very high: 20 
hours coding per minute of video. By contrast, we 
measured an average effort of only 1 hour per minute of 
video for our scheme. We explain this stark difference by 
our very focused approach to gesture annotation. While 
FORM encodes every movement of independent body 
parts, we hypothesize that the stroke (or independent hold) 
alone carries the definitional part of the gesture. Of course, 
both FORM and the Bern System also encode other body 
data (head, torso, legs, shoulders etc.) that we do not 
consider. However, since annotation effort for descriptive 
schemes is generally very high, we argue that annotation 
schemes must be targeted at this point to be manageable 
and have research impact in the desired area. 

CONCLUSION 
We presented an effective gesture annotation scheme for 
gesture generation that appears to be a good compromise 
between detail and economy. Re-creating animations 
showed that the scheme captures the original motions quite 

well. We consciously restricted the project to arm/hand 
movement, ignoring the rest of the body for the sake of 
simplicity. However, other body parts should be included in 
the future. Another future issue is to test coding reliability. 

We think that the main reason why our annotation so 
successfully captures gestures in an economic way is that it 
consciously focuses the annotation effort by exploiting the 
concept of gesture phases. The coder first identifies those 
time points most worth investing annotation work in and 
only then encodes the time-consuming positional data. 
Another “trick” is to move recurring patterns to a lexicon of 
gestures. By identifying the lexeme of a gesture, the coder 
specifies a number of features that need not be transcribed. 
While our annotation scheme has obvious drawbacks in 
what it does not capture (handshape, asymmetry, etc.) it is 
straightforward to extend if necessary. However, part of our 
intent in creating this scheme was to find the most 
economical solution for descriptive gesture annotation.  
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ABSTRACT 
In this paper we present an augmentation of the FORM gesture 
corpus and describe experiments using FORM to predict gesture 
phase, i.e. preparation, stroke, and retraction. We compare these 
results to experiments using motion-captured data to predict the 
same. Interestingly, the FORM data, which is gathered via 
annotation, does significantly better than the motion-captured data. 
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INTRODUCTION 
FORM was developed as a fine-grained, gesture coding 
scheme that allows annotators to capture exhaustively the 
constituent parts of the gestures of video-recorded speakers.  

FORM represents gesture data as a collection of 4-tuples, 
<startTime, endTime, attribute, value>. The attribute/value 
pair represents some change during the specified interval. 
For example, if there was upper-arm rotation during an 
interval, the attribute would be Upper Arm: Rotation, and 
the value would be the degree of rotation.  All of the 
possible attribute/value pairs are described extensively in 
[5]. It is useful to think of these 4-tuples as labeled arcs in a 
graph, the nodes of which are the timestamps. In FORM, 
gestural movement is segmented visually.  That is, the 
annotators would focus first on one attribute in order to 
mark the timestamps of changes, and then replay the video 
to focus on the next attribute. 

The total FORM dataset is approximately 22 minutes long.  
There are approximately 3500 arcs/minute, for a total of 
roughly 77000 arcs. 

In [4], we presented preliminary results and discussed 
future research directions. In this paper, we describe 
refinements to the FORM annotation scheme and present 

the results of new inter– annotator-agreement studies and 
machine-learning experiments using the FORM dataset to 
predict gesture phases. 

OVERCOMING AMBIGUITIES IN FORM 
There are known ambiguities in the FORM system as 
described in [4] and in greater detail in [5]. One concerns 
the Upper Arm: Location attributes that specify biceps 
direction. While anatomically it seems accurate to describe 
the upper arm rotation by degrees of rotation rather than by 
the direction of the biceps in free space—as is done in 
FORM—a problem arises when defining the neutral 
position of the arm rotation. 

In light of this ambiguity, we have extended FORM to 
include additional attributes and values for wrist location. 
These allow us to specify in a 5 × 5 × 5 grid the x, y, and z 
coordinates of the wrist, with (3, 3, 3) being the speaker’s 
sternum. For some purposes the full description of location 
and movement will be desired, e.g., an experiment 
concerning how change in elbow flexion correlates with 
some aspect of pragmatics. However, for other purposes, 
we need simply specify the location of the wrist—along 
with the upper-arm lift—at key points along the movement. 
This should suffice to recreate the motion. 

INTER-ANNOTATOR AGREEMENT: 
THE BAG OF ARCS METHOD 
Our experiments with FORM-annotation show that with 
sufficient training, agreement among the annotators can be 
very high. Table 1 shows inter-annotator agreement results 
for two annotators annotating a file of four gesture 
excursions. The results were generated by the bag-of-arcs 
algorithm, as given in [5]. Essentially, given an annotation 
graph, we combine all the arcs for each annotator into a 
bag. Then all the bags are combined and the intersection is 
extracted. This intersection constitutes the overlap in 
annotation, i.e., where the annotators agreed. The 
percentage of the intersection to the whole is then 
calculated to get the scores presented. 

 

We calculate the intersection with tolerances for time and 
value chosen, as described below. Each of the annotators 
agreed that there were four gesture excursions. The 
Precision column gives the number of frames (at 29.97045 
fps) that the annotators can be off from one another by and 
still be counted as having agreed. A precision of 0 frames 
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Gesture Excursion Precision Exact Match Off-by-one-or-less 
0 Frames 44.78 46.77 
7 Frames 64.68 68.66 

1 

15 Frames 74.63 80.60 
0 Frames 29.05 33.94 
7 Frames 61.47 70.64 

2 

15 Frames 70.03 80.43 
0 Frames 41.42 47.34 
7 Frames 47.34 56.81 

3 

15 Frames 63.91 79.19 
0 Frames 40.65 43.23 
7 Frames 59.35 64.51 

4 

15 Frames 64.52 71.62 

Table 1. Inter-Annotator Agreement on Jan24-09.mov 
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So far, in this work, we have simply picked out the 
beginning and end of the gesture excursion—viz., rest 
position to rest position. This is done with surprising 
consistency. Similarly, to pick out the phases of an 
excursion, we do not need to explain which “gesture” they 
make up. Instead, we only need to segment the excursion 
and label these segments. It is methodologically much 
cleaner; and, as we shall see, people do it fairly 
consistently. 

To do this experiment, we added a Phase track to both the 
LeftArm and RightArm Groups of FORM. The annotators 
segmented the gesture excursion into gesture phases and 
labeled the phases [2]. Phases were initially of four types: 
Preparation, Stroke, Retraction, and Hold. Interestingly, 
though, the annotators were often comfortable claiming 
there was a phase change, while they were, at the same 
time, uncomfortable with classifying the new phase. For 
these cases, we added a fifth type: Unsure. We call the 
sequence of phases that describe a gesture excursion the 
PSR-theory description of that gesture, and PSR theory the 
theory that says excursions can be so divided. 

Inter-Annotator Agreement: Phases 
Our inter-annotator agreement study for PSR theory was 
done differently than the general FORM agreement study. 
The reason for this concerns the Unsures. Most of the time, 
annotators placed an Unsure in the space transitioning 
between two clear-cut phases. By this, we mean that Unsure 
served as a way to mark the penumbra between the two 
phases. In these cases, agreement judged using Bag-of-Arcs 
would return very low results. This is because the penumbra 
between two phases is often larger than 15 frames. This 
would prevent a match even under the most relaxed 
conditions. To counter-act this, we divided the gesture 
excursion into frames—each one equivalent in length to the 
frames of the original video—and labeled each of the 
frames according to the phase of which it was a part. We 
then simply judged the degree of agreement on the labels of 
the frames. So, even if one annotator had a large Unsure 
between a Preparation and a Stroke while the second 
annotator had the Preparation directly adjacent to the Stroke 
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the agreement score would be accurate. Tables 2 and 3 
present the results of these experiments. 

Table 2 is particularly interesting. This presents the result of 
judging agreement over all phase categories, including 
unsures. Note that the total agreement over all frames was 
only 68.28%. This low number is largely explained by how 
Unsures are used, as described above. The annotator 

represented by the row labels used Unsure much more 
often. However, we can see that—although there was strong 
consistency for Preparations, Strokes, and Retractions—
there was also more confusion concerning Holds. In 
particular, the row annotator almost equally divided the 
column annotator’s Holds between Hold and Unsure. In 
other words, the column annotator was more comfortable 
saying that there was a Hold in between two other phases 
than the row annotator was. Inspection of the video reveals 
that in many of these cases the speaker’s hand are 
performing what we call “incidental movement.” Incidental 
movement is movement during a phase that seems 
cognitively to be a Hold, even though there is some 
bouncing or jittery movement of the hand. Some annotators 
paid attention to the arm as a whole, while others 
concentrate on the particular part of the body. The latter 
method could lead to calling this incidental movement an 
Unsure rather than a Hold. 

Thus, we ran the agreement study again, but only judged 
agreement on Preparations, Strokes, and Retractions. 
Overall agreement across these three phases was 90.42% 
(Table 3). As Holds are presumably important for 
understanding human gesturing, more work is warranted so 
that we can consistently annotate Hold phases.  

AUTOMATIC PHASE PREDICTION: FORM VS. MOCAP 
In this section we describe the results of using hidden 
Markov models (HMMs) to predict phase labels from the 
underlying kinetic representation in FORM. We conducted 
a number of experiments which are described extensively in 
[5]. In addition, for some experiments, the subject in the 
video was connected to a ReActor2 infrared motion-capture 
system. This was done so that we could compare FORM 
and motion-capture as different methods of gathering 

human gestural-movement information. Motion capture was 
chosen for comparison because it is considered “ground 
truth” for capturing bodily movement information. The best 
results from each of FORM and motion capture are 
presented below. 

 P S R H U 
P 701 90 36 30 4 
S 57 739 0 0 16 
R 0 0 288 3 0 
H 5 0 21 313 30 
U 169 136 138 290 165 

Table 2. Agreement 68.28% 

 P S R 
P 701 90 36 
S 57 739 0 
R 0 0 288 

Table 3. Agreement 90.42% 

Experimental Overview 
As mentioned above, we overcame ambiguity in FORM by 
adding the end-effector position. This position was given as 
(x, y, z) coordinates in a 5 × 5 × 5 grid. If we combine these 
coordinates with the value of the upperArm-Lift parameter, 
we get a vector in R4 which describes the position of an arm 
at a particular frame. So, a sequence of these vectors encode 
the movement of an arm throughout a gesture excursion. By 
dividing the excursion into subsequences of these vectors 
such that they are co-extensive with the phase segmentation 
described above, we created a set of labeled data. 

However, FORM annotators only put Location markers at 
critical points in the gesture. The goal was to approximate 
zero-crossings in the first and second derivatives. In order 
to create the requisite interpolated vectors, we took the R4 
vectors for each Location point in the gesture excursion and 
used cubic splines to fill in the values for the intervening 
frames. This generated a large matrix in R4, the number of 
columns of which is determined by the number of frames—
at 29.97045 fps—in the excursion. We then divided this 
large matrix in accordance with the phase segmentation to 
generate bins of matrices representing the different phases. 
Thus, we produced a bin of preparations, a bin of strokes, 
and a bin of retractions. 

For the motion-capture experiments, we generated vectors 
with the same parameterization as the FORM vectors from 
data given by the motion-capture system. However, as the 
motion-capture system generated vectors for all frames of 
an excursion, no interpolation was necessary. We simply 
segmented the sequence of frames according to the human-
annotated phase labels to create analogous matrices9.  

For each of these methods, we then ran the following HMM 
experiment. It is a version of a cross-validation method 
known as Leaving-one-out [6]. For each iteration of the 
experiment the training set is of size N − 1, while one data 
point, i, is used as held-out testing data. This process is 
repeated N times so each data point gets left out once. Our 
particular algorithm works as follows. Of the combined set 
of all phase matrices—which we will call observations— 
choose one, observationi, at each iteration and remove it 
from the set of observations. Then, for each of the sets of 
phases Preparation, Stroke, and Retraction, generate an 
HMM representing that phase and train with all the samples 
for that phase only. Label observationi after the hidden 
Markov model, M, which maximizes P(observationi|M). If  
                                                           
9 Other methods tried included automatic smoothing of 
MoCap data (SimulatedFORM) [5]. However, these results 
were inferior to those presented here. 
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 Preparation 
 Precision Recall F-Score ±Baseline 

Call-all-Prep 0.35 1.00 0.52  
FORM 0.67 0.50 0.57 +5.8% 
MoCap 0.61 0.49 0.54 +3.8% 
 Stroke 
 Precision Recall F-Score ±Baseline 
Call-all-Stroke 0.45 1.00 0.62  
FORM 0.72 0.73 0.72 +16% 
MoCap 0.69 0.60 0.64 +3.22% 
 Retraction 
 Precision Recall F-Score ±Baseline 
Call-all-Retraction 0.22 1.00 0.33  
FORM 0.61 0.86 0.71 +115% 
MoCap 0.46 0.76 0.57 +73% 

Table 4. Precision, Recall, and F-Score Results for Various HMM Methods Using the Craig Data Set 
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ABSTRACT 
In this paper we analyze the degrees of freedom (DoF) of 
facial movements in face-to-face conversation. We propose 
here a method for automatically selecting expressive frames 
in a large fine-grained motion capture corpus that best 
complement an initial shape model built using neutral 
speech. Using conversational data from one speaker, we 
extract 11 DoF that reconstruct facial deformations with a 
average precision less than a millimeter. Gestural scores are 
then built that gather movements and discursive labels. This 
modeling framework offers a productive analysis of 
conversational speech that seeks in the multimodal signals 
the rendering of given communicative functions and 
linguistic events. 
Author Keywords: Facial movements, model-based face 
tracking, expressive audiovisual speech 

INTRODUCTION 
When we interact with each other and even in absence of 
the interlocutor (e.g. when phoning), facial movements due 
to speech articulation are often accompanied by head 
movements, facial expressions and gestures, used by the 
speaker for underlining the meaning of the speech acts, 
involving the listener or elements of the environment in the 
discourse as well as maintaining mutual attention by back 
channeling. These facial movements can aid the 
understanding of the message, but also convey a lot of 
additional information about the speaker, such as his 
emotional or mental state. Nonverbal components in face-
to-face communication have been studied extensively, 
mainly by psychologists. Studies typically link head and 
facial movements or gestures qualitatively to speech acts. 
Many of the more prominent movements are clearly related 
to the discourse content or to the situation at hand. For 
example, if the sets and releases of eye contact are of most 
importance for face-to-face interaction, much of the body 
language in conversations is used to facilitate turn-taking. 
Movements also emphasize a point of view. Some 
movements serve biological needs, e.g. blinking to wet the 
eyes. Few quantitative results have been published that 
clearly describe what are the basic components of the facial 
movements, what are their precise region of action and how 
they combine, and finally how such head and facial 
movements correlate with elements of the discourse. 
Eckman and Friesen studied extensively emotional 
expressions of faces [10] and also describe non-emotional 

facial movements that mark syntactic elements of 
sentences, in particular endings. The appropriate generation 
of face, hand and body movements is of most importance 
for Embodied Conversational Agents [5, 6] as well as for 
Sociable Robots [4]. The rules governing the firing of 
mimics and the implementation of that mimics are however 
often set in a very ad hoc way and results generally from 
intensive labeling of videos recordings with no special 
focus on fine-grained motion capture. 
Face detection, identification and tracking as well as facial 
movement tracking use generally model-based approaches  
where speaker-specific appearance and shape models 
should be learned from training data [8, 9, 12]. The number 
of free dimensions of these models heavily influences the 
system’s performance: this number should offer a compact 
search space without sacrificing a good fit with observed 
movements. Initial models are often trained off-line using 
limited hand-labeled data. Most models consider either 
facial expressions [16] or speech-related facial gestures 
[15], with few attempts that treat the global problem [3]. 
The work below presents our first effort in characterizing 
the DoF of the facial deformation of one speaker when 
involved in face-to-face conversation. So-called 
expressemes – for expressive visemes – are extracted from 
life interaction videos for building shape models with 
minimal training data. A methodology is proposed to 
incrementally refine these models by automatically 
selecting pertinent expressemes. 

THE CORPORA AND RECORDING PROCEDURE 
For six years we have developed a procedure for building 
speaker-specific fine-grained shape [17] and appearance 
models [11] for the face and the lips: we glue more than 
200 colored beads on the speaker’s face to have access to 
fleshpoints. We also fit generic teeth, eyes and lips models 
to photogrammetric video data to regularize geometric data 
of these important but smaller organs. Corpora were 
generally dedicated to the study of speech coarticulation 
and limited to read material as our target application was 
multimodal text-to-speech synthesis [2]. The speech-related 
facial movements of seven speakers (2 females, 5 males) 
with different mother languages (Arabic, English, German, 
French) have been “cloned”. Shape models of all speakers 
are controlled with the 6 articulatory parameters controlling 
the jaw, lips and laryngeal positioning. 
More recently we extended the recorded material to basic
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Figure 2: Comparing prediction errors of facial shapes using a model built using 52 speech visemes (light gray) with one 
incorporating 102 additional expressemes (dark gray), for a series of selected video sequences. The mean error lowers from 1.7 to 
1.3 pixels. Frames shown at the top are generating the most important prediction errors of the speech-only model. 

acted expressive speech (i.e. smiling, disgust) that most 
influence lip shape and to free conversation where subjects 
were asked first to answer to the Proust’s questionnaire and 
then to recall and tell the most enjoyable, the most 
frightening and the most surprising personal experiences to 
the experimenter. We study here a corpus of free 
conversation from one subject lasting approximately 30 
minutes. The speaker is filmed with three calibrated PAL 
cameras (front + both sides). The resulting images have a 
definition of almost 2 pixels per mm. 

MODELLING SPEECH-RELATED MOVEMENTS 
Data-driven shape models are classically built using 
principal component analysis (PCA). Usually a generic 
mesh is fitted by hand on a few dozen of representative 
frames. Shape parameters emerging from a PCA performed 
on these frames are often very difficult to interpret: they 
often mirror fortuitous correlations observed in the limited 
set of training material. Key frames should thus be chosen 
carefully so as to represent the diversity of facial 
movements usually involved in the task with maximum 
statistical coverage. We propose here to combine automatic 
feature point tracking, frame hand-labeling and statistical 
modeling to gather these key frames. Furthermore our shape 
models are built using a so-called guided PCA where a 
priori knowledge is introduced during the linear 
decomposition. We in fact compute and iteratively subtract 
predictors using carefully chosen data subsets [1]. For 
speech movements, this methodology enable us to extract 
six components directly related to jaw, proper lip 

movements and clear movements of the throat linked with 
underlying movements of the larynx and hyoid bone. We 
added to these six components two additional “expressive” 
components involved in our acted corpus of expressions: 
“smile” and “disgust” gesture that emerge from the analysis 
of our set of “smiling” and “disgust” visemes respectively. 

TRACKING LOCAL FACIAL DEFORMATIONS 
The speech-related shape model of the facial movements is 
then used to guide a multi-view tracker of the beads using 
correlation-based techniques [14]. The initial shape model 
only helps us to constrain the search space within proper 
regions of interest for each vertex of the facial mesh. The 
entire corpus of free conversation is then tracked. While 
most beads are tracked using at least two views, which 
enable 3D constraints to be applied, some beads are only 
tracked on one view, notably those located on the speaker’s 
profile or in regions with high curvature. 
The beads are tracked as patterns of 13x11 pixels. We track 
usually around 600 patterns per frame (compared to 250 
beads on 3 views). The processing time for each frame is 
typically 2 seconds on a standard 2Ghz PC. We then 
interpret the reconstruction error of the beads summed up 
on all views (see Figure 2). We select automatically 
discourse units that have the most important reconstruction 
errors. We then retain the most salient frames which are 
precisely marked by hand, adding here the untracked beads. 

ADDING SOME EXPRESSIVE FACIAL MOVEMENTS 
The final objective of this selection process is to whiten the 
error structure by identifying and adding necessary DoF of
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Figure 3: Non photorealistic synthetic views showing the effect on shape of each elementary expressive action. The 
face is rendered using a unique texture. From left to right: neutral, raising eyebrows, lip corners raiser (obtained 
from the smiling visemes), nose wrinkler (obtained from the visemes uttered with disgust), un-frowning and chin 
raiser. Note that lip corners raiser, nose wrinkler and chin raiser do affect lip shape. 

 

 

(a)

(b)

Figure 4: Modeling and tracking errors with the final 
model. (a) modeling errors of training data (visemes 
and expressemes). (b) tracking errors for selected 
conversational speech sequences. 

unexplained facial movements. The analysis of the 
selected frames reveals for example an important 
residual error in the region of the forehead. Three 
basic components have been identified and added 
using first principal components of given regions of 
selected frames: eyebrows raising/lowering, 
forehead frowning, and chin raising/lowering. 
These elementary gestures combine to control facial 
shapes. The effects of single elementary gestures 
with reference to the neutral face are shown in 
Figure 3. The shape model that includes speech-
related and expression-related facial movements 
has finally 11 DoF. 

ANALYSING THE EXPRESSIVE CORPUS 
The beads positions for each frame of the set of 
read and conversational speech data has been 
estimated using the beads tracker. The facial 
movements should now be explained by the DoF of 
the final shape model. The Figure 4 presents the 
modeling and tracking errors for several thousands 
of frames. The modeling error for the 154 training 
frames is less than 1 pixel for visemes and around 
1,5 pixels for expressemes (Figure 4a). Note that all 
these frames have been manually marked. The 
tracking of beads on the entire sequences from 

which the visemes and expressemes have been 
extracted reaches almost the same precision. Note 
that this tracking error is computed using only the 
positions of tracked beads (usually 75% of the 
beads set). Despite the fact that the full model 
reduces the mean tracking error at around 1,3 mm 
(see Figure 2 and Figure 4b) and tends to decrease 
the number of error bursts, significant modeling 
errors still remain that claim for extra DoF to be 
added to the final shape model (see Figure 4b). 
Reliable gestural scores can be built (see Figure 5) 
that gather the time evolution of the shape 
parameters together with the speech signal and 
discourse labels. These gestural scores provide very 
valuable data on synchronization of multimodal 
events that participate to the encoding of distinctive 
communicative functions: these scores provide the 
necessary receptacle of ground-truth bottom-up 
events and theory-specific top-down interpretations. 

A CASE STUDY: EYEBROWS MOVEMENTS 
Eyebrows movements are known to contribute to 
discourse structuring [7] and are often used as 
redundant markers of emphasis [13]. Our 
preliminary analysis of 20 turns of our 
conversational speech data evidences two distinct 
eyebrows gestures as displayed in Figure 6: bursts 
associated with words on emphasis that co-occur 
with pitch accents and more global gestures 
coextensive with dialog acts. 

COMMENTS 
MPEG4/SNHC identifies 64 Facial Animation 
Parameters. Similarly the well-known FACS 
individualizes 28 facial elementary gestures – not 
including eyes, eyelids and head movements - that 
combine to produce facial mimics. It is still an open 
question to determine (a) what are the basic 
synergies between these elementary gestures that 
are required to encode the complex repertoire of 
facial mimics; (b) how they effectively combine 
and how they are controlled; and (c) how speaker-
specific strategies implement universal or culture-
specific facial attitudes. 
We claim here that this repertoire may be learnt 
using limited resources i.e. recording a limited set 
of visemes and expressemes and that a dozen of 
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basic gestures is sufficient to reach a prediction 
error of about one millimeter uniformly distributed 
all over the face. 

 
Figure 5: Gestural score for a selected speech act 
showing a burst of smiling (“sourire” score) during 
the uttering of “devrais faire”. The following 
hesitation “euh” is also associated with lower 
eyebrows (“sourcil” score). 

 
Figure 6: Time course of the eyebrow parameter. 
Top: bursts associated with words on emphasis. 
Bottom: initial burst+ declination associated with 
entire dialog acts. 

CONCLUSIONS AND PERSPECTIVES 
A productive analysis of conversational speech 
should combine two complementary approaches: a 
top-down approach that seeks in the multimodal 
signals the rendering of given communicative 
functions and linguistic events; and a bottom-up 
approach that reveals multimodal events that 
emerge from the observation of human partners in 
action. Combining both approaches will avoid the 
observer’s biases and opens the route towards 
proper quantitative models of control and 
negotiation between overlapping scopes of 
communicative functions. The analysis of 
multimodal events should also be driven by entropy 
constraints i.e. implement coherently co-occurring 
communicative functions and not only 
result/emerge from global energy-based analysis 
such as PCA. 
We will label gestural scores produced by our 
model-based gesture-aware tracker with 
communicative functions in order to study the 
scope and dynamics of their multimodal gestural 
instances. 
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ABSTRACT 
This paper deals with the MUMIN multimodal 
annotation scheme, which is dedicated to the study 
of hand gestures and facial displays in interpersonal 
communication, with focus on the role played by 
multimodal expressions for feedback, turn 
management and sequencing. The scheme has been 
tested on the analysis of multimodal behaviour in 
short video clips in Swedish, Finnish and Danish. 
These preliminary results show that the categories 
defined are reliable, and points at a few necessary 
revisions.  

Author Keywords 
Multimodal annotation, feedback, hand and facial 
gestures  

INTRODUCTION 
The creation of a multimodal corpus often reflects 
the requirements of a specific application and thus 
constitutes an attempt at modelling either input or 
output multimodal behaviour. On the contrary the 
MUMIN coding scheme [4], developed in the 
Nordic Network on Multimodal Interfaces MUMIN 
(www.cst.dk/mumin), is intended as a general 
instrument for the study of hand gestures and facial 
displays in interpersonal communication, focusing 
on the role played by multimodal expressions for 
feedback, turn management and sequencing. It 
builds on previous studies of feedback strategies in 
conversations [9, 1], and on work where vocal 
feedback has been categorised in behavioural or 
functional terms [2,3,7]. In what follows, we briefly 
describe the annotation categories starting with the 
functional ones, and then deal with coding 
procedure, materials and results from three case 
studies. We conclude with a few reflections on the 
potential applications of the scheme.  

ANNOTATION CATEGORIES 
The main focus of the coding scheme is the 
annotation of the feedback, turn-management and 
sequencing functions of multimodal expressions, 
with important consequences for the annotation 
process and results. First of all, the annotator is 
expected to select hand gestures and facial displays 
to be annotated only if they play an observable 

communicative function. Moreover, the attributes 
concerning the shape or dynamics of the observed 
phenomena are not detailed, because they only seek 
to capture features that are significant when 
studying interpersonal communication. However, 
the annotation of gesture shape and dynamics can 
be extended for specific purposes, for example to 
construct computer applications, without changing 
the functional level of the annotation. 

The first kind of annotation considered is modality-
specific, and concerns the expression types, the 
second concerns multimodal communication. For 
each hand gesture and facial display taken into 
consideration, a relation with the corresponding 
speech expression (if any) is also annotated. 
However, the scheme does not provide tags for the 
annotation of verbal expressions since the focus is 
on the facial displays and hand gestures which can 
be synchronized with spoken language. 

Feedback 
The production of feedback is a pervasive 
phenomenon in human communication. Participants 
in a conversation give feedback to show that they 
are willing and able to continue the interaction and 
that they are listening, paying attention, 
understanding or not understanding, agreeing or 
disagreeing with the message being conveyed. They 
elicit feedback to know how the interlocutor is 
reacting in terms of attention, understanding and 
agreement. While exchanging feedback, both 
speaker and listener can show emotions and 
attitudes. Both feedback giving and eliciting are 
annotated by means of the same three sets of 
attributes: Basic, Acceptance, and Attitudinal 
emotions/attitudes.  

Function attribute Function values 

Basic CPU, CP 

Acceptance Accept, Non-accept 

Additional 
Emotion/ Attitude 

Happy, Sad, Surprised, Disgusted, 
Angry, Frightened, Other 

Table 1. Feedback Annotation Features 
Basic features define hand gestures or facial 
displays in terms of whether they express or elicit i. 
continuation/contact and perception (CP), where the 
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dialogue participants acknowledge contact and 
perception of each other; ii. continuation/contact, 
perception and understanding (CPU), where the 
interlocutors also show explicit signs of 
understanding or not understanding of the message. 
The two categories capture what [9] call 
acknowledgement.  Acceptance indicates that the 
interlocutor has not only perceived and understood 
the message, but also shows or elicits signs of either 
agreeing with its content or rejecting it. Basic and 
Acceptance can be compared with process-related 
and content-related in [13]. Finally, feedback 
annotation relies on a list of emotions and attitudes 
that can co-occur with one of the basic feedback 
features and with an acceptance feature. The list 
includes the six basic emotions [111,5] plus an 
“other” value. 

Turn management 
The turn management system regulates the 
interaction flow and minimises overlapping speech 
and pauses. It is coded by the three general features 
Turn gain, Turn end and Turn hold. In addition, a 
turn gain is either a Turn take if the speaker takes a 
turn that wasn’t offered, possibly by interrupting, or 
a Turn accept if the speaker accepts a turn that is 
being offered. Similarly, turn end can be achieved 
in different ways: the speaker can release the turn 
under pressure (Turn yield), offer the turn to the 
interlocutor (Turn offer), or signal completion of 
the turn and end of the conversation at the same 
time (Turn complete). 

Sequencing 
Sequencing concerns the organisation of a dialogue 
in meaningful sequences, corresponding to what in 
other frameworks has been described as sub-
dialogues, i.e. a sequence of speech acts which may 
extend over several turns. In other words, 
sequencing is orthogonal to the turn system. 
Opening sequence indicates that a new speech act 
sequence is starting. Continue sequence indicates 
that the current speech act sequence is going on, for 
example when a gesture is associated with 
enumerative phrases such as “the first… the 
second… the third…”. Closing sequence indicates 
that the current speech act sequence is closed, 
which may be shown by a head turn or another 
gesture while uttering a phrase like “that’s it, that’s 
all”.  

MULTIMODAL EXPRESSIONS  
Under normal circumstances, in face-to-face 
communication feedback, turn management and 
sequencing all involve use of multimodal 
expressions, and are not mutually exclusive. For 
instance, turn management is partly done by 
feedback.  A turn can be accepted by giving 
feedback and released by eliciting information from 
the other party. Within each feature, however, only 
one value is allowed, since the focus of annotation 

is on the explicit communicative function of the 
phenomenon under analysis. For example, a head 
nod which has been coded as CPU 
(continuation/contact, perception and 
understanding) cannot be assigned accept and non-
accept values at the same time.  

An example of a multifunctional facial display 
coded with ANVIL [12] is shown in the frame in 
Figure 1: the speaker frowns and takes the turn 
while agreeing with the interlocutor by uttering: “ja, 
det synes jeg” (Yes, I think so). By means of the 
same multimodal expression (facial display 
combined with speech utterance) he also elicits 
feedback from the interlocutor and encourages her 
to continue the current sequence.  

Figure 1: A multifunctional facial display: turn 
management and feedback 

 

The components of a multimodal expression can 
have different time spans. For instance, a cross-
modal relation can be defined between a speech 
segment and a slightly subsequent gesture. To 
define a multimodal relation, we make a basic 
distinction between two signs being dependent on 
or independent from each other. If they are 
dependent, they are either compatible or 
incompatible. For two signs to be compatible, they 
must either complement or reinforce each other, 
while incompatibility arises if they express different 
contents, as e.g. in ironic contexts. 

FACIAL DISPLAYS AND HAND GESTURES 
Facial displays and hand gestures are annotated 
with respect to the shape and dynamics of the 
movement. Although the categories proposed here, 
as already noted, are not very detailed, they should 
be specific enough to be able to distinguish and 
characterise non-verbal expressions that play a role 
in feedback, turn management and sequencing. 
They are concerned with the movement dimension 
of facial displays and hand gestures, and should be 
understood as dynamic features that refer to a 
movement as a whole or a protracted state. Internal 
gesture segmentation is not considered since it 
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doesn’t seem relevant for the analysis of 
communicative functions we are pursuing.  

The term facial display [6] refers to timed changes 
in eyebrow position, expressions of the mouth, 
movement of the head and of the eyes. The coding 
scheme includes features describing General face 
expressions such as Smile or Scowl, features of 
Eyebrow movements, such as Frown or Raise, 
features referring to Eye movement, features for 
Gaze direction, for movements of the Mouth and 
position of the Lips. Finally, a number of features 
refer to Head movements. The total number of 
different features is 36. 

The annotation of the shape and trajectory of hand 
gesture is a strong simplification of the scheme 
used at the McNeill Lab [10]. The features, 7 in 
total, concern the two dimensions of Handedness 
and Trajectory, so that we distinguish between 
single-handed and double-handed gestures, and 
among a number of different simple trajectories 
analogous to what is done for gaze movement.  

Finally, semiotic categories have also been defined 
common to both facial displays and hand gestures 
building on Pierce’s semiotic types. They are 
Indexical Deictic, Indexical,  Non-deictic, Iconic 
and Symbolic.   

CODING PROCEDURE, TOOLS AND MATERIAL 
The coding procedure was iteratively defined in 
several MUMIN workshops, and annotations have 
been carried out by means of the several coding 
tools, e.g. ANVIL [12]. The annotated material 
consists of  a) one minute clip from an interview of 
a Danish actress for  Danish television; b) one 
minute interview of the Finnish finance minister for 
Finnish television provided by the courtesy of the 
Centre of Scientific Computing; c) one minute clip 
from the Swedish film “Show me love”.  

The Danish case study 
Two independent annotators with limited 
experience annotated gestures in the Danish clip 
using ANVIL. They started by annotating the non-
verbal expressions of one of the interlocutors 
together to familiarise themselves with the coding 
scheme. Then they did the annotation task for the 
other dialogue participant independently in order to 
evaluate the reliability of the coding scheme. 

In order to align the two annotations, it was decided 
that two segments referred to the same gesture if 
they covered the same time span, plus or minus ¼ 
of a second at the onset or end of the gesture. The 
first coder annotated 37 facial displays, and the 
second one 33. Of these, 29 were common to both 
coders. The agreement in recognition of facial 
gestures is thus 0.83.  Concerning hand gestures, 
the first coder annotated 6, the second 4. Of these 
only two were in common. Therefore, only hand 

gestures have been considered for the κ-score 
evaluation.  

The κ-scores obtained on the features concerning 
gesture shape and semiotic type are all in the range 
.83-.96 with the exception of those concerning 
Gaze (.54) and Head (0.2). This low agreement is 
partly due to the fact that one coder privileged head 
position over gaze (head up, no gaze), while the 
other in such cases ignored head movements and 
annotated gaze. There are also inconsistencies: in 
some cases the tag is Gaze side with the comment 
“away from the interlocutor”, in others Gaze other 
with the comment “away from the interlocutor”. 
Thus, the interaction of head movement and gaze 
needs a more careful treatment in the coding 
manual.  

In the coding of communicative functions, on the 
other hand (Table 2), the annotators achieved 
satisfactory κ-scores with the exception of 
sequencing, particularly the feature Continue 
sequence.  The issue needs further investigation. 

 P(A) P(E) Kappa 
F-Give Basic .79  .33 .68 
F-Give acceptance .86 .25 .81 
F-Give Emotion .86 .08 .84 
F-Elicit basic .93 .33 .9 
F-Elicit acceptance 1 .25 1 
F-elicit emotion .93 .08 .92 
Turn-gain .89  .33 .83 
Turn-end .93 .33 .89 
Turn-hold .96 .05 .92 
Sequencing .69 .25 .59 
MM-relation .82 .25 .76 

Table 2: κ-scores for classification of 
communicative function features 

While they show a good reliability for most of the 
categories used, the κ-scores don’t tell us anything 
about the coverage of the scheme. The material in 
the Danish case study is quite limited, so it is not 
surprising that many of the categories are not used. 
However, it is worth noting that one of the basic 
feedback features, F-elicit-acceptance, never 
appears (thus the κ-score concerns the default value 
“none”). The other case studies show that this is an 
idiosyncratic characteristic of this dialogue rather 
than evidence of empirical inadequacy of the 
feature. Concerning lack of necessary categories, on 
the other hand, it is obvious already from this 
limited study that body posture, which is not 
included in the scheme, is important for feedback: 
both coders noted in their comments that a relevant 
movement of the torso should have been annotated.  

 40



 

The Swedish and Finnish case studies 
The Swedish video clip consists of a one-minute 
emotional conversation between two actors who 
interpret father and daughter. They are mostly 
filmed in close ups of their faces, so that the hands 
are rarely in the picture, making it impossible to 
annotate hand gestures. The actor that speaks is not 
always in focus, so in two cases in which the actors 
utters a feedback expression, the face cannot be 
observed. 

Only one expert annotator coded the film scene, so 
the reliability of the coding scheme was evaluated 
only by means of an inter-variance test, which 
checks whether the same coder varies their 
judgments over time. The coder annotated the 
material once and after about six months repeated 
the coding. A total of 12 facial displays related to 
feedback were coded both times, with complete 
intercoder agreement. The coded facial displays 
related to turn management functions were 12 the 
first time and 13 the second time, which means that 
the percentage of turn management identification 
was 95%. 

Since the video-clip is extracted from a film, all the 
conversational moves are pre-defined and therefore 
only few turn-gain and turn-hold facial displays 
occur, moreover no sequencing facial displays or 
gestures were identified, probably due to the fact 
that the flow of discourse is pre-defined not leaving 
space to a spontaneous organisation of the 
discourse structure.  

Given the emotional scene, it is not surprising that 
most of the feedback phenomena annotated have 
been labelled as F-Give-emotion/attitude (7, against 
2 for F-Elicit-acceptance, and 1 for F-Give-
acceptance, F-Elicit-basic and F-Elicit-
emotion/attitude). The fact that F-Elicit-acceptance 
was used points to the fact that the category is 
useful, and that its absence from the Danish data is 
due to the different communicative situation. On 
the other hand, in the Swedish clip there are no 
examples of F-Give basic, which in spontaneous 
conversation has been found to be one of the most 
frequent feedback categories [8].  

The distribution of turn management features was 
10 for Turn-end, and 1 for Turn-gain and Turn-
hold.  

The Finnish 1-minute clip is similar to the Danish 
in that it is also an interview edited for 
broadcasting. The most important contribution of 
this study – still in the process of being analysed – 
again points to the fact that a broader selection of 
gestures are needed to cover the analysis of 
communicative functions.  In particular, tilting of 
the head was recurrently used by the interviewee to 
elicit feedback from the interviewer.  

CONCLUSIONS 
The MUMIN coding scheme constitutes an attempt 
at defining a scheme for the annotation of feedback, 
turn management and sequencing multimodal 
behaviour in human communication. The pre-
liminary results of the reliability test run in the 
Danish study case confirm the general reliability of 
the categories defined for the purpose of coding 
feedback and turn taking functions, although gaze, 
head and sequencing features seemed problematic 
in some cases, and not enough detailed in others 
(Finnish results). Body posture, which is not part of 
this version of the coding scheme, is a needed 
extension.  Future revisions and extensions to the 
current version of the scheme will seek to 
accommodate these problems. We are now 
gathering additional experience by applying the 
coding scheme in graduate courses on multimodal 
communication. 

The availability of such a scheme is an important 
step towards creating annotated multimodal 
resources for the study of multimodal 
communicative phenomena in different situations 
and different cultural settings, and for investigating 
many different aspects of human communication. 
Examples of issues that can be investigated 
empirically by looking at annotated data are to what 
extent gestural feedback co-occurs with verbal 
expressions; in what way different non-vocal 
feedback gestures can be combined; whether 
specific gestures are typically associated with a 
specific function; how multimodal feedback, turn 
management and sequencing strategies are 
expressed in different cultural settings. 
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ABSTRACT 
Communicative feedback refers to unobtrusive 
(usually short) vocal or bodily expressions whereby 
a recipient of information can inform a contributor 
of information about whether he/she is able and 
willing to communicate, perceive the information, 
and understand the information. This paper 
provides a theory for embodied communicative 
feedback, describing the different dimensions and 
features involved. It also provides a corpus analysis 
part, describing a first data coding and analysis 
method geared to find the features postulated by the 
theory.  

Author keywords 
Communicative embodied feedback, contact, 
perception, understanding, emotions, multimodal, 
embodied communication 

INTRODUCTION 
The purpose of this paper is to present a theoretical 
model of communicative feedback, which is to be 
used in a VR agent capable of multimodal 
communication. Another purpose is to briefly 
present the coding categories which are being used 
to obtain data guiding the agent’s behavior. Below, 
we first present the theory. 

The function/purpose of communication is to share 
information. This usually takes place by two or 
more communicators taking turns in contributing 
new information. In order to be successful, this 
process requires a feedback system to make sure the 
contributed information is really shared. Using the 
cybernetic notion of feedback of Wiener (1948) as a 
point of departure, we may define a notion of 
communicative feedback in terms of four functions 
that directly arise from basic requirements of 
human communication: Communicative feedback 
refers to unobtrusive (usually short) vocal or bodily 

expressions whereby a recipient of information can 
inform a contributor of information about whether 
he/she is able and willing to (i) communicate (have 
contact), (ii) perceive the information (perception), 
and (iii) understand the information 
(understanding). In addition, (iv) feedback 
information can be given about emotions and 
attitudes triggered by the information, a special case 
here being an evaluation of the main evocative 
function of the current and most recent 
contributions (cf. Allwood, Nivre & Ahlsén 1992 
and Allwood 2000, where the theory is described 
more in detail).  

The central role of feedback in communication is 
underpinned already by the fact that simple 
feedback words like yes, no and m are among the 
most frequent in spoken language. A proper 
analysis of their semantic/pragmatic content, 
however, is fairly complex and involves several 
different dimensions. One striking feature is that 
these words involve a high degree of context 
dependence with regard to the features of the 
preceding communicative act, notably the type of 
speech act (mood), its factual polarity, information 
status and evocative function (cf. Allwood, Nivre & 
Ahlsén 1992). Moreover, when studying natural 
face-to-face interaction it becomes apparent that the 
human feedback system comprises much more than 
words. Interlocutors incessantly coordinate and 
exchange feedback information by nonverbal 
means like posture, facial expression or prosody. In 
this paper, we extend the theoretical account 
developed earlier to cover embodied communicative 
feedback and provide a framework for analyzing it 
in multimodal corpora. 
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DIMENSIONS OF COMMUNICATIVE FEEDBACK 
Communicative feedback can be characterized with 
respect to several different dimensions. Some of the 
most relevant in this context are the following: 

(i) Degrees of control (in production of and 
reaction to feedback) 

(ii) Degrees of awareness (in production of and 
reaction to feedback) 

(iii) Types of expression or modality used in 
feedback (e.g. audible speech, visible body 
movements) 

(iv) Types of function/content of the feedback 
expressions 

(v) Types of reception preceding giving of 
feedback 

(vi) Types of appraisal and evaluation occurring in 
listener to select feedback 

(vii) Types of communicative intentionality 
associated with feedback by producer 

(viii) Degrees of continuity in feedback signal 
(ix) Semiotic information carrying relations of 

feedback expressions 
These dimensions and others (cf. Allwood 2000) 
play a role in all normal human communication. 
Below, we will describe their role for embodied 
communicative feedback. Table 1 shows how 
different types of embodied feedback behavior can 
be differentiated according to these dimensions. 
The table is discussed and explained in the 8 
following sections (cf. also Allwood 2000, for a 
theoretical discussion). 

Degrees of awareness and control and 
embodiment 
 Human communication involves multiple levels of 
organization involving physical, biological, 
psychological and socio-cultural properties. As a 
basis, we assume that there are at least two (human) 
biological organisms in a physical environment 
causally influencing each other, through 
manipulation of their shared physical environment. 
Such causal influence might to some extent be 
innately given, so that there are probably aspects of 
communication that function independently of 
awareness and intentional control of the sender. 
Other types of causal influence are learned and then 
automatized so that they are normally functioning 
automatically, but potentially amenable to 
awareness and control. Still other forms of 
influence are correlated with awareness and/or 
intentional control, on a scale ranging from a very 
low to a very high degree of awareness/control. In 
this way, communication may involve 

1) innately given causal influence 
2) potentially aware and intentionally controllable 

causal influence 
3)  actually aware and intentionally controlled 

causal influence. 
 Human communication is thus “embodied” in two 
senses, (i) since it always relies on and exploits of  

physical causation, (ii) because its physical 
actualization occurs through processes in a 
biological body. The feedback system as an aspect 
human communication shares these general 
characteristics. The theory has a perspective on 
communication and feedback, which implies 
processes occurring on different levels of 
organization or put differently as can be seen in 
table 1 as implying processes that occur with 
different levels of awareness and control 
(intentionality). In addition to this, the theory also 
involves positing several qualitatively different 
parallel concurrent processes. 

Perceptual modality of feedback expression 
 Like other kinds of human communication, the 
feedback system involves two primary types of 
expression, (i) visible body movements and (ii) 
audible vocal sounds. Both of these means of 
expression can occur on the different levels of 
awareness and control discussed above. That is, 
there is feedback which is mostly aware and 
intentionally controllable, like the words yes, no, m 
or the head gestures for affirmation and negation/ 
rejection. There is also feedback that is only 
potentially controllable, like smiles or emotional 
prosody. Finally there is feedback behavior which 
one is neither aware of nor able to control, but that 
is effective in establishing coordination between 
interlocutors. For example, speakers tend to 
coordinate the amount and energy of their body 
movements without being aware of it. 

Types of function/content of the expressions 
Communicative feedback concerns expressive 
behaviors that serve to give or elicit information, 
enabling the communicators to share information 
more successfully. Every expression, considered as 
a behavioral feedback unit, has thus two functional 
sides. On the one hand it can evoke reactions from 
the interlocutor, on the other hand it can respond to 
the evocative aspects of a previous contribution. 
Giving feedback is mainly responsive, while 
eliciting feedback is mainly evocative. Each 
feedback behavior may thereby serve different 
responsive functions. For example, vocal verbal 
signals (like m or yes) inform the interlocutor that  
contact is established (C) that what has been 
contributed so far has been perceived (P) and 
(usually also) understood (U). Additionally, the 
word yes often also expresses acceptance or 
agreement with the main evocative function of the 
preceding contribution (A). Thus, four basic 
responsive feedback functions (C, P, U and A) can 
be attached to the word yes. In addition to these 
functions, further emotional, attitudinal information 
(E) may be expressed concurrent to the word yes. 
For example, the word may be articulated with 
enthusiastic prosody and a friendly smile, which 
would give the interlocutor further information 
about the recipient’s emotional state. Similarly, the 
willingness to continue (facilitating 
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communication) might be expressed by posture 
mirroring. 

Types of reception  
As explained above, feedback behavior is a more or 
less aware and controlled expression of reactions 
and responses based on appraisal and evaluation of 
information contributed by another communicator. 
We think of these reactions and responses as 
produced in two main stages: First, an unconscious 
appraisal is tied to the occurrence of perception, 
emotions and other primary bodily reactions. If 
perception and emotion is connected to further 
processing involving meaningful connections to 
memory, then understanding, empathy and other 
cognitive attitudes, like surprise or hope, might 
occur. Secondly, this stage can lead to more aware 
appraisal, or evaluation concerning the evocative 
functions (C, P, U) of the preceding contribution 
and especially its main evocative function (A), 
which can be accepted, rejected or possibly met 
with some form of intermediary reaction, (often 
expressed by modal words like perhaps, maybe 
etc). We distinguish between these two types of 
reception and use the term “reactive” when the 
behavior is more automatic and linked to earlier 
stages in receptive processing, and the term 
“response” when the behavior is more aware and 
linked to later stages. For example, vocal feedback 
words like yes, no and m as well as head gestures 
are typically responses associated with evaluation, 
while posture adjustment and facial gestures are 
more reactive and linked more directly to appraisal 
and perception. 

Types of appraisal and evaluation 
Responses and reactions with a certain feedback 
function occur as a result of continuous appraisal 
and evaluation on the part of the communicators. 
We suggest that the notion of “appraisal” be used 
for processes that are connected to low levels of 
awareness and control, while “evaluation” is used 
when higher levels are involved. The functions C, 
P, U all pose requirements that can be evaluated as 
to whether they are met or not (positive or 
negative). Positive feedback in this sense can be 
explicitly given by the words yes and m or head nod 
(or implicitly by making a next contribution), and 
negatively by words like no or head shakes. The 
attitudinal and emotional function (E) of feedback 
is more complex and rests upon both appraisal, i.e. 
processes with a lower degree of awareness and 

control, as well as evaluation processes. What 
dimensions are relevant here is not clear. One 
possibility is the dimensions suggested by Scherer 
(1999), where it is suggested that the appraisal 
dimensions most relevant are (i) novelty (news 
value of stimulus), (ii) coping (ability to cope with 
a stimulus), (iii) power (how powerful does the 
recipient feel in relation to the stimulus), (iv) 
normative system (how much does the stimulus 
complies with norms the recipient conforms to), (v) 
value (to what extent does the stimulus conform to 
values of the recipient). The effect of appraisal that 
runs sequentially along these dimensions is a row of 
emotional reactions, which may include a certain 
prosody or other behavioral reactions, primarily 
through prosody and facial display. Additionally, 
there will be a cognitive evaluation of whether or 
not the recipient is able and/or willing to comply 
with the main evocative function of the preceding 
contribution (A), e.g., can the statements made be 
believed, the questions answered or the requests 
complied with. 

Types of communicative intentionality 
Like any other information communicated by 
verbal or bodily means, feedback information 
concerning the basic functions (C, P, U, A, E) can 
be given on many levels of awareness and 
intentionality. Although such levels almost 
certainly are a matter of degree, we, in order to 
simplify matters somewhat, here distinguish three 
levels from the point of view of the sender (cf. 
Allwood 1976): (i) Indicated information is 
information that the sender is not aware of, or 
intending to convey. This information is mostly 
communicated by virtue of the recipient's seeing it 
as an indexical (i.e., causal) sign. (ii) Displayed 
information is intended by the sender to be 
“showed” to the recipient. The recipient does not, 
however, have to recognize this intention. (iii) 
Signaled information is intended by the sender to 
“show” the recipient that he is displaying and, thus, 
intends the recipient to recognize it as displayed. 
Display and signaling of information can be 
achieved through any of the three main semiotic 
types of signs (indices, icons and symbols, cf. 
Peirce 1955/1931). In particular, we will regard 
ordinary linguistic expressions (verbal symbols) as 
being signals by convention. Thus, a linguistic 
expression like It's raining, when used 
conventionally, is intended to evoke the receiver's 
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 Bodily 
coordination 

Facial expression, 
posture, prosody 

Head gestures Vocal verbal 

Awareness and 
control 

Innate, 

automatic  

Innate, potentially 
aware + controlled 

Potentially/mostly 
aware + controlled 

Potentially/mostly aware 
+ controlled 

Expression Visible Visible, audible Visible Audible 
 C, P, E C, P, E C, P, U, E, A C, P, U, E, A 
Type of reception Reactive Reactive Response Response 
Type of appraisal Appraisal, 

evaluation 
Appraisal, evaluation Appraisal, 

evaluation 
Appraisal, evaluation 

Intentionality Indicate Indicate, display Signal Signal 
Continuity Analogue Analogue, digital Digital Digital 
Semiotic sign type Index Index, icon Symbol Symbol 

Table 1. Types of linguistic and other communicative expressions of feedback. 

(C = Contact, P = Perception, U = Understanding, E = Emotion, A = Attitude) 



 

Figure 1. Snapshot of the annotation board for analyzing embodied communicative feedback. 

recognition not merely that “it's raining” but that 
he/she is “being shown that it's raining”. 

Degree of continuity (i.e. analog vs. digital) 
Feedback information can be expressed in analog 
ways, such as prosodic patterns in speech, 
continuous body movements and facial expressions, 
which evolve over stretches of interaction. It may 
also be more digital and discrete, such as feedback 
words, word repetitions or head nods and shakes. 
Normally, analog and digital expressions are used 
in combination. 

Type of semiotic information carrying relation 
Following Peirce’s semiotic taxonomy, where 
indices are based on contiguity, icons on similarity 
and symbols on conventional, arbitrary relations 
between the sign and the signified, we can find 
different types of semiotic information expressed 
by feedback.  

FALSIFICATION AND EMPIRICAL CONTENT 
A relevant question to ask in relation to all theories 
is the question of how the theory could be falsified. 
Since the aspect of the theory that has been 
presented in this paper mainly consist of a 
taxonomy of the theoretical dimensions of the 
theory, falsification in this case consists in showing 
that the taxonomy is ill-founded, i.e. that it is not 
homogeneous, that the categories are not mutually 
exclusive, not perspicuous, not economical or not 
fruitful. Since the question of whether the above 
criteria are met or not can be meaningfully asked, 
we conclude that the theory has empirical content, 
ie can be falsified. 

EMPIRICAL BASIS 
To test our theoretical framework for its adequacy 
and usability in analyzing multimodal corpora, we 
have started to gather and analyze data on 30 video-
recorded dyadic interactions with two subjects in 
standing position. The dyads were systematically 
varied with respect to sex and mutual acquaintance. 
The subjects were university students and their task 

was to find out as much as possible about each 
other within 3 minutes. Extractions of one minute 
from the video-recordings were transcribed and 
coded, according to an abbreviated version of the 
MUMIN coding scheme for feedback (Allwood et 
al. 2005). The coding schema identifies the 
feedback units (either verbal or non-verbal), which 
are coded for function type (giving, eliciting) and 
attitudes (continued contact, perception, under-
standing; acceptance of main evocative function; 
emotional attitudes). It further captures the 
following non-vocal behaviors: posture shifts, facial 
expressions, gaze, and head movements. In 
addition, intensity and pitch of the (single) audio 
track were computed using the PRAAT software; 
movement analysis was applied to measure how the 
interlocutors’ movements vary and coordinate over 
time. Finally, subjects were asked to fill in a 
questionnaire about their socio-cognitive perception 
of the other (e.g. rapport). Fig. 1 shows a snapshort 
of the annotation board during a data coding 
session.  

CONCLUSIONS 
We have presented a theory for communicative 
feedback, describing the different dimensions 
involved. This theory is supposed to provide the 
basis of a framework for analyzing embodied 
feedback behavior in natural interactions. We have 
started to design a coding scheme and a data 
analysis method suited to capture those features that 
are decisive in this account (such as type of 
expression, relevant function, or time scale). 
Currently, we are investigating how the resultant 
multimodal corpus can be analyzed for patterns and 
rules as required for a predictive model of 
embodied feedback. Ultimately, such a model 
should afford its simulation and testing in a state-
of-the-art embodied conversational character. 
 

 46



 

4.  Allwood, J, NivreJ, & Ahlsén, E. (1992). On the 
semantics and pragmatics of linguistic feedback, 
Journal of Semantics, vol. 9, no. 1, 1-26. 

ACKNOWLEDGEMENTS 
We thank the Ludwig Bolzmann Institute for Urban 
Ethology in Vienna for help with data collection 
and transcription.  

5.  Peirce, C. S. (1931). Collected Papers of 
Charles Sanders Peirce, 1931-1958, 8 vols. 
Edited by Charles Hartshorne, Paul Weiss, and 
Arthur Burks. Cambridge, Mass., Harvard 
University Press. 

REFERENCES 
1.  Allwood, J. (1976). Linguistic Communication 

as Action and Cooperation. Gothenburg 
Monographs in Linguistics 2. Göteborg 
University, Department of Linguistics. 6. Scherer, K. T- (1999). Appraisal Theory. In T. 

Dalgleish & M. J. Power (Eds.) Handbook of 
Emoiton and Cognition (pp.637-663). 
Chichester: New York. 

2.  Allwood, J. (2000). Structure of Dialog. In 
Taylor, M., Bouwhuis, D. & Neel, F. (eds.) The 
Structure of Multimodal Dialogue II, 
Amsterdam, Benjamins.pp. 3 - 24. 7. Wiener, N. (1948). Cybernetics or Control and 

Communication in the Animal and the Machine.  
3.  Allwood, J., Cerrato, L., Dybjær, L., Jokinen, 

K., Navaretta, C. & Paggio, P. (2005). The 
MUMIN Multimodal Coding Scheme. NorFA 
Yearbook 2005. 

 BIT Press. 

 47



 

A Study into Multimodal Behaviour in Error Correction 
Marie-Luce Bourguet 
Computer Science Dept. 

Queen Mary, University of London 
Mile End Road, E1 4NS, London, UK 

mlb@dcs.qmul.ac.uk 
 

ABSTRACT 
Recognition based interaction techniques (e.g. speech and 
gesture recognition) are still error prone. Research is 
needed to understand users’ multimodal behaviour when 
faced with recognition errors. In this paper we present an 
experimental study into users’ synchronisation of speech 
and pen inputs in error correction. The results of the study 
suggest that users are likely to modify their synchronisation 
patterns in the belief that it can help error resolution. 
Further investigation is now required and multimodal 
corpora are needed where a range of error resolution 
situations have been clearly annotated.  

Author Keywords 
Recognition-based interaction, error-handling, multimodal 
behaviour, synchronisation patterns. 

ACM Classification Keywords 
H5.2.User Interfaces: Input devices and strategies (e.g., 
mouse, touch screen).  

INTRODUCTION 
Natural modalities of interaction, such as speech and hand 
gestures, rely on recognition-based technologies, which are 
inherently error prone.  Speech recognition systems, for 
example, are sensitive to vocabulary size, quality of audio 
signals and variability of voice parameters.  Signal and 
noise separation also remains a major challenge in speech 
recognition technology, as current systems are extremely 
sensitive to background noise and to the presence of more 
than one speaker.  Speech recognition errors include false 
rejection, which is when the user has spoken correctly, but 
the system cannot recognize the spoken input and does not 
deliver any recognition result; and misrecognition, which is 
when the recognizer returns a result with words that are 
different from what the user spoke. In both cases, the 
possible causes of the error include: some words spoken by 
the user are not in the application’s vocabulary; the spoken 

sentence does not match the application’s grammar; the 
system is not ready to listen; there are similar sounding 
words in the application’s vocabulary; the user pauses too 
long between words; the user produces disfluent speech; the 
user’s voice is too different from stored voice models; the 
computer’s audio is not properly configured or the 
microphone is not properly adjusted. 

Previous research has uncovered typical user strategies to 
handle errors in recognition-based multimodal interfaces. 
Studies of speech interfaces have found that the most 
instinctive way for users to correct mistakes is to repeat [3]. 
In handwriting, a similar strategy is to overwrite a 
misrecognised word. Linguistic adaptation is another 
strategy that has been observed where users choose to 
rephrase their speech, in the belief that it can influence error 
resolution: a word may be substituted for another, or a 
simpler syntactic structure may be chosen [6]. In 
multimodal systems, it has been suggested that users are 
willing to repeat their input at least once, after which they 
will tend to switch to another modality. For example, if 
speech input failed repeatedly when entering data in a form, 
users may switch to the keyboard in order to type their 
entry [6]. Alternative strategies include locating a 
recognition error by touching a misrecognised word on a 
writing-sensitive screen where recognition output is 
displayed, then correcting the error by choosing from a list 
of alternative words, typing, handwriting, or editing using 
gestures drawn on the display [7].  

In speech interfaces, one of the most natural user correction 
strategies consists in repeating the misrecognised input. 
However, although repeating might be the most obvious 
way to correct when the system mishears, it is often the 
worse for the system [7]. The main reason for this is that  
when repeating, users tend to adjust their way of speaking 
(e.g. by over-articulating) to what they believe is easier for 
the recogniser to interpret, which often has the opposite 
effect. The purpose of the experiment presented in this 
paper is to study if users exhibit similar strategies of 
modifying some aspects of their input when repeating a 
complex multimodal command (e.g. a command that 
combines speech and a pen gesture), in the belief that it can 
help error resolution. More precisely, we are interested in 
comparing users’ modality synchronisation patterns in 
normal situations of interaction, and in situations of error 
correction.  
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Synchronisation patterns are important to devise accurate 
and efficient modality integration techniques. For example, 
synchronisation patterns will allow a multimodal system to 
differentiate between independent inputs (“concurrent 
multimodality”) and synergistic inputs (“compound 
multimodality”), and to set appropriate timeouts between 
subsequent synergistic inputs. Previous work in the area of 
multimodal user behaviour has uncovered typical patterns 
of natural integration and synchronisation of input modes 
[1][5]. In [5] for example, integration patterns for speech 
and pen inputs are described, in which pen onset usually 
precedes speech onset in sequential constructions (when 
one input is completed before the onset of the other) as well 
as in simultaneous constructions (when there is a temporal 
overlap between inputs in different modalities). In [1], it is 
shown that 3D hand pointing gestures are usually 
synchronised with either the nominal or deictic expression 
of a phrase. It is also shown that the timing of such gestures 
is predictable in the [-200 ms, 400 ms] interval around the 
beginning of their related expressions. However, as far as 
we are aware, no previous work has been reported on 
modality integration patterns in situations of error 
correction. It is thus important to understand if and how 
synchronisation patterns may change in situations of error 
correction, when users repeat a complex multimodal 
command. 

EMPIRICAL STUDY 

Task 
We implemented a multimodal speech and pen application 
in which the participants in the experiment were asked to 
place famous London landmarks on a map. They had to 
reproduce a map similar to a model provided (see Figure 1), 
where images of specific sizes had to be positioned in 
specific places. On the model, the names of the landmarks 
(e.g. “Tower Bridge”) were written on each picture and the 
participants were instructed to use these names when 
speaking to the system. The task included: making the 
images appear on the empty map, resizing the images, and 
positioning the images as precisely as possible on the map. 
This task was chosen because it includes both verbal 
(naming the landmarks) and spatial (positioning the images) 
elements, for which multimodal interaction is highly 
appropriate. 

To accomplish the task, four different interaction styles 
were implemented: 

- speech-gesture commands (e.g. to make a picture appear 
on the map, the user draws a “P” and pronounces the name 
of the landmark); 

- speech-point commands (e.g. to resize a picture, the user 
points at a picture and says “smaller”); 

- speech- point- point commands (e.g. to swap two images, 
the user says “swap” and points at two different images); 

- speech-draw commands (e.g. to move an image, the user 
says “move it here” and draws a line from the image to its 
desired location).  

 
Figure 1. The London map application. 

 
The vocabulary of the London map application is simple 
and does not allow linguistic adaptation (i.e. rephrasing). It 
comprises approximately thirty entries, including the names 
of the landmarks and command words or expressions such 
as “smaller”, “move it here”, etc. 

Although the set of multimodal commands and vocabulary 
is fixed, inputs can be entered in any order (e.g. pen first, 
speech first or pen and speech overlapping). 

The application was built using the multimodal toolkit 
described in [2]. Speech recognition was carried out using 
the ViaVoiceTM engine and gesture recognition performed 
via the Satin toolbox [4] on a Wacom LCD tablet.  

Method 
Eight paid subjects, with no or little experience with 
recognition based systems, participated in the experiment. 
All of them received a brief demonstration of the 
application during which the experimenter was careful to 
show a range of different synchronisation patterns in order 
not to influence the execution of the multimodal 
commands. The participants also had the opportunity to 
undertake a short training session to familiarise themselves 
with the task and the different interaction styles. 

No visual feedback was provided on the activity and 
performance of the speech and gesture recognisers. This 
means that, in case of interaction problems, users could 
only realise that a recognition error had occurred when 
evaluating the response of the system. For example, if 
nothing appears on the screen after a “draw image” 
command, users can only assume that either a speech or a 
gesture recognition error has occurred. Not being able to 
precisely determine where it went wrong was believed to be 
an incentive to repeat the entire command. 
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The experiment would only end when the entire task had 
been completed, i.e. when the produced map was similar to 
the model provided, with all the landmarks of the correct 
size and roughly positioned in the right place. This provided 
another necessary incentive to try and correct recognition 
errors. 

Data Collection 
During the experiments, automatic logs were set up to 
record various data: timing of every pen-down and pen-up 
event, speech onset and offset, and speech and gesture 
recognition results. The experiments were also videotaped. 
The log files were then compared with the video recordings 
in order to identify the situations of recognition error 
recovery. We were only interested in users’ strategies to 
cope with errors made by the recognition systems, so 
ungrammatical or out of vocabulary user inputs, i.e. inputs 
where the participants, as opposed to the recognition 
systems, had made an error were discarded. Only well-
formed user inputs were kept, (i.e. inputs complying with 
one of the four interaction styles and making use of the 
correct vocabulary). 

Four types of recognition errors were observed: speech 
false rejection, speech misrecognition, gesture false 
rejection, and gesture misrecognition. For speech-gesture 
commands, combinations of speech and gesture recognition 
errors were also possible. To illustrate the different 
recognition errors, let us imagine that the user said “Tower 
Bridge” while drawing a “P” gesture on the screen. The 
possible recognition errors are: 

- User’s speech has not been recognised (speech false 
rejection): nothing appears on the screen. 

- User’s speech has been misrecognised (speech 
misrecognition). If the system recognised the name of 
another landmark, an unexpected image appears on the 
screen.  

- User’s gesture has not been recognised (gesture false 
rejection): nothing appears on the screen. 

- User’s gesture has been misrecognised (gesture 
misrecognition). If the system recognised a “delete” gesture 
and the gesture was drawn on an image, the image 
unexpectedly disappears. If the gesture was drawn on an 
empty space of the screen, nothing happens. 

User inputs were then classified into one of the two 
following categories:  

- New commands: when a command is entered in normal 
situation of interaction; 

- Recovery commands: when a command is repeated, in 
response to a recognition error. If the user corrects an 
unexpected result (such as deleting an unexpected image) 
before repeating the initial command, the repeated 

command is not considered a recovery command, but a new 
command. 

Results and Discussion 
A total of 1073 multimodal commands were collected, of 
which 279 were entered in situations of error recovery. 
Figure 2 summarises the most commonly observed 
synchronisation patterns for the four interaction styles. In 
each case, the following information is shown: (1) total 
number of commands observed; (2) average pattern (the top 
line represents speech and the bottom line pen; the lines are 
proportional to event durations); and (3) proportions of the 
two most frequently observed patterns. For example, 133 
speech-gesture commands were collected in a normal 
situation (new commands). For these commands, the 
average pattern is characterised by pen onset first, followed 
by speech. Speech onset occurs approximately in the 
middle of the gesture execution and finishes after the 
gesture has been completed. 79% of speech-gesture new 
commands conform to this typical pattern. 19% of speech-
gesture new commands conform to a different pattern 
where speech onset precedes pen onset and where the 
gesture finishes before the end of the speech. 

 
Figure 2. Synchronisation patterns. 

At first glance, it can be seen that across the data 
(independently of the interaction style and of the command 
category), pen onset tends to precede speech onset. This 
result corroborates the main finding reported in [5] and is 
valid across the different interaction styles, in both normal 
and error recovery modes. 

For the speech-gesture commands, the integration patterns 
in normal and recovery modes are similar. In recovery 
mode, the participants tend to repeat their commands in 
exactly the same manner as in the normal mode of 
interaction. This could be explained by the fact that, when a 
command is unsuccessful, both modalities of interaction, 
speech and gesture, can be held responsible for the error. 
Users cannot easily determine which recogniser has made 
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More empirical research is still needed to gain a thorough 
understanding of multimodal behaviour in error correction. 
This will necessitate the collection of multimodal corpora in 
a variety of error situations, including: 

an error because the multimodal UI does not provide any 
feedback on the activity of the recognisers and on the 
recognition results they return. In these circumstances, 
users do not seem to be able to devise a strategy for error 
recovery. In order to verify this hypothesis, a further 
experiment should be conducted where users are provided 
with adequate feedback on the recognition processes. 

• Different error recognition types: misrecognition, 
false recognition, and misfire (when the 
recognition system returns a result in the absence 
of user speech). However, in the speech-point, speech-point-point, and 

speech-draw cases, where speech is the only input that is 
subject to recognition errors, some differences can be 
observed between the new commands and the recovery 
commands.  

• User mistakes: out of vocabulary input, 
ungrammatical input, and disfluent speech. 

• And type of feedback provided to users on the 
different recognition processes. 

 

For the speech-point and speech-draw commands, the data 
suggest that speech onset is shifted towards the beginning 
of the pen stroke in situations of error recovery. For speech-
draw commands, a significant proportion of error recovery 
inputs (37% compared to 24% for normal inputs) shows in 
fact a precedence of speech over pen. In this case, it seems 
that users tend to deal first with the error-prone input  
(speech). 
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 For the speech-point-point commands, the proportions of 
the two frequently observed patterns are reversed. In 
recovery mode, it seems that users are more likely to have 
completed their pen inputs before speech onset. This 
change of behaviour may be attributed to the complexity of 
the interaction style. In recovery mode, users tend to avoid 
multi-tasking by adopting sequential patterns of integration, 
where there is no temporal overlap between inputs in 
different modes.  
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ABSTRACT 
In this paper we present an analysis of a set of examples of 
how verbal and non-verbal behavior of a service robot 
influence users’ way of positioning themselves during 
interaction, using concepts from theories of non-verbal 
behavior. Based on the analysis we propose a design case 
where a robot utilizes a (naïve) spatial prompting strategy 
to influence the spatial positioning and communicative 
behavior of the user.  

INTRODUCTION 
A design requirement of a personal service robot is that it 
should be configured and provided with work tasks by the 
user in an interactive and intuitive way. These robots are 
intended to provide service tasks in the home, possibly 
offering wide range of services. Typically they are 
envisioned to be equipped with multimodal spoken 
dialogue systems, to reduce the complexity in the user 
interface.  

In this paper we argue that theories of spatial positioning 
need to be considered when developing the communicative 
system of the robot. Furthermore we present an empirical 
account of the way spatial behavior of robots influence 
human users.  We also propose the term spatial prompting, 
which refers to active strategies of the robot that are 
intended to influence users to position themselves in a way 
that is advantageous for further communicative actions.  

Positioning, as it has been approached as a research 
challenge for human-robot interaction, is considered as 
providing adaptive physical movements of the robot. A 
result of this is that the communicative dimension of 
positioning typically has been ignored in systems that 
interactively position themselves in relation to their users. 
One requirement that is typically put forward is that the 
robot should position itself in a socially appropriate 
manner [1, 4]. The parameters that concern these 
approaches are typically derived from research on non-
verbal behavior.  

In robotics the problem of maintaining the robot localized 
and situated within a geometric representation of the world 
has been framed as the Simultaneous Localization and 
Mapping (SLAM) problem [13]. Recent advances in 
Human-Robot Interaction (HRI) have raised the interest in 
detecting and tracking the position of users during 

interaction. When the position of the user is known, the 
robot can plan how to position itself [1].   

The research on spatial reasoning applied to robotics is well 
advanced but primarily focused on natural language 
understanding of spatial relations, providing for exchanges 
concerning locations of objects in the environment [3].  

RESEARCH ON SPATIALITY IN COMMUNICATION 
There are several research approaches for human-human 
that are relevant for spatial management between humans 
and robots. Hall [14] studied interpersonal distances and 
distinguished four different distances: intimate (0-1.5 ft), 
personal (1.5-4 ft), social 4-12 ft, and public (> 12 ft). 
These distances vary both with respect to the current 
activity and cultural factors. Another dimension that is 
relevant to spatiality is the concept of territoriality, 
according to Sack, i.e., “the attempt by an individual or 
group to affect, influence, or control people, phenomena, 
and relationships, by delimiting and asserting control over a 
geographic area” [15].  

Kendon [12] also studied the spatial configuration of the 
participants, using the term F-formations, for instance the 
L-shape which describes the relation when two participants 
have a common visual focus. The shared space, the so 
called o-space, or the transactional space is then located in 
front of the participants, and it is within this area that the 
interaction is conducted. Clark [5] refers to this space as the 
workspace, where perceptual co-presence is established 
between speakers [5, 10].  In this context, research on 
perception and especially visual perception plays an 
important part for maintaining common ground between 
participants [10, 8]. Gill [9] has investigated the 
communicative effects that participants achieve by using 
nonverbal behavior, focusing on the functional rather than 
the morphological perspective of nonverbal behavior. One 
such function is the category focus which is a meta-
discursive function that signals a shift in the center of 
attention in the discussion, e.g., a shift in body posture with 
the same meaning as the utterance “I am going to focus on 
this spot”. 

Another, less obvious, but nevertheless important concept is 
Schegloff’s notion of body torque [15], a state of the bodily 
configuration when two different body segments are 
oriented in different directions. According to Schegloff [15] 
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Body torque “project change”, i.e., when some part of the 
body is organized in an unstable way, the participants may 
predict that a change in posture is pending.  For instance, 
when turning the head, this might predict a change of the 
general body orientation. During interaction, speakers 
monitor the action of others, interpreting purposeful actions 
that lead towards a common joint goal as compliance [10].  
Human-robot interaction is situated in a physical context, 
where understanding and reference to actions of the human 
partner during interaction explicitly needs be taken into 
account. This makes research on virtual collaborative [6] 
environments interesting also in this context, since it is 
concerned with models that explicitly represent spatiality 
and reference. 

CORPUS ANALYSIS OF SPATIAL MANAGEMENT 
We have analyzed a video corpus, collected in a European 
project [7], containing transcribed data of about 20 user 
sessions, (approximately 20 minutes each) where a user 
talks to a robot and teaches it the names and locations of 
objects using a combination of gestures and speech.  

By viewing the video corpus we identified and analyzed 
instances where the robot movements or verbal actions 
appear to influence the actions of the user. The examples 
reflect three different ways in which the robot actively 
influences the user to act: 

• Primary verbal: by using a spoken command 
• Primary non-verbal: by movements  
• Multi-modal: using movement as trigger for a 

verbally specified (or grounded action) 

00:32:889-00:34:071 R6: Robot is following
00:40:603-00:41:744 R7: You are too fast
00:44:690-00:46:539 R8: Please stand in front of the camera
00:49:783-00:50:883 R9: Robot is following

User

Robot

Legend

00:32:889-00:34:071 R6: Robot is following
00:40:603-00:41:744 R7: You are too fast
00:44:690-00:46:539 R8: Please stand in front of the camera
00:49:783-00:50:883 R9: Robot is following

User

Robot

Legend

 

Figure 1: The user and the robot in a follow sequence. The 
dotted lines show the trajectory of the robot and user.  

Primary verbal influence (Example 1) 
The example in Figure 1 describes how the events unfold as 
the user has commanded the robot to follow, after 
acknowledging this in ( ) the robot starts moving. The 
robot follows and the user follow the paths depicted in 
Figure 1. In the second phase of the follow sequence the 
user has moved to a position that the robot considers too far 

away. Then the robot says “You are too fast”, which 
triggers the behavior in ( ): the user turns towards what 
can be characterized as the robot’s transactional space 
(according to Kendon [12]) or workspace (according to 
Clark [5]). Then the user starts moving slightly towards the 
robot workspace. When the robot speaks “Please stand in 
front of the camera”, the user quickly moves in front of the 
robot ( - ), something which may be seen as a Give-turn 
Body Move (according to Gill [9]) that may be seen as a 
display of the users willingness to interact [11]. In other 
words, the user displays her attention towards the robot. 
The visual attention is aimed at the robot once the user has 
turned around (throughout phases - ).  

The first example (Figure 1) illustrates how verbal action 
directives influence the physical actions of the user. There 
are instances of this type of example in each of the 
20 sessions that the corpus covers. 

 

Figure 2: An example of a non-verbal action triggering user 
action, i.e., a stop gesture (the square in the lower image). The 
field in the second image, with lines pointing to the first image, 
illustrates the movement of the robot platform before the 
gesture is displayed. 

Primary non-verbal influence (Example 2) 
An example of how the (non-verbal) movements of the 
robot platform can trigger actions of the user is depicted in 
Figure 2. In this case the action triggered is a gesture, but it 
could be another action.  In the preceding sequence (not 
shown) the user has commanded the robot to follow (by 
saying “Follow me”). Then the user sits down and waits as 
the robot is approaching as seen in Figure 2 (upper image). 
During the approach the user raises the arm and displays a 
“Stop” gesture. It appears as if the robot comes too close; 
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perhaps crosses the border between a social to an intimate 
distance, in terms of Hall [14] or triggers a behavioral 
reaction as the robot breaches a territorial border upheld by 
the user [15]. 

On the other hand we might interpret the raising of the hand 
in a “Stop” gesture as an indication to the robot that this is 
an advantageous position for the task at hand, i.e., the 
“Stop” gesture is displayed as part of a joint goal (according 
to [10]).  

U: ok
U: now go to telephone
R: Going to telephone 

U: ok
U: now go to telephone
R: Going to telephone 

 
Figure 3: An example of how communicative actions and 
spatial configurations of the robot are interrelated in different 
modalities. 

Multi-modal influence (Example 3) 
In the moment that passes before the example depicted in 
Figure 4 the user has acknowledged that the robot has 
completed the task of finding an object (by establishing a 
common reference to the object located in front of the 
robot). Then the user stoops and looks into the camera of 
the robot, while uttering the command: “now go to the 

telephone”. Then, when the robot confirms the request by 
saying “Going to telephone”, the user changes into an 
upright position  (Figure 3).  

Eye contact is maintained during the whole sequence. Our 
analysis of this is that the user is attempting to require 
(visual) attention on the part of the robot. We suggest that 
the moving camera of the robot provides a biomimetic 
display that makes the user assume a transactional space 
located in front of the robot. In terms of Body torque, the 
stooping is a temporary disconfiguration of a posture, and 
the change back to the more neutral posture in  (Figure 3) 
is a return to what Schegloff calls a home position [15]. In 
our understanding, the torque, i.e., the stooping posture and 
the user’s attempt to require contact can be contributed to 
the spatial influence of the transactional space [12] and the 
displayed “eye” gaze of the camera.   

A SPATIAL PROMPTING STRATEGY 
In the analysis of the scenario we have found examples that 
suggest that the robot platform may influence the spatial 
behavior, i.e., posture, gaze direction and gesture displays 
(e.g., stop gesture). Typically a (multimodal) natural 
language user interface that is used for human-robot 
interaction is concerned with the aspects of spatiality that 
are encoded in language, such as referencing using spatial 
relations (e.g. “behind”, “beside”, “in front of X” etc) and 
deictic gestures [e.g. 3].  

A system that encompassed a model for spatial influence 
could provide spatial prompts aimed to influence the spatial 
positioning of the user, for instance, to ensure an optimal 
configuration for further communicative behavior. An 
example of such a design is depicted in Figure 4. In terms 
of a dialogue system design, we can frame the display of 
Stop gesture in the second example (Figure 2) as a system 
goal, i.e., to reach a state in interaction where a Stop gesture 
has been displayed to provide an end-point in the robot’s 
approach to a position.  This requires an internal 
representation that considers the movement of the robot 
platform (and the user) together with the task state. In the 
follow episode in Example 2 the overall task is Follow, but 

U -gesture: <S TO P >R : <S peed  increase>U : Fo llow  m e
R : Fo llow ing

U -gesture: <S TO P >R : <S peed  increase>U : Fo llow  m e
R : Fo llow ing  

Figure 4: In the first image of the sequence, the robot is commanded to follow the user. As 
the user stops and the robot approaches the transactional space the robot increases its speed 
for a short moment. The speed increase is a spatial prompt intended to trigger a response by 
the user.  A safety feature would stop the robot if no action is detected by the user. 
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as the user sits down the robot can be said to Approach the 
user. This could be taken into account in the system, for 
instance by increasing the speed of the robot, slightly in 
order to prompt the display of a gesture that shows the 
robot where to stop. It is obvious that a robot behavior like 
this raises some concerns in terms of acceptability [4], but 
the point of this example is merely to illustrate that spatial 
prompting is a possible strategy to actively influence the 
behavior of the users.  We could also imagine an example 
when the robot prompts the user to tell when the robot is 
close enough, e.g., by saying: “say stop” while slowly 
approaching. 

Examples like these show how we can turn empirical 
observations into design proposals. In terms of Body moves 
[9], the increase in speed in the example in Figure 4, would 
put Focus on the transactional space and an obligation on 
the user to react and specify where the robot should be 
positioned – before the safety feature of the robot stops it at 
a default distance. Then a prediction could be made, e.g., 
based on corpus data, so that the robot could provide a 
contribution that is relevant to the predicted task, e.g., 
“Show me an object”, instead of “Stopped following” (as it 
is obvious to the user).  

CONCLUSIONS 
We have discussed a set of examples from our corpus of 
human-robot interactions arguing that verbal and non-
verbal behavior of the robot actively influence users’ spatial 
configuration during interaction. We also provide a scenario 
where a robot could utilize a spatial prompting strategy.  In 
the future we aim to identify ways of spatially influence 
users by further analyze corpus data and validate the design 
proposal by implementing spatial prompting strategies to be 
tested on a robot platform. 
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ABSTRACT 
This paper describes the motivation, collection and format 
of the MIMUS corpus. MIMUS (MultIModal, University of 
Seville) is the result of multimodal WOZ experiments 
conducted at the University of Seville (USEV) as part of the 
TALK project. The main objective of the MIMUS corpus 
has been to gather information about different users and 
their performance, preferences and usage of a multimodal 
multilingual natural dialogue system in the Smart Home 
scenario. This corpus is focused on (although not restricted 
to) wheel-chair-bound users, since they are especially 
motivated to use this kind of technology, and they may have 
specific needs. 

Author Keywords 
Multimodal corpus, HCI, Multimodal Experiments 

ACM Classification Keywords 
H5.m. Information interfaces and presentation (e.g., HCI): 
Miscellaneous.  

INTRODUCTION  
The paper is organized as follows. First, the WOZ platform 
will be briefly described. The next section describes the 
experiments and their motivation. Then, the data collected 
and the format and tools used will be discussed. Finally, 
some conclusions will be drawn. 

THE USEV WOZ PLATFORM 
The platform is based on Delfos, the original spoken 
dialogue system developed at the University of Seville 
(USEV). Since the objective of this corpus is to obtain 
relevant information to design, implement and configure the 
next multimodal version of Delfos, all the previous spoken 
functionality was made available as well as the new 
multimodal additions.  

In terms of hardware, the platform consists of a PC used by 
the wizard, a tablet PC used by the subject, a Wifi router by 
means of which both PCs can communicate, and a set of 
real home devices which make up the Smart Home set up. 
In addition, software consisting of a set of wizard agents and 
subject agents has been developed.  

The former set consists of: 

1. A Wizard Helper, which is a control panel that enables 
the wizard to talk to the user and remotely play audio 
and video files. 

2. A Device Manager, which enables the user to control 
the physical home devices and to see what the subject is 
clicking on, if that were the case. 

The set of subject agents consists of: 

1. A home Setup agent, which displays the virtual house 
and its devices and where the subject may click using a 
pen or mouse. 

2. A telephone simulator, where the subject can simulate a 
phone call and other regular telephone options. 

3. A TTS Manager, which synthesizes the wizard´s 
messages when appropriate. 

4. A Log Manager, where all the interaction data is 
logged, and 

5. A Video Client, used to simulate an outside camera. 

Figure 1. The subject´s touchscreen display 

THE USEV MULTIMODAL WOZ EXPERIMENTS 

Motivation and Objectives 
The MIMUS corpus is the result of a multimodal WoZ set 
of experiments. The original objective of these experiments 
was to collect data in order to extend and configure an 
existing spoken dialogue system (Delfos) by adding new 
input and output modalities.  The goal was to identify and 
gather information regarding: 

- any possible obstacles or difficulties to communicate  
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- any biases that prevent naturality 
- a corpus of natural language in the home domain 
- preferred modality in relation to task  
- preferred modality in relation to task and scenario (*)  
- preferred output modality in relation to information type 
- modality preference in relation to system familiarity 
- task completion time 
- combination of modalities for one particular task 
- inter-modality timing 
- user evolution, learnability and change in attitude 
- new modalities impact on interaction in other 

modalities 
- context relevance and interpretation in multimodal 

environments 
- pro-activity and response thresholds in multimodal 

environments 
- relevance of scenario-specific factors/needs 
- multimodal multitasking: multimodal input fusion and 

ambiguity resolution 
 
(*) Different scenarios may render different results for the same task 
 
The experiments investigate users' speech and pen 
multimodal integration patterns on a system application that 
controls the lights, a blind, a radio, a heater, an alarm, the 
main door, a security camera, and a telephone.  The 
interactions between users and the human wizard were 
recorded from different perspectives. 

Subjects 
Two groups of informants, all of whom can be described as 
completely naïve subjects, were recruited.  A primary group 
is formed by a number of wheel-chair bound subjects (16); a 
secondary group includes subjects without disabilities (7).  
Informants' ages range between 19 and 54 years old.  At the 
moment, there is a total of 7 women and 16 men.  All of 
them are native speakers of Spanish, and show varying 
levels of computer expertise.   

Experiments 
The experiments took place in a lab especially prepared to 
simulate a smart house, where all the devices to be 
controlled were at sight. Subjects were alone and 
undisturbed during the experiments. The set consisted of 2 
complementary experiments were the subjects were 
interacting with an expert wizard, and 1 experiment where 
the naïve subjects became naïve wizards. 

Instructions were provided for all tasks, which ranged from 
simple actions (turning a light on) to more complex 
simultaneous actions (making a phone call while monitoring 
the camera and opening the door).  

Additional information on the subjects (computer expertise, 
etc.) was collected prior to the experiments in recorded 
interviews; more information about their perception of the 
interaction with the system and the system performance was 
collected after the experiments in forms.  

Figure 2. Naïve subject during the experiments in the lab 

User-Wizard interactions 
The interaction between subject and system was recorded 
from different perspectives.  A digital camera recorded the 
progression of the experiment.  A web camera captured the 
subjects' face as they performed tasks (Figure 2).  The 
touch-screen activity was logged. 

Logging 
This is the information recorded in execution time during 
the experiment. The logging is therefore focused on low-
level information, and especially on the time at which each 
event occurs. 

The information automatically logged can be summarized 
as: 

 Modality 

 Clicks  

 Time of events 

 Wizard Messages 

 Wizard Message Time 

The format chosen to record the information is EMMA, 
W3C working draft on Extensible MultiModal Annotation 
markup language, which distinguishes two properties for the 
annotation of input modality: (1) indicating the broader 
medium or channel (medium) and (2) indicating the specific 
mode of communication used on that channel (mode).  The 
input medium is defined from the users' perspective and 
indicates whether they use their voice (acoustic), touch 
(tactile), or visual appearance/motion (visual) as input. 

DATA ANNOTATION 

Annotation  
Given the different types of analyses to be performed on 
these data, different levels of annotations have been 
established. These levels can be summarized as follows: 

• Personal information and user profile 
• Experiment conditions and procedure 
• Tasks and Subtasks 
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• Automatic Logging 
• Dialogue 
• Gestures 

Personal Information and User Profile 
This is the information related to the users, and their 
computer skills, disabilities, age, gender, cultural level, 
degree of familiarity with speech and/or graphical 
interfaces, nationality and language proficiency. 

It also includes the information collected on pre-
experimental and post-experimental surveys regarding the 
users´ biases towards automated interfaces and their 
opinions, suggestions or satisfaction level after interacting 
with the system.  

Experiments Conditions and Procedure 
This is the type of information that defines the conditions 
under which the experiments were conducted and the 
procedures followed to ensure the data reliability and 
coherence. 

Time of the day at which the experiments were conducted, 
duration, general instructions given to the subjects, incidents 
or mistakes, if any,  are the main parameters to be taken into 
account at this level. 

Tasks and Subtasks 
The description of the tasks and subtasks to be performed by 
the subjects is recorded at this level. In this case it is also 
relevant to record the exact way in which the subjects were 
given the information to perform each task, and when and 
how such information was provided. This is particularly 
important since some of these tasks and subtasks were 
especially designed to encourage or at least allow subjects to 
perform several tasks simultaneously. It is also important in 
order to determine the cognitive load imposed on the 
subjects. 

Automatic Logging 
This includes all the information logged automatically 
during the experiments. This is mainly low level 
information (time stamps, modality, icons clicked on, etc). It 
also includes all the information predetermined and/or 
introduced manually by the wizard (predetermined or 
spontaneous wizard messages, etc). 

Dialogue 
This level includes transcription and segmentation of the 
user´s utterances as well as the Dialogue Move and 
Subdialogue annotation. 

In MIMUS, dialogue-level annotations follow the 
classification of the Natural Command Language Dialogues 
(NCLDs), as defined in [2].  Since it is the broader concept 
of NCL that encapsulates the present framework of analysis, 
it seems natural to also employ Dialogue Moves (DMs) in 
annotating dialogue turns. 

Another reason for choosing the NCL approach over 
Traum's [8] Conversation Acts is that the former focuses on 
the internal aspects of dialogue, whereas the latter builds up 
“to a level of common ground that is necessary for 
communication of beliefs, intentions, and obligations” [8].  
That is, a model built on the grounds of a NCL should be 
based more on what is said than what is in the minds of the 
participants when things are said.  In other words, it should 
try to model external aspects of the dialogue rather than the 
participants' internal state.   

The Dialogue Moves are therefore classified as follows: 

• Command-Oriented Dialogue Moves 
  askCommand: The system requests the user to specify a 

command or function to be performed. 

  specifyCommand: A specific command or function is 
selected. 

  informExecution: The system acknowledges the 
execution of the task. 

•  Parameter-Oriented Dialogue Moves 
askParameter: The system asks for the value of a 
specific parameter. 

specifyParameter: The assignment of some value to 
one parameter. 

•  Interaction-Oriented Dialogue Moves 
askConfirmation: Once a command has been 
completed, some situations will require an explicit 
and/or implicit confirmation. 

  answer YN: The user replies yes/no. 

  askContinuation: The system asks for the continuation 
of the dialogue. 

 askRepeat: Any of the participants may request the 
other to repeat the last utterance, or even a specific 
parameter or command. 

  askHelp: A petition for help (general, a specific 
command, or a specific parameter). 

answerHelp: The reply to an askHelp move. 

errorRecovery: For a situation in which the 
continuation of the dialogue is impossible. 

  greet: The usual greeting operation. 

  quit: The usual closing operation. 

As to Subdialogue Annotation, and as [2] state, “An 
important aspect of NLCDs is that they exhibit functional 
embeddings . . . [that] occur when the goal of a sub-
dialogue shifts to another dialogue type.”, the following 
types of sub-dialogues are distinguished within a NCLD: 

1. Deliberation dialogue 

2. Action-oriented dialogue 
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3. Information-seeking dialogue CONCLUSION 
The MIMUS corpus is the result of a conscientious design 
work, and a rigorous and methodic predefined procedure to 
conduct the experiments as well as to log and annotate all 
relevant information. This is therefore a reliable and 
growing source of information for research on HCI and 
Multimodal Dialogue Systems as well as other related 
disciplines, which so far consists of 73 dialogues, by 23 
different users in 32 different tasks total. It will be available 
for research purposes at the conclusion of the current 
European project. 

4. Negotiative dialogue 

Gestures 
The Gestures classification and annotation is defined 
according to a closed set of values for the attribute 
“gestureType”.  These have been adapted from the 
SmartKom Project collection of multimodal data [7]: 

1. anger/irritation 

2. pondering/reflecting 
ACKNOWLEDGMENTS 3. joy/gratification (being successful) 
The work described in this paper has been partially funded 
by EU Project Talk (Contract No 507802) and the Spanish 
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TIC2002-00526. 

4. surprise 

5. helplessness 

6. neutral/anything else 
REFERENCES 7. face partly not visible 
1.Manchón P., Pérez G. & Amores G., WOZ experiments in 

Multimodal Dialogue Systems. Proceedings of the ninth 
workshop on the semantics and pragmatics of dialogue, 
131-135. Nancy, France. June, 2005.  

TOOLS 
ANVIL is the annotation tool used for the transcription 
process and the encoding of the elements recorded during 
the experiments.  The resulting data will also be translated 
into the TALK NXT format. 

2.Amores, J. Gabriel, & Quesada J. Francisco. "Cooperation 
and Collaboration in Natural Command Language 
Dialogues."  In Johan Bos, and Mary Ellen, and Colin 
Matheson (eds.), Proceedings of the sixth workshop on the 
semantics and pragmatics of dialogue (EDILOG), 
September 4--6, 2002. 

The ANVIL track “UserInput.spoken” will include the 
manual segmentation and transcription mentioned above.  
The track “UserInput.graphical” will be generated 
automatically from the information logged (in execution 
time) in the XML file “gui_in.xml”. Also automatically 
loaded are the tracks “GUIOutput.spoken” (from the log 
“speech_out.xml”) and “GUIOutput.graphical” (from the 
log “gui_out.xml”). 

3.Amores, J. Gabriel, & Quesada.J. Francisco  "Dialogue 
Moves for Natural Command Languages."  In 
Procesamiento del Lenguaje Natural, 27: 89-96, 2001. 

4.Amores, J. Gabriel, & Quesada. J. Francisco  "Dialogue 
Moves in Natural Command Languages."  In SIRIDUS 
Project, D. 1.1, September, 2000. 

The resulting ANVIL tracks are listed below: 

1. Track 1: Waveform 5.Becker, Tilman, et al. "Proposed Methods for Multimodal 
Experiments." In TALK Project, D.6.1, November 2004. 2. Track 2: WizardActions  

6.Johnston, Michael.  "EMMA: Extensible MultiModal 
Annotation markup language."  W3C Working Draft, 
September 2005.  http://www.w3.org/TR/emma 

3. Track 3: UserInput.graphical (user´s clicks) 

4. Track 4: UserInput.spoken (manual segmentation and 
transcription of user's speech) 

7.Steininger, Silke, Florian Schiel, and Angelika Glesner.  
"User-State Labeling Procedures For The Multimodal 
Data Collection Of SmartKom."  In SmartKom Project, 
Report 28, October 2002. 

5. Track 5: GUIOutput.graphical (graphical output) 

6. Track 6: GUIOutput.spoken (endpointed TTS speech) 

7. Track 7: DialogueMoves (hand-annotated) 

8. Track 8: Subdialogues (hand-annotated) 

9. Track 9: FacialExpressions (hand-annotated) 

8.Traum, David, and Tim Allen.  "A Speech-Acts Approach 
to Grounding in Conversation."  In Proceedings of the 2nd 
International Conference on Spoken Language Processing 
(ICSLP-92), pages 137-40, October 1994.
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