
The Workshop Programme

Start End Title Who

9:15 9:30 Introduction Steven Krauwer and Uwe Quasthoff

9:30 10:20 What is quality Chris Cieri (invited talk)

10:20 10:40 Validation of third party Spoken and Written
Language Resources – Methods for
performing Quick Quality Checks

Hanne Fersøe, Henk van den
Heuvel, Sussi Olsen

10:40 11:00 Improving the Quality of FrameNet J. Scheffczyk, M. Ellsworth

11:00 11:30 BREAK

11:30 12:10 Valid Validations: Bare Basics and Proven
Procedures

Henk van den Heuvel (invited talk),
in collaboration with Eric Sanders

12:10 12:50 The Notion of Quality in Language
Resources -- Validation of the Spoken Dutch
Corpus

Hanne Fersøe (invited talk), in
collaboration with Bart Jongejan and
Sussi Olsen

12:50 13:10 Quality control of treebanks: documenting,
converting, patching

Sabine Buchholz, Darren Green

13:10 13:30 Evaluation of a diachronic text corpus Mikko Lounela

13:30 14:30 LUNCH

14:30 14:50 Measuring Monolinguality Uwe Quasthoff, Chris Biemann

14:50 15:10 JTaCo & SProUTomat: Automatic
Evaluation and Testing of Multilingual
Language Technology Resources and
Components

Christian Bering and Ulrich Schäfer

15:10 16:20 Panel session Chris Cieri (LDC), Chu-Ren Huang
(Acad Sin.), Takenobu Tokunaga
(TIT), Khalid Choukri (ELDA)

16:20 16:30 Winding up & Closing Steven Krauwer and Uwe Quasthoff

16:30 17:00 END/BREAK

i

Workshop Organiser(s)

• Steven Krauwer (Utrecht University / ELSNET, steven.krauwer@elsnet.org)
• Uwe Quasthoff (University of Leipzig, quasthoff@informatik.uni-leipzig.de)

Workshop Programme Committee

• Simo Goddijn (INL, goddijn@inl.nl)

• Jan Odijk (ELRA/Nuance/Utrecht University, jan.odijk@nuance.com)

• Khalid Choukri (ELDA, choukri@elda.org)

• Nicoletta Calzolari (ILC-CNR/WRITE, glottolo@ilc.cnr.it)

• Bente Maegaard (CST, bente@cst.dk)

• Chris Cieri (LDC, ccieri@ldc.upenn.edu)

• Chu-ren Huang (Ac Sin, churen@gate.sinica.edu.tw)

• Takenobu Tokunaga (TIT, take@cl.cs.titech.ac.jp)

• Harald Hoege (Siemens, harald.hoege@siemens.com)

• Henk van den Heuvel (CLST/SPEX, H.vandenHeuvel@let.ru.nl)

• Dafydd Gibbon (Bielefeld, gibbon@uni-bielefeld.de)

• Key-Sun.Choi (KORTERM, Key-Sun.Choi@kaist.ac.kr)

• Jorg Asmussen, (DSL, ja@dsl.dk)

ii

mailto:steven.krauwer@elsnet.org
mailto:quasthoff@informatik.uni-leipzig.de
mailto:goddijn@inl.nl
mailto:jan.odijk@nuance.com
mailto:choukri@elda.org
mailto:glottolo@ilc.cnr.it
mailto:bente@cst.dk
mailto:ccieri@ldc.upenn.edu
mailto:churen@gate.sinica.edu.tw
mailto:take@cl.cs.titech.ac.jp
mailto:harald.hoege@siemens.com
mailto:H.vandenHeuvel@let.ru.nl
mailto:gibbon@uni-bielefeld.de
mailto:Key-Sun.Choi@kaist.ac.kr
mailto:ja@dsl.dk

Table of Contents

1 Introduction Steven Krauwer and Uwe Quasthoff

2 What is quality Chris Cieri (invited talk)

3 Validation of third party Spoken and Written
Language Resources – Methods for performing
Quick Quality Checks

Hanne Fersøe, Henk van den Heuvel,
Sussi Olsen

8 Improving the Quality of FrameNet J. Scheffczyk, M. Ellsworth

14 Valid Validations: Bare Basics and Proven
Procedures

Henk van den Heuvel (invited talk), in
collaboration with Eric Sanders

20 The Notion of Quality in Language Resources --
Validation of the Spoken Dutch Corpus

Hanne Fersøe (invited talk), in
collaboration with Bart Jongejan and
Sussi Olsen

26 Quality control of treebanks: documenting,
converting, patching

Sabine Buchholz, Darren Green

32 Evaluation of a diachronic text corpus Mikko Lounela

38 Measuring Monolinguality Uwe Quasthoff, Chris Biemann

42 JTaCo & SProUTomat: Automatic Evaluation and
Testing of Multilingual Language Technology
Resources and Components

Christian Bering and Ulrich Schäfer

48 Panel session Chris Cieri (LDC), Chu-Ren Huang
(Acad Sin.), Takenobu Tokunaga (TIT),
Khalid Choukri (ELDA)

iii

Author Index

Bering, Christian 42
Biemann, Chris 38
Buchholz, Sabine 26
Choukri, Khalid 48
Cieri, Chris 2,48
Ellsworth, Michael 8
Fersøe, Hanne 3,20
Green, Darren 26
Heuvel, Henk van den 3,14
Huang, Chu-Ren 48
Jongejan, Bart 20
Krauwer, Steven 1
Lounela, Mikko 32
Olsen, Sussi 3,20
Quasthoff, Uwe 1,38
Sanders, Eric 14
Schäfer, Ulrich 42
Scheffczyk, Jan 8
Tokunaga, Takenobu 48

iv

Introduction

Uwe Quasthoff and Steven Krauwer

Aims of the workshop

The workshop aims at

• bringing together experience with and insights in quality assurance and
measurement for language and speech resources in a broad sense (including
multimodal resources, annotations, tools, etc),

• covering both qualitative and quantitative aspects,
• identifying the main tools and strategies,
• analysing the strengths and weaknesses of current practice,
• establishing what can be seen as current best practice,
• reflecting on trends and future needs.

It can be seen as a follow-up of the workshop on speech resources that took place at
LREC 2004, but the scope is wider as we include both language and speech resources.
We feel that there is a lot to be gained by bringing these communities together, if only
because the speech community seems to have a longer tradition in resources
evaluation than the written language community.

Relevance

Quality assurance is an important concern for both the provider, the distributor and
the user of language and speech resources. The concept of quality is only meaningful
if both the producer and the user of the resources can rely on the same set of quality
criteria, and if there are effective procedures to check whether these criteria are met.
The universe of possible types of language resources is huge and evolves over time,
and there is no universal set of qualitative or quantitative criteria and tests that can be
applied to all sorts of resources. In this workshop we will try to investigate what sorts
of criteria, tests and measures are being used by providers, users and distribution
agencies such as ELRA and LDC, and we will try to distil from this current practice
general recommendations for quality assurance and measurement for language and
speech resources, The workshop will look at quality assurance and quality measures
both from the provider, the distributor and the user point of view, and will explicitly
address special problems in connection with very large corpora, including numerical
measures, comparison of corpora, exchange formats, etc.

Sponsors

This workshop is supported by ELSNET and WRITE (the international coordination
committee for written language resources and evaluation).

What is Quality? (Invited talk)

Chris Cieri

Linguistic Data Consortium
3615 Market Street, Philadelphia, PA 19104, USA

ccieri@ldc.upenn.edu

Abstract

I will talk about core issues in quality control such as how we define quality in the
case of language resources, how much variation there is in the definition and what this
means for implementing quality control procedures. I think this is important because I

have seen many publications that seem to take the approach that quality is single
dimension and that our primary task is to move ourselves -- or convince others to

move – along that line always in the direction of ever higher quality. However, in the
cases with which I am familiar, defining quality is much more subtle. The concept has
multiple dimensions and the task of the language resources producer -- and user -- is
to consider the multiple dimensions of quality, define a piece of n-dimensional space
appropriate for a specific kind of research (or several) and then determine the best,

most cost-effective way to occupy that space. In this reality, decisions are sometimes
made that seem initially to lower quality or at least give up control (and in some cases

they might actually) and yet they lead to scientific and technological advances.

Validation of third party Spoken and Written Language Resources – Methods for
performing Quick Quality Checks

Hanne Fersøe1, Henk van den Heuvel2, Sussi Olsen1
1Center for Sprogteknologi (CST) – Københavns Universitet

Njalsgade 80, Copenhagen, Denmark
hanne, sussi@cst.dk

2 SPEX/CLST – Radboud University Nijmegen
Erasmusplein 1, Nijmegen, Netherlands

H.vandenHeuvel@let.ru.nl

Abstract
This paper presents the experience and insights gained from developing and applying methodologies for quick quality checks (QQC)
of third party language resources based on the existing methodologies for full validation, which were documented in validation
manuals under contract for ELRA during 2003-2004. The types of resources are Spoken Language Resources (SLR) and Written
Language Resources (WLR). The experience gained from applying the QQC methodologies to a number of the resources in ELRA’s
catalogue is described and on the basis of this, recommendations to the producers of language resources are given. The authors point to
the strengths and weaknesses of the current practices, and the similarities and differences between the QQC method and its usefulness
for SLR and WLR, respectively, are discussed. Finally a short account of future work is given.

1. Full Validation versus Quick Quality
Checks

1.1. Background
The ever increasing importance of easily available

language resources for industrial and research purposes is
a well established fact, and so is the key importance of the
quality of such resources. A validation report resulting
from a commonly accepted and standardized validation
procedure adds value to a resource as a safeguard of
quality, and supports sharing, interchange, availability and
reusability of resources.

About a decade ago, ELRA, having as its paramount
objective to promote and distribute high quality language
resources, found itself in the situation that validation
reports were only provided for a part of the SLRs in its
resource catalogue, namely those produced in the
SpeechDat context (Höge et al, 1999). Validation
procedures were not in place for the other resources they
distributed. For that reason, ELRA’s board decided to help
drive and support the creation of quality measures for
language resources by setting up a validation committee to
handle generic validation issues and to select operational
units, validation centres, to be in charge of validation of
spoken and written resources, respectively. SPEX, SPeech
EXpertise centre in Nijmegen is responsible for spoken
resources, while CST, Center for Sprogteknologi in
Copenhagen is responsible for written resources. A
documented methodology for full validation of third party
SLRs was developed first, (van den Heuvel, 2003), and
applied to a number of resources (van den Heuvel et al,
2003). Later a methodology for third party WLRs,
specifically lexical resources, was developed based on this
approach (Fersøe, 2004; Fersøe & Monachini 2004).

ELRA’s resource catalogue is available online offered
by their distribution agency, ELDA, http://www.elra.info.
The catalogue is organized according to type of resource,
e.g. spoken, written, multimodal, terminological, and a
resource is an entry with an identifier, a name, a

description, a price and, possibly, a validation report or a
QQC report. The description in the catalogue derives from
the Description Form (DF) filled in by the owner or
producer of the resource. The description form cannot be
accessed online, but it can be obtained on request and is
included in the package that ELDA delivers to a buyer.

1.2. The Cost of Validation
Each procedure was created in such a way that a full

validation, would ideally take only about 30-40 hours. The
larger the resource is, in terms of e.g. words or levels and
complexity of annotation, the smaller the selection of
samples for content checking is, and vice versa. This
amount of hours for a full validation is indeed very low,
and it should be seen as the cost a distributor allows for an
external validation of a third party resource, which was
not and would not be validated by the original producer.
The goal of the distributor is to obtain a quality
description, and they will therefore accept a certain cost,
but will try to minimize it.

The idea behind a quick quality check (QQC) is to
minimize the cost even more by describing only the most
basic quality aspects of a resource. The goal is that a
trained validator by applying tools to automate most of the
checking must be able to complete a QQC report in 6-7
hours. For some potential buyers such basic quality
measures will be sufficient, for others they may serve as a
starting point.

Resource producers that include internal validation in
their production plan followed by external validation by
an independent validation centre are not very likely to
adopt this kind of approach. They will usually allocate and
be willing to pay for more manpower because their goal is
to make sure that the resource meets the specifications.
For other producers, the QQC paradigm offered by and at
the cost of ELRA presents a valuable alternative quality
assessment to a full external validation of the resource.

2. The QQC Method for SLR

2.1. Content of the Method
As points of departure for the QQC the following

principles are adopted:
A. The QQC mainly checks the database contents

against a number of minimal requirements. These
requirements are of a formal nature which enables a quick,
i.e. automatic, check. Content checks are not included
because this would involve substantial language-
dependent effort.

B. Generally, a QQC should take about 6-7 hours work
at maximum.

For each SLR two QQC reports are produced: One for
the provider and users on the quality of the database
proper (QQC_DB); one for ELDA on the quality of the
information on the description forms (QQC_DF). For the
templates of the QQC_DF the division as made by ELDA
into Speech and Lexicon is maintained.

2.1.1. QQC_DB
The QQC report contains a quality assessment of the

resource with respect to a number of minimum formal
requirements to specific parts of the resource for example
documentation format, transcriptions, lexicon. A star
notation is used for this.

Meaning of the quality stars:
* : The minimal criteria for this part of the resource are

not met.
**: The minimal criteria for this part of the resource

are not completely met.
***: The minimal criteria for this part of the resource

are all met.
Other values:
Not Included: This part is not relevant for this resource

and not included in the QQC.
Missing: This part is missing in the resource, but

relevant.
The QQC_DB checks the documentation regarding

completeness and correctness of the SLR description,
along similar lines as explained in 3.1.1. for WLR.
Further, the QQC concentrates on a series of formal
checks regarding:

- directory structure, file names and data integrity
- design in terms of types and tokens of materials

contained in the database
- acoustic quality of the speech signals
- formal quality of transcriptions and other

annotations (incl. meta-data)
The QQC_DB report is intended for ELRA’s database

users if the database is already in the ELRA catalogue and
for the database providers if the database is new and not in
the catalogue yet. Prior to publication, ELDA forwards
QQC reports to providers for comments. The final QQC
report is made available via ELRA’s web pages
(catalogue).

2.1.2. QQC_DF
Each database at ELRA is accompanied by one or two

description forms: a general description form and/or a
specific description form. These description forms contain
the basic information about a database according to
ELRA. The description forms are filled out by ELDA in
cooperation with the LR provider. The form is used to

inform potential customers about the database. The
information provided on the description form should be
correct. The general description form contains information
about e.g. the provider (coordinates), price and
availability, information on documentation and validation
of the resource, and the distribution media. The specific
description form contains more detailed information, e.g.
for SLR, about the number of speakers and their
distribution in terms of gender, age, accent, about included
annotation layers and data encoding, and so on.

The QQC_DF report contains a quality assessment of
the correctness of the information on the description
forms. A star notation is used for this as well.

Meaning of the quality stars:
* : The information provided is insufficient/incorrect.
**: The information provided is close to

sufficient/correct.
***: The information provided is complete and

correct.
Other values:
Not Included: This information is not relevant for this

resource and not included in the QQC.
Missing: This part is missing in the resource, but

relevant.

2.2. Applying the QQC Method: Experience
gained

SPEX experiences with the QQC method for SLR can
be summarized as follows:

- Data collections with many and/or voluminous
speech files pose administrative difficulties in
the sense that copying the material to hard disk
may take a large proportion of the allocated
time.

- There is no sensible way to define minimal QQC
validation criteria that apply to all kinds of SLR.
Currently, SPEX has developed different QQC
templates. There are templates for different
application domains: ASR, phonetic lexicons,
TTS. Templates for multimodal LR are planned.

- The star assessment system needs a good
explanation to producers. The QQC departs from
the idea that a three star product (highest
quality) is provided. Less stars are only provided
for serious deviations of the minimal
requirements. Small deviations are reported but
not penalized in the star assessment.

- An action point is to complete the description
forms for the resources in the catalogue. ELDA
is currently working on a new procedure to fill
in missing information on existing resources.

3. The QQC Method for WLR

3.1. Content of the Method
The QQC method for WLR makes use of the same star

notation as the SLR method. A score of one, two or three
stars is given for documentation suitability and
completeness, formal properties, and reliability of content,
respectively. So a few content checks are included here as
opposed to the SLR method.

One QQC report only is produced for each written
resource and not two, as described in section 2.1. The
existing resources in the catalogue targeted by this method

in most cases do not have description forms, partly
because there is a stronger tradition for metadata in the
SLR area. Spoken resources constituted the main focus for
ELRA’s resource distribution for a long time, both
because many resources of this kind were available for
distribution, and because they were more in demand than
written resources. The routines and procedures developed
for SLRs could not simply be copied, they had to be
redeveloped or at least adapted first. This process is
complete now, so new WLRs offered for distribution do
have description forms, and in a foreseeable future QQC
reports for new WLRs will include an assessment of the
DF.

3.1.1. Documentation
The documentation is checked manually for suitability,

i.e. whether it is clear and to the point and whether it is
written in either the language of the resource or in
English, the only two possibilities accepted. It is checked
for completeness of the information regarding

- copyright and contact persons
- format and character set of the resource files,

naming conventions and how to handle them
- languages of the lexical resource, mono-, bi- or

multilingual
- type and structure of the entries, lists of legal

attributes with mutual dependencies
Ideally, the documentation should specify coverage of

the resource, of the domain type, and of the specific
information types in the resource. Information on intended
applications should also be part of the documentation.

3.1.2. Formal properties
The formal properties concern the usability of the

lexical resource. Here the conformance with the
specifications is checked, mostly automatically but partly
manually, too. Even properties left undocumented can be
checked, like e.g. size of the resource, structure of entries
etc. These are checked and reported, leading to an added
value of the resource.

3.1.3. Content
Finally, a few manual checks on the reliability of the

resource content are performed. This is where a QQC
differs most from a full validation. About 30 entries are
sampled randomly, keeping in mind that different word
classes and the different information types must be
represented. The sample is checked for correctness of the
information types present in the resource in question, be it
PoS tag, morphological, syntactic, semantic information
or translational equivalents.

3.2. Applying the QQC Method: Experience
gained

A summary of CST’s experience with the QQC
method for WLR is given below.

Documentation may vary a lot in size from one page to
several hundred pages. Very short documentation with
little information complicates the validation process.
Reading very long and detailed documentation takes up a
rather large proportion of the time allocated. The
extraction of the relevant parts of such documentation is
not always straightforward.

Resources are of quite different size and structure, and
for large resources or resources with annotation layers in
separate files the handling and manipulation of the data is
very time consuming.

Lack of conformance with the specifications is a
general problem. In nearly all cases the inconsistencies
concern the structure of the entries, the attributes and the
values allowed. In the worst cases we have checked
multilingual resources with two sets of specifications, a
general, very detailed and comprehensive one and a
language specific one, where the data turned out to be
annotated with a combination of the attributes and values
from both specifications mixed with other values not
documented at all. For other resources we have seen
inadequate documentations full of errors where data, if
documented at all, do not correspond to the
documentation. These examples are of course extreme but
very few of the resources checked so far can claim to be
fully conformant with their specifications.

Very few content errors are found in the QQCs due to
the small number of entries checked but sometimes
general and systematic errors are in fact detected. Lexical
resources can be of very different nature, ranging from
full form wordlists with PoS and morphological
information through multilingual resources with semantic
information to bilingual collocational resources, and it is
indeed important for the credibility of the QQC to check
the reliability of the content information stated in the
documentation, i.e. to check that the lexical resource is
what it claims to be and to give future users an impression
of the quality of the resource. The discrepancy between
the desire to check the content and the limited time
available is quite a dilemma. The credibility of a QQC of
a smaller resource is higher than for a larger resource
since the percentage of the content checked is higher.
Here the methodology still needs further development and
a point of revision could be the discussion of whether the
star notation should be used for content checks. It is
hardly fair to give three stars to a resource of half a
million words or more based on a sample of 30 words
while this would be far more reasonable for a smaller
resource.

4. Comparison of Methods

4.1. Strengths
The strength of the QQC for SLR is that it allows for a

good impression of the quality of a SLR, at least at the
formal level. A QQC constitutes a good test bed to assess
the directory and file structure of a SLR, and it allows for
testing of technical completeness and consistency of
annotations at various levels. A QQC also gives a good
idea of completeness and correctness of the
documentation. Further, the procedure provides a general
impression of the quality of the signal files by applying a
series of acoustic measures on the data.

The strength of the QQC for WLR is that it gives a
first quality impression of the basic properties of a
resource. It gives some insight into the documentation and
the formal properties together with a hint of what
problems or shortcomings may exist.

4.2. Weaknesses
An inherent weakness in the SLR QQC is that content

correctness is not checked. Within the objectives and time
limitations of a QQC the correctness of annotations, e.g.
transcriptions, cannot be checked. Especially when hand-
crafted annotations are the main part of the LR (such as in
phonetic lexicons), the limitations of the QQC approach
are felt stronger. However, the alternative of appropriate
content checks would lead to substantial amounts of
labour by relatively expensive experts, which would
exceed the very objective of a QQC.

For WLRs the sparse content checks represents a main
weakness both because the quality of linguistic
annotations, i.e. the content itself, is frequently the core
concern of for the buyer and because the method does not
reveal but a small part of the content errors unless these
are systematic, in which case they may be detected.
Furthermore the content checks are less representative for
large resources than for small since the samples, due to the
time limit, have to be of the same size.

Another weakness concerns the differing sizes and the
differing complexity of the resources, which result in
QQCs of varying quality. For some resources the QQC
assessments are sound because it was possible to check
thoroughly every aspect involved within the limit of the
allocated time. But for very large or complex resources
the manual checks can only be performed on a rather
superficial level. Lists of discrepancies produced
automatically are useful for the producer of a resource, but
are of less value to a future user.

4.3. Similarities
The QQC approaches are to a large extent parallel and

similar, because the underlying assumption is that,
regardless of the classification into types such as spoken
or written, language resources as such have many features
in common, and both the validation and the QQC
methodologies should reflect this.

They both build on the same basic assumption that a
QQC report provides a valuable quality assessment with a
high level of credibility because it is provided by an
organization independent of the producer. They use the
same simple star notation system to grade the quality and
the same criteria for applying the stars. They also proceed
through the same steps of checking documentation and
formal aspects. Further, the procedures hardly require any
language-dependent knowledge from experts, this
reducing validation time and costs considerably. Finally,
the same amount of time is allocated to QQC a resource,
whether spoken or written.

4.4. Differences
The differences are to a high degree, although not

completely, motivated by the longer tradition for
resources evaluation in the speech community.

There are two QQC templates for each spoken
resource, one for the resource itself and one for the
description form, and there are variants of the resource
template depending on the intended application areas. For
written resources only one template exists. There are no
variants of this template along the lines of SLR, because it
is seldom declared what the intended application area is.
The experience up till now shows that variants for mono-,
bi-, and multilingual resources are likely to be more useful

for written resources than application oriented variants.
The linguistic properties of the annotations of bi- and
multilingual written resources differ a lot from the
monolingual ones, and splitting up the template in two
variants would make it possible to skip issues irrelevant to
one kind of resource perhaps making it possible to go
more into some other issues. But this improvement of the
methodology will concern content only, emphasizing the
importance of this aspect. For written resources,
furthermore, the QQC methodology applies to lexical
resources only, while corpora still have to be included or
rather have their own variant or their own template
altogether.

Ideally most of the QQC work should be done
automatically using tools, but currently this is much more
the case for spoken than for written resources where more
manual checks are made. However tools for WLR are
under development.

Along the dimension from SLR to WLR, with
phonetic lexicons residing somewhere in between, the
proportional contribution (and thus value) of manually
encoded annotations increases. Since content checks are
not part of the QQC methodology at all for SLR and only
absolutely sporadically for WLR, the limitations of the
approach as true ‘validation’ of the data manifest
themselves stronger for WLR than for SLR. Nonetheless,
also for WLR, the QQC approach offers sufficient means
to test the consistency, completeness and formal
correctness of the linguistic annotations to acknowledge it
as a valuable contribution to data quality assessment.

4.5. Recommendations for Producers

4.5.1. SLRs
In order to maximize the information provision to

(potential) customers, SPEX recommends producers:
- To put some effort in completing the LR

documentation where required, since complete
and correct information substantially enhance
the usability of a LR against relatively little
costs.

- to complete the description forms for the
resources they offer through ELRA

- to provide feedback to QQC reports that are
offered. This is to the benefit of the quality of
the QQC-report. In addition a good QQC report
is a recommendation for the database as a
product.

4.5.2. WLRs
All the observations documented in the QQC reports

should be taken into account by the producers. To future
producers CST has these general recommendations:

It is extremely important that a resource has a good
and suitable documentation, not too detailed but clear and
to the point.

The coverage of the vocabulary is indeed of interest to
a potential user and it should be documented. Very few of
the resources which have been QQCed, document the
principles for coverage, neither the coverage of domain
type, nor the coverage of different word classes or other
categories. This is a weakness in quality.

For a potential user lack of conformance between the
data and the specifications is a major flaw. Producers are

recommended to establish internal quality procedures
during production to prevent this kind of problems. And it
is of great importance for both users and producers that
such inconsistencies once indicated in a QQC report are
repaired, resulting in a more correct resource and
subsequently a better QQC.

5. Future Directions

5.1. Consolidation
In the course of the next year the work already done

will be consolidated through QQC-work on more spoken
and written resources on the one hand, and through
subsequent fine tuning of methodologies and templates on
the other hand. This will happen in areas where QQC
experience reveals that fine tuning is needed, and the
methodologies will be extended with more templates
where necessary. This paper shows that there are still
questions left unanswered, particularly about template
variation according to resource type, about the degree of
automation of the QQC task, and about the role of content
checks at least for lexical resources.

In ELDA’s catalogue of LRs a validation report
column with links to the reports has been introduced for
all SLRs. The values listed in the column are N for no
validation, Y for a full validation, and QQC for a quick
quality check. A validation report column will also be
created for WLRs giving access to existing reports. It is
also expected that more resources will have description
forms and it will be investigated if and how the WLR
template should include or treat these.

5.2. New areas
The major new areas that will be the object of attention

in the future are on the one hand the development of a
methodology for validation of multimodal resources and
on the other hand the creation of a methodology and a
QQC template for written corpora.

For written corpora the major challenge is the total
size of the data and the number of files. File handling
alone may well take more than 5-6 hours, and inspection
of the documentation just to get an overview may also be
relatively complex. Other new aspects are for example the
sources, the selection of texts, the metadata, the principles
for transcription and organization of spoken text corpora,
the principles of alignment for multilingual corpora,
multiple levels of annotation, e.g. text, chapter, paragraph,
sentence, word level.

For multimodal resources the objective is to have a
closer look at resources produced in the context of the
CHIL project1. For various modalities, quick checks will
be formulated to assess the formal correctness of
annotations in individual modalities and mutual
consistency between modalities.

Both of these areas will build on the previous work
done for ELRA as described above and on other work
done lately where both SPEX and CST have acquired
experience with these areas.

6. References
Fersøe, H., S. Olsen (2005): Methodology for a Quick

Quality Check for WLR-Lexica. Report submitted to
ELRA under the ELRA/0209/VAL-1 contract.

Fersøe, H., M. Monachini (2004): ELRA Validation
Methodology and Standard Promotion for Linguistic
Resources. In Proceedings LREC 2004, International
Conference on Language resources and Evaluation,
Lisboa 2004, page 941-944.

Fersøe, H. (2004). Validation Manual for Lexica. Report
submitted to ELRA under the ELRA/0209/VAL-1
contract.

Höge, H., Draxler, Chr., Van den Heuvel, H., Johansen,
F.T., Sanders, E., Tropf, H. (1999): Speechdat
multilingual speech databases for teleservices: across
the finish line. In Proceedings EUROSPEECH'99,
Budapest, pp. 2699-2702.

van den Heuvel, H. (2003): Methodology for a Quick
Quality Check of SLR and Phonetic Lexicons. Report
submitted to ELRA under the ELRA/0201/VAL-1
contract.

van den Heuvel, H., K. Choukri, H. Hoege, B. Maegaard,
J. Odijk & V. Mapelli (2003): Quality Control of
Language Resources at ELRA. Proceedings
Eurospeech, Geneva, Switzerland, pp. 1541-1544.

van den Heuvel, H., D.J. Iskra, E. Sanders & F. de Vriend
(2004): SLR Validation: Current Trends &
Developments. In Proceedings LREC 2004, Lisbon,
Portugal, pp. 571-574.

1 http://chil.server.de/servlet/is/101/

Improving the Quality of FrameNet

Jan Scheffczyk�, Michael Ellsworth��International Computer Science Institute
1947 Center St., Suite 600, Berkeley, CA, 94704fjan,infinityg@icsi.berkeley.edu

Abstract
Lexical resources include large amounts of data and complexinteractions between these. Usually, lexical resources are edited by hand
by many authors mostly having different backgrounds. Therefore, quality control is crucial, becoming even more important if lexical
resources are used in NLP and AI. We have improved the qualityof FrameNet – a lexical resource for English – by two tolerant
semi-automatic quality management approaches that combine quality control with a maximum level of flexibility for maintaining data:
(1) Imperative data checking programs check the quality of hand-made annotations to sentences. (2) A general-purpose declarative
consistency management approach (CDET) is used to improve the quality of the other parts of FrameNetand its documentation.

1. Introduction
FrameNet is a lexical resource for English, based on frame
semantics (Fillmore and Baker, 2001; Ruppenhofer et al.,
2005). Put roughly, a semantic frame (hereafter simply
frame) represents the common semantic background for a
group of words. The particular sense of each word, which
is associated with a frame, is called a Lexical Unit (LU).
Frames define Frame Elements (FEs), which express the
semantic roles available for these LUs. FEs and LUs allow
us to annotate natural-language sentences.1 The FrameNet
data and documentation are continuously maintained by the
FrameNet team. Nevertheless, inconsistencies can easily
arise through changes in frames or their FEs, since these
have complex, non-local consequences for the huge mass
of data connected to other frames, annotations, and doc-
umentation. The current FrameNet 1.3 data release con-
tains more than 780 frames, 6,800 FEs, 10,000 LUs, and
135,000 annotated sentences. Given the quantity of data
in FrameNet, strictly manual quality control measures are
too labor intensive. Instead, we aim at more efficient semi-
automatic consistency management approaches.
Maintaining FrameNet shares similarities with collabora-
tive document management, where many authors edit a
common document base in order to produce, e.g., tech-
nical documentation or a software specification. As with
document management, both ignoring inconsistency and
implementing strict control of consistency are infeasible
(Spanoudakis and Zisman, 2001).
The goals of our current efforts are to formalize and auto-
mate the checking of the FrameNet data sufficiently to:

1. Provide our users with a high-quality lexical resource
that is well-suited for automated NLP, where con-
sistency, completeness, and documentation are major
concerns;

2. reduce the maintenance cost of FrameNet;

3. be aware of our quality requirements, reason about
them, detect violations automatically, and also gener-
ate suggestions to resolve violations;

1For further information consult the FrameNet website:
http://framenet.icsi.berkeley.edu.

4. integrate semi-automated quality management into the
work process in order to detect and resolve violations
as early as possible.

Apart from storing data in relational databases (which
avoids many data integrity problems), we have introduced
two complementary, tolerant approaches to quality assur-
ance. One approach usesimperative programs, the other
approach employs general-purpose quality-checking soft-
ware withdeclarative consistency rules. Besides pinpoint-
ing violations to quality requirements, both approaches can
propose repairs. We use the two distinct approaches de-
pending on their strengths, since the FrameNet data vary in
quantity and kind. Our software has verified that the current
FrameNet 1.3 data release fulfills the most important qual-
ity requirements. Violations to other quality requirements
are explicitly documented. These are major improvements
compared to previous FrameNet data releases.
This paper proceeds as follows: In Sect. 2. we illustrate
the FrameNet database architecture. We sketch the pos-
sible techniques for managing quality in Sect. 3. Sect. 4.
introduces our measures fortolerant quality management.
We give an overview of our quality requirements in Sect. 5.
and an example in Sect. 6. In Sect. 7. we evaluate our ap-
proach and describe how it can be generalized to other lex-
icographic and ontological projects. Sect. 8. concludes and
outlines directions for further research.

2. The FrameNet Architecture
The center of Fig. 1 illustrates the technical basis of
FrameNet, which conceptually consists of three databases:
The Lexical Database contains the relationships of word
forms, lexemes, lemmas,2 and their parts of speech. The
Frame Database defines and interconnects frames and their
FEs. The Annotation Database contains annotations and
sentences, which comprise the majority of the FrameNet
data.
All of these data are connected via the LU table, which as-
sociates lemmas to frames and is referred to by the annota-
tion sets. There are many reasons to keep these databases
distinct for our purposes:

2A lemma may consist of multiple lexemes.

Consistency Rule

Text
Output

generate

Text
Output

Checking
Output

CDET

Consistency Rule

Docu−

mentation

apply
manually

FrameNet Database

Lemmas,
Lexemes,
Word Forms

Lexical Database
Frames,
Frame Elements,
Frame Relations

Frame Database

Documents, Paragraphs,
Sentences, Annotation Sets

Annotation Database

Lexical Units

Data Checking
Program

Data Checking
Program

Data Checking
Program

Checking Output
Human Readable

Checking Output
SQL Commands

apply
automatically

apply
manually

generate

ExceptionException

Figure 1: FrameNet architecture and quality management approaches� Whereas the data in the Frame Database are readily
formalizable, most data in the other two databases are
less regular since they connect directly with natural
language.� The amount of data in the Annotation Database is far
greater than in the other two databases.� Whereas the data in the Frame Database are to a fair
degree language independent, data in the other two
databases are language dependent.3

Each of the three databases consists of several tables that
are connected to each other. For example, we have separate
tables for frames and FEs, where the FE table is linked to
the frame table.

3. Techniques for Managing Quality
We implement several techniques for quality management:

1. Prevent errors through database structure and native
database constraints.

2. Prevent errors through restricted database access via a
high-level interface.

3. Tolerate and document errors by external software
tools.

The third measure is particularly important because in our
experience violations to quality requirements are inherent.
FrameNet data are maintained through a high-level inter-
face, which takes care of many consistency problems. But
this interface cannot take care of all problems by forbid-
ding inconsistencies: changing or deleting data often vio-
lates quality requirements. For example, the descriptions

3Although the Lexical Database and the Annotation Database
will be very different for different languages, different linguistic
concepts remain constant over multiple languages, e.g., the con-
cept of polysemy.

of frames as they appear in the frame report are stored as
(XML) text fields in the Frame Database. Within these de-
scriptions, FEs may be referenced. For the description of a
specific frame, the interface lets you mark up only FEs that
are really defined and also belong to this frame. If, how-
ever, a referenced FE is deleted or its name changes, these
references become invalid.
A violation of a quality requirement might not be an error
but an exception to the requirement. In linguistics it is not
always possible to fully specify why some data are an ex-
ception to a quality requirement. Therefore, we have imple-
mented approaches to deal withexceptions. Common ex-
ceptions are test cases (e.g., frames having a name starting
with “Test”), which are excepted from consistency check-
ing completely.4 Finally, we want our team members to
decide whether and how they resolve violations.

4. Tolerant Quality Management
Fig. 1 illustrates our two quality management approaches,
which are motivated by the characteristics of the databases.
A number of data checking programs check annotations
in theAnnotation Databasefor correctness, completeness,
and style. Each program generates a specific error report
showing violations of a quality requirement. Thus, the
program provides analgorithmic(imperative) definition of
quality. Human-readable outputs are subject to further in-
spection as the actions to be taken are not clear in advance.
Machine-readable output (native database commands) can
be applied to the Annotation Database for automatic repair.
The chief advantages of imperative quality assurance are
fast performance, a very specific output, and the possibility
of automatically performing repair actions. Due especially
to speed concerns, programs have so far proven the only
practical way to check annotations for quality.
For theLexical Database, the Frame Database, anddoc-
umentation, we employCDET (Scheffczyk et al., 2004b;

4These test cases exist in the FrameNet databases only and are
not part of a FrameNet data release.

Scheffczyk et al., 2004a).5 Here,declarativeconsistency
rules define quality in formal logic. For many purposes,
first-order logic has proven a good means of balancing ex-
pressivity and checking complexity. Major extensions over
classic predicate logic are: (1)hints, which specify viola-
tion handling strategies, (2)exceptions, which identify data
that should be excluded from consistency checking.CDET
can check databases and arbitrary documents (preferably
XML or LATEX) against the formalized consistency rules at
user request or automatically. TheCDET consistency man-
agement approach has successfully been applied to vari-
ous fields such as version control,6 document management,
software engineering, and mathematical knowledge man-
agement.
For each consistency rule,CDET generates a formal de-
scription of violations and possible repairs, which can then
be transformed to other output formats. This formal output
format is visualized as a directed acyclic graph (DAG) and
is common to all rules. The concrete structure of a DAG
resembles the structure of its rule. The size of a DAG gen-
erally depends on the number of violations. For larger num-
bers of violations it is, therefore, useful to employ the text
output instead. FrameNet developers can use either output
in order to carry out appropriate repairs.
Defining quality declaratively has a number of advantages:
A general-purpose specification language improves the un-
derstanding and formalization of quality requirements. It
also allows for reasoning about consistency rules.CDET’s
fairly simple consistency rule language supports incremen-
tal consistency checking – a key to tight process integration.
Since the Lexical Database and the Frame Database are suf-
ficiently “relational” and hold a limited amount of data, we
can employ declarative consistency management. Due to
its advantages, we would prefer to use this approach for the
Annotation Database also. Unfortunately, besides the per-
formance issues, declarative consistency checking is almost
precluded by the natural-language complexity of the anno-
tated sentences. This requires the use of complex parsing
algorithms, which we cannot express directly inCDET’s
rule language. In other words, we would lose many ad-
vantages ofCDET when applying it to the Annotation
Database.

5. Structure of Our Quality Requirements
In this section we give an overview of our quality require-
ments and provide background information.
For the Annotation Database we have implemented more
than 30 data checking programs. They usually check an-
notated sentences for errors of omission or mislabelings.
Also, they check the number of annotations per LU in order
to provide sufficient training data for applications. Check-
ing for duplicate data tends to be complex because it in-
volves certain variations such as white spaces, punctuation,
or letter case. Such duplicates may happen, for example, if
two people add the same data (possibly coming from differ-
ent sources). The complexity of natural language requires

5Consistent Document Engineering Toolkit (CDET), see
http://www.icsi.berkeley.edu/˜jan/projects/CDET/.

6CDET supports linear temporal first-order logic.

the expressive power of a full programming language, rul-
ing out declarative approaches.
For the Frame Database, the Lexical Database, and
FrameNet documentation we have formalized more than 65
quality requirements viaCDET consistency rules. Rules
vary in their complexity, the impact of violations, their pur-
pose, and their importance for the quality of FrameNet data
releases. Due to limited resources, we concentrate on ful-
filling the most important consistency rules; so we tolerate
violations of less important rules.
Below, we list briefly six categories of rules. Rules in the
categories (1) and (2) must be fulfilled in a FrameNet data
release. Here we find basic quality requirements that di-
rectly impact serious use of FrameNet. For rules in cate-
gory (3) and below we minimize violations but accept them
in a data release. In any case, violations are explicitly doc-
umented byCDET – a significant improvement over pre-
vious data releases. Our consistency rule categories are as
follows:

1. Rules about frames in general concern individual
frames, their FEs, and LUs. We require, e.g., that
each frame has at least one core FE and at least one
LU (unless the frame is non-lexical). Frames without
FEs are non-sensical; frames without LUs are never
evoked and, therefore, should be marked with the se-
mantic type “Non-lexical Frame.”

2. Rules about frame relations in general include data in-
tegrity checks on frame and FE relations without fur-
ther inspection of the participating frames and FEs.
We require, e.g., valid targets for frame relations or
that each frame is connected to another frame.

3. Frame relations in detail: More than half of the rules
are in this category. Most rules concern the mapping
of FEs along frame relations. The following subdivi-
sion is based on the formal strength of a frame rela-
tion, where Inheritance is the most formal relation and
SeeAlso is the least formal relation.

(a) Inheritanceis the most rigorous frame relation
in FrameNet. Therefore, we place the most for-
mal restrictions on this relation. Proper inheri-
tance demands that the child frame is more spe-
cific than its parent frames, which induces many
formal requirements on these two frames. For ex-
ample, all core FEs of the parent frame should be
inherited and no new FEs should be introduced
into the inherited coresets from the parent frame.7

Moreover, certain FE properties should also be
inherited, e.g., Requires relations and Excludes
relations.

(b) Inchoativeof, Causativeof : In this category we
find rules similar to those for the Inheritance re-
lation. The rules are, however, less important
because Inchoativeof and Causativeof relations

7FEs in a coreset are understood to be disjunctive, in contrast
to other FEs, which are conjunctive. Therefore, a new memberin
an inherited coreset would make the child framelessspecific, thus
violating the inheritance principles.

fe
parent

rel
inh

frame

inherits from

parent

fechildframe
child

core

relfe

Figure 2: Example: Core FEs are inherited

convey looser relationships between frames than
the Inheritance relation does. For example, in-
choative frames have a different temporal point of
view, which inherited frames do not. Therefore,
the Frame Database contains more violations and
exceptions for these. Also, errors are less harmful
to NLP tasks.

(c) SinceSubframe, Using, andPerspectiveon rela-
tions are less complete than the Inheritance rela-
tion we find similar but more relaxed rules in this
category. For example, we require that at least
one core FE is mapped along these relations (as
opposed to the frame relations above where we
require the same forall core FEs).

(d) The SeeAlsorelation picks out a representative
from a group of similar frames. We, therefore,
require that this representative distinguishes all
frames in the group from one another.

4. Rules about the Lexical Database include checks on
the agreement of the part of speech (PoS) between
lemmas and lexemes. For example, we require that
the PoS of a single-word lemma corresponds to the
PoS of its lexeme; for a multi-word lemma the PoS of
the head word should correspond to the lemma’s PoS.

5. Rules about Descriptions of frames and FEs that ap-
pear in the frame report require, e.g., a sufficient num-
ber of examples for core FEs and that referenced FEs
really exist in the FrameNet database within the ap-
propriate frame.

6. FrameNet documentation makes references to the
FrameNet databases, in order to generate special lay-
out and links in the HTML output. First, we want to
make sure that each referenced entity actually exists in
the database. Second, we want database entities that
are mentioned in the documentation to be marked as
such.

The latter actually requires semantic parsing of the
documentation. To date, we can parse the FrameNet
documentation syntactically only, which results in a
lot of apparent violations, many of them are not actu-
ally errors. In addition, many potential candidates for
proper markup are not identified yet. We, therefore,
regard checking the documentation as a challenging
field for future research involving semantic parsing
instead of taking the onerous approach of additional
markup.

6. Consistency Rule Example
As an example quality requirement consider that all core
FEs should be inherited, which is shown in Fig. 2 (where
frames are marked by rectangles, FEs by ellipses). If a
frameframechild inherits from a frameframeparent then for
each parent core FEfeparent there should exist an FE map-
ping to a child FEfechild. We call the inheritance relation
between the framesrelinh and the FE mappingrelfe. Each
relation can be referred to by its domain (dom) and range
(rng). Formally, our rule is as follows:8 frameparent 2 allFrames (fnDB) �8 feparent 2 fesOfFrame�fnDB; frameparent

� �feType �feparent

� = Core)8 relinh 2 inhRelsByRng�fnDB; frameparent

� �8 framechild 2 frameByID�fnDB; dom �relinh
�� �9 relfe 2 feRels (fnDB; relinh) �9 fechild 2 fesOfFrame�fnDB; framechild

� �rng (relfe) = feparent^ dom (relfe) = fechild

First, we get all frames in the FrameNet database fnDB
by allFrames (fnDB) and assign them to the variable
frameparent. For each frameframeparent we obtain its FEs
feparent. If feparent is core then we retrieve all inheritance
relationsrelinh with rangeframeparent. There should exist
a corresponding FE relationrelfe with range (rng) feparent
and that has as domain (dom) an FE of the child Frame, i.e.,
fechild.
CDET optimizes rules prior to checking: Implication is ex-
pressed via disjunction; negation and quantifiers are pushed
inward. Thus, our example rule becomes:8 frameparent 2 allFrames (fnDB) �8 feparent 2 fesOfFrame�fnDB; frameparent

� �: feType�feparent

� = Core _8 relinh 2 inhRelsByRng�fnDB; frameparent

� �8 framechild 2 frameByID�fnDB; dom �relinh
�� �9 relfe 2 feRels (fnDB; relinh) �rng (relfe) = feparent^9 fechild 2 fesOfFrame�fnDB; framechild

� �dom (relfe) = fechild

From the optimized rule,CDET can generate a graphical
violation description in the form of a directed acyclic graph
(DAG). The DAG structure follows the structure of the cor-
responding consistency rule. Nodes represent logical con-
nectives or atomic formulas; edges target the subformulas
of a connective. Edges of quantification nodes (marked
by 8, 9) carry value bindings to the quantified variable.
A value represents an entity in the database, a document,
or document content that is blamed for one or more viola-
tions. Conjunction nodes (marked bŷ) stand for conjunc-
tions; disjunction nodes (marked by_) stand for disjunc-
tions; negation nodes (marked by:) stand for negations and
appear exclusively as direct ancestors of predicate leafs.A
predicate leaf contains an atomic formula� that causes a
violation and the truth value of�.
Fig. 3 includes the DAG for our optimized example rule.
It shows that the rule is violated for the frame State and
its core FE State. The variableframeparent is bound to the
frame State, the variablefeparent is bound to the core FE

feparent

rel
inh

frame

False: rng() =

parent

frame
child

State

relfe

relfe
fe
parent

True: feType() = Corefe
parent

State

ID: 5

Locative_relation

ID: 211

Figure 3: Graphical violation report for example in Fig. 2

State. We also see that the frame Locativerelation inherits
from State. There is, however, no FE mapping that binds
the core FE State to an FE of Locativerelation. The only
candidate FE mapping has the ID 211, but it does not bind
the FE State.
The textual representation of the DAG in Fig. 3 is reduced
for fast lookup; it omits atomic formulas and shows the
variable bindings only.

frame_parent ->
{ID = 150, name = State}
fe_parent ->
{ID = 1185, name = State}
OR 1

2 rel_inh ->
{ID = 5}
frame_child ->
{ID = 199,
name = Locative_relation}
rel_fe ->
{ID = 211}
1

A proper solution would be to add an appropriate FE map-
ping for the State FE or to change its coreness type. In the
above case we changed the coreness type for the State FE.
CDET can generate such repair suggestions from appropri-
ate hints (Scheffczyk et al., 2004a).

7. Evaluation
By applying formal and rigorous quality management we
were able to increase the quality of FrameNet significantly
and at the same time decrease the effort needed for main-
taining and cleaning up our data. Of course, formal quality
management incurs the cost ofdefining quality, which is a
major effort in itself. Earlier, quality requirements werede-
scribed in the FrameNet manual (Ruppenhofer et al., 2005),
but only in a very shallow form and scattered throughout
the manual. Most of the time we spent on determining and
categorizing these requirements. Formalizing consistency
rules from these informal requirements requires some tech-

nical effort. This is, however, straightforward for an ex-
pert in formal logic. Most consistency rules needed fur-
ther adaptation or exceptions had to be added. This is be-
cause the informal requirements did not really reflect what
we wanted from our data. But we realized this only after
the rules had been checked rigorously and we had looked
at CDET’s violation reports. In our experience such dis-
cussions give precious insight about what quality actually
means, which leads to a good understanding of data and
work flows beyond pure quality management. Exceptions
proved an important feature, particularly in for quality man-
agement of a natural-language resource like FrameNet. No-
tice that the effort of rule formalization, adaptation, and
adding exceptions has to be done only once. Since the
consistency rules formalize general concepts and concern
the language-independent part of FrameNet, we can apply
them without adaptation to FrameNets in other languages.
Other lexicographic or ontological projects may not use our
quality requirements directly. They can, however, benefit
from our general, easily customizable, approach to formal
quality management. Our general approach makes no as-
sumptions to particular data formats. The approach only
requires that data storage is supported by one ofCDET’s
storage interfaces, which currently include version con-
trol systems (DARCS (Roundy, 2005), subversion (Collins-
Sussman et al., 2004)), SQL databases (MySQL), and the
normal file system. Moreover,CDET supports consistency
checking across different data storage types, e.g., LATEX
documentation in a subversion repository and production
data in a MySQL database.
For applying formal quality management, we suggest the
following steps:

1. Identify entities and documents that are part of the lex-
icographic or ontological project. What are their goals
and scopes? Notice that in the first step we neglect
data formats and document structures.

2. Explore informal quality requirements. Investigate
data and document structures.

3. Formalize rules, and define data formats and document
structures.

4. Revise rules as necessary and add exceptions.

For most projects, data formats and document structures
are defined already such that these tasks may be skipped.
It might, however, be worthwhile to improve formats and
structures, which in any case will benefit more than just
quality management. We expect step (1) and (2) to take a
long time; they will, however, give precious insight into the
quality requirements actually needed, which leads to a good
understanding of work flows beyond quality management.
Step (3) includes technical details, which is subject to ex-
perts in formal logic and data formats. Step (4) requires
discussion between formal logic and domain experts but,
again, contributes to a firm grasp andawarenessof quality
requirements. In our experience this awareness of quality
requirements prevents many typical errors made earlier and
may also result in work process optimization.

8. Conclusion and Outlook
We have successfully applied two tolerant quality manage-
ment approaches, each tailored to the different kinds of
FrameNet data: (1) The Annotation Database is checked
by imperative checking programs, defining quality algorith-
mically. (2) The Lexical Database, the Frame Database,
and documentation are checked byCDET – a declarative
approach to consistency management. Declarative consis-
tency checking offers many advantages, some of which we
have only begun to bring to realization: (1) Checking the
consistency rules themselves for satisfiability and impli-
cation, easing formalization. (2) Combining repairs from
some rules depending on their characteristics. (3) Satis-
fied consistency rules areaxiomsthat characterize our data;
therefore, we plan to incorporate these axioms into our
ontological representation of FrameNet (Scheffczyk et al.,
2006).
Although we have not yet reached to full potential of con-
sistency management and many quality requirements are
still violated in our FrameNet 1.3 data release, it is a clear
improvement over previous data releases. (1) We managed
to fulfill the most important quality requirements. (2) We
and our users have precise knowledge about violations of
less important requirements. Thus, we have a much bet-
ter overview of the quality of FrameNet. Besides these
improvements, continuous automatic consistency checking
significantly decreases the work spent on quality manage-
ment. We expect that our approaches to quality manage-
ment will be of value not only for us and our users but also
to other lexicographic and ontological projects.

Acknowledgments
The first author enjoys funding from the German Aca-
demic Exchange Service (DAAD). The FrameNet project
is funded by the AQUINAS project of the AQUAINT pro-
gram.

9. References
B. Collins-Sussman, B. W. Fitzpatrick, and C. M. Pilato.

2004. Version Control with Subversion. O’Reilly and
Associates.

C. J. Fillmore and C. F. Baker. 2001. Frame semantics
for text understanding. InProceedings of WordNet and
Other Lexical Resources Workshop, NAACL, Pittsburgh.

David Roundy, 2005.Darcs: David’s advanced revision
control system.

J. Ruppenhofer, M. Ellsworth, M. R. Petruck,
and C. R. Johnson, 2005. FrameNet:
Theory and Practice. ICSI Berkeley.
www.icsi.berkeley.edu/˜framenet/book/book.html.

J. Scheffczyk, U. M. Borghoff, P. Rödig, and L. Schmitz.
2004a. Managing inconsistent repositories via priori-
tized repairs. InProc. of the 2004 ACM Symp. on Doc-
ument Engineering, pages 137–146, Milwaukee, WI.
ACM Press.

J. Scheffczyk, U. M. Borghoff, P. Rödig, and L. Schmitz.
2004b. Towards efficient consistency management for
informal applications.Int. Journal of Computer & In-
formation Science, 5(2):109–121.

J. Scheffczyk, C. F. Baker, and S. Narayanan. 2006.
Ontology-based reasoning about lexical resources. In
Proc. of OntoLex 2006: Interfacing Ontologies and Lex-
ical Resources for Semantic Web Technologies, Genoa,
Italy. to appear.

G. Spanoudakis and A. Zisman. 2001. Inconsistency man-
agement in software engineering: Survey and open re-
search issues. InHandbook of Software Engineering and
Knowledge Engineering, pages 24–29. World Scientific.

VALID VALIDATIONS: BARE BASICS AND PROVEN PROCEDURES

Henk van den Heuvel, Eric Sanders

CLST/SPEX, Radboud University Nijmegen, Netherlands

CLST, Radboud University, Erasmusplein 1, 6525 HT Nijmegen, Netherlands

E-mail: {H.vandenHeuvel|Eric}@let.ru.nl

Abstract

Language resources (LRs) are essential for research and application development. In this article we outline relevant
principles for LR validation. We argue that the best way to validate LR is to implement it all along the way of LR
production and have it carried out by an external and experienced institute, so that this institute can help define the
validation criteria in terms of LR specifications and tolerance margins. We address which tasks should be carried out by
the validation institute, and which not. Further, a standard validation protocol is shown, illustrating how validation can
prove its value all along the production phase in terms of prevalidation, full validation and pre-release validation.

1. INTRODUCTION

This paper deals with the validation of LRs, more
specifically of spoken language resources (SLRs). SLRs
are annotated collections of speech data. The difference
between a mere collection of speech and an actual SLR is
“the fact that the latter is augmented with linguistic
annotation (i.e. a symbolic representation of the speech)”,
as is attested in the EAGLES handbook (Gibbon,
Moore& Winski, 1997, p. 146). On the other hand,
collections of annotations without accompanying speech
data cannot strictly be called SLRs, even when these
annotations clearly refer to spoken versions of the
database entries, as is the case for e.g. phonemic
transcriptions.

By validation of a Language Resource (LR) we refer to a
quality assessment of the resource by way of a systematic
comparison with its specifications, augmented by a set of
tolerance margins for these specifications (e.g. 50% of
the speakers should be male, with a permitted deviation
of 5%). The specifications (the full set or a subset) and the
corresponding tolerance margins are the validation
criteria for an LR. The criteria may also come from a set
of minimal requirements set by a validation centre which
are not explicitly part of the specifications. Output of a
validation is a report that lists all checks performed
together with an account of the results of the checks.

The relevance of validation of large SLRs emerged when
the SpeechDat project (Höge, et al., 1997) was started
around 1995. The SLRs within this project were
produced in a European framework according to design
and recording specifications similar to the
American-English Macrophone corpus (Bernstein,
Taussig & Godfrey, 1994) and the Dutch Polyphone
corpus (Den Os, et al., 1995). The SpeechDat SLRs were,
however, produced by a large consortium, the idea being
that each consortium member would produce from one to
three SLRs and obtain the SLRs produced by the other

partners at the end of the project. Because of its
experience in the production of Polyphone, and because
SPEX was not involved in the production of SpeechDat
SLRs, SPEX was included in the consortium as the
validation centre with the task to monitor the quality of
data and to ensure that all databases would be of
comparable quality. The other objective of SpeechDat
was that the SLRs become available to third parties after
the end of the project. This was another reason for the
involvement of an independent validation centre to
monitor and ascertain data quality.

Since SpeechDat, SPEX has been involved as validation
centre in many projects, particularly in data collections
supported by the EU, such as SpeechDat Car, SpeeCon,
and OrienTel. The experience on SLR validation gained
over the years has been reported at conferences, tutorials
and summer schools. This paper presents a
comprehensive and up–to-date overview of our
experience in the field. Although the paper focuses
mainly on the validation of SLRs of the SpeechDat type,
experience in validations of other SLRs and
pronunciation lexicons will be touched upon where
considered appropriate.

In this paper we will address basic principles of
validation (section 2) and proven procedures (section 3)
and we conclude with lessons learnt from our experiences
(section 4).

2. VALIDATION PRINCIPLES

Basic aspects of SLR validation have been addressed in
Van den Heuvel, Boves & Sanders 2000), Schiel &
Draxler (2003), Van den Heuvel, Iskra, Sanders, De
Vriend (2004). A brief overview of SLR validation is also
presented by Maegaard, et al. (2005).

2.1 Purposes

Result of a SLR validation is a validation report. This
report presents a systematic survey of the validation
criteria and the degree in which they were met by the SLR.
The report can be used for a variety of purposes:

1. Quality assurance: in this case the validation
report attests that the SLR meets the minimum
of required specifications and is therefore
approved;

2. Quality improvement: the validation report
shows to what extent the specifications are
achieved. Even if the minimum required criteria
are met, the validation report can still be used to
improve the SLR to meet the full specifications.

3. Quality assessment: since the validation report
describes the extent to which the SLR meets the
specifications, it can be added as an appendix to
the SLR itself, even if remaining errors have not
been corrected.

2.2 Strategies

SLR validation can be performed in two fundamentally
different ways: (a) Quality assessment issues are already
addressed in the specification phase of the SLR. That is,
during the definition of the specifications the validation
criteria are already formulated. (b) A SLR is created, and
based on the specifications the validation criteria and
validation procedure are defined afterwards. In this way
the risk is increased that the validation of some parts of
the specification may become infeasible, because in
retrospect there is no meaningful way to check these
specifications.
Furthermore, validation can be done in house (internal
validation) or by another organisation (external
validation). The two dimensions thus identified are
shown in Table I.

Validator Validation scheduling

During
production After production

Internal (1) (2)

External (3) (4)

Table I: Four types of validation strategies

(1) in this table is in fact essential for proper database
production. Each LR producer is responsible for the
database quality during the collection and processing of
the data in order to ascertain that the specifications are
met. A final check (2) should be an obvious, be it ideally
superfluous, part of this procedure. These principles are
employed by the Linguistic Data Consortium (LDC)
(Cieri, Liberman, 2000; Strassel, et al., 2003).
Alternatively (or additionally) an external organisation
can be contracted to carry out the validation of an SLR.
This is important if the production of database is

(sub)contracted or if LR-production is carried out in a
consortium where an independent validation institute has
to monitor that all SLR are of sufficient quality. In fact,
this strategy was adopted by many EU-funded projects,
where all producers performed internal quality checks,
whilst SPEX served as an independent external validation
centre, being closely involved in the specifications and
performing intermediate and final quality assessments.
An overview of these projects is presented in Table II (see
final page). In that context, all four validation activities
shown in Table I are carried out.

This two-dimensional view of the SLR validation process
is obviously valid for other types of LRs as well, cf.
Fersøe (2004) for lexica.

2.3 The role of validation institute

Validation is just one element in the process of quality
control of SLRs. Validation is an instrument to make a
diagnosis about the quality of a SLR. It is important to
distinguish between the validation and correction of a
SLR. The two tasks should not be performed by one and
the same institute; a conflict of interest may arise when
the validation institute is, in the end, checking its own
corrections. The appropriate procedure is that the
producer corrects the deviations found and that the
validation institute again checks the correctness of the
adjustments.

The best position for a validation institute is when it is
involved from the very beginning of the design of SLRs.
Throughout the design phase, it can contribute its
expertise to defining and fine-tuning specifications. It can
also make clear from the start which of these
specifications can be reliably validated by the institute.
During the specification phase the validation institute is
responsible for addressing the definition of the tolerance
margins for deviations of the specifications.

When the specifications have been agreed upon, the
contribution of the validation institute can be of great
value by carrying out quality checks at strategic moments
during the production process (see section 3 below).

It is important that the validation institute provides
efficient feedback on data submissions, and keeps all
communication channels open for consultation and
feedback on the results found. In practice, this means
that:

• The arrival of a data set at the validation office is
reported to the producer instantaneously

• The data set is immediately checked for
readability and completeness in terms of
required files. This is of major importance if the
SLR cannot be validated straight away.
Readability and completeness issues can be
resolved by the provider while the SLR is
awaiting its turn in the validation queue.

• If possible in a reasonable time frame, the
producer should be allowed to resubmit
defective files on the fly during validation.

• The validation report is first reviewed by the
producer before it is disclosed to anyone else.

This is correct diplomacy and necessary to avoid
and remove any misunderstandings on the text
of the report. For instance, a reported error may
in fact be a lack of clarity in the documentation,
and should be repaired there, not in the database
itself. Furthermore, a validation institute can
make errors, too! Based on the producer’s
comments a final report is edited which can be
distributed to others.

The validation institute should thus be flexible, and open
for communication. However, it must also be determined
and assertive. The open communication channel is not
meant to wipe out or reason away errors, but to obtain a
proper view on their nature and cause.

2.4 Approval Authority

When the validation takes place internally, the approval
authority is with the producer. Another situation arises
when the producer is not the owner of the SLR (e.g.
production is (sub)contracted), or when the SLR is
produced within a consortium of partners producing
similar SLRs with the aim of mutual exchange, as in
SpeechDat. In these cases an external validation institute
can play an important intermediary role. The institute can
perform an objective test to ascertain whether a
producing party has fulfilled the requirements set out by
the patron/consortium. In these cases the tasks of the
validation institute are typically twofold:

1. Checking a SLR against the predefined validation
criteria;

2. Putting a quality stamp on a SLR as a result of the
aforementioned check.

In these cases, the validation institute can obtain, as a
third task, approval authority. However, this is not a
desirable situation. The task of the external validation
institute is to provide a comprehensive report in which
the remaining deficiencies of an LR, if any, are clearly
described. Based on this report the patron (resp.
consortium) should decide upon the acceptability of a LR
In SpeechDat like projects, the approval of a SLR is
commonly arranged in another wat, viz. by a voting
procedure. The arrangement and execution of the voting
procedures is a task that can very well be delegated to the
validation institute.

If a SLR is rejected, the owner will have to correct the
deficiencies (re-annotate, or make new recordings) and
have the corrected SLR validated once more.

3. VALIDATION TYPES AND
PROCEDURES

Over the years SPEX has developed a standard validation
protocol for SLR in SpeechDat-like projects, which is,
apart from details, also applicable to other types of LR.
The protocol is developed along three validation
milestones: prevalidation, full validation, pre-release
valdation.

3.1 Prevalidation

Prevalidation of a SLR is carried out before the stage of

extensive data collection is entered. The main objectives
of prevalidation is to detect design errors before serious
data collection starts. Secondary objectives are:

- to enable the producer to go through the whole
stage of documenting and packaging at the
beginning so that missing information,
ambiguity and errors in the documentation are
avoided at the end

- to develop and fine-tune software for validation
of the full database

At the prevalidation phase three components are assessed:
prompt sheets, lexicon, mini database. The producer can
deliver these components together as one package, or
one-by-one, submitting a new component after the
previous has been validated.

Prompt sheet validation
Before embarking on recording speakers, the producers
design reading scripts. These scripts should be an ideal
representation of the content of the corpus items and the
number of repetitions for each item. Since in practice not
all intended material is recorded due to problems with the
recording platform, of speakers omitting certain items
altogether, not reading them correctly, stuttering or
speaking in an environment with high background noise,
etc., the reading scripts contain the (theoretical) upper
bounds of types and tokens of what is achievable in a
database. You will not get more!

The validation of the prompt sheets comprises checks
with regard to the presence of the corpus items, adherence
of their design to the specifications as well as the
maximum achievable number of repetitions at word or
sentence level calculated for the complete database. For
phonetically rich words and sentences, if included, it can
also be checked if a fixed minimum number of tokens per
phoneme can be collected, provided that a lexicon
containing all the words and their phonemic
transcriptions is delivered as well.

If at this stage the prompt sheets do not fulfil the
validation criteria (the absolute minimum which is
required in the end), measures can still be easily taken to
repair the errors since no recordings have been made yet.
Database producers indicate that they highly appreciate
this part of validation which allows them to spot and
repair errors in an early design stage.
The prompt sheet validation is also a test for the
specifications as it uncover parts which are
underspecified and need further clarification.

Lexicon validation
A formal check of the lexicon with regard to the format
and the use of legal phoneme symbols is part of all the
validation stages and can be carried out by the validation
centre itself. However, the quality of the phonemic
transcriptions has to be checked as well. Since this work
needs to be done by phoneticians familiar with each
language, the validation institute contracts this task to
external experts. There are two conditions for the
selection of these experts: they have to be native speakers
of the language and must have a phonetic training. They

obtain the relevant parts of the documentation describing
the principles of the phonemic transcriptions employed
by the producer. The experts obtain a sample (normally
1000 entries) of the entire lexicon which they have to
check manually. They are instructed to give the provided
pronunciation the benefit of the doubt and only to mark
transcriptions that reflect an overtly wrong pronunciation.
This is in order to prevent marking as errors differences
which are due to different phonetic theories or different
ideas about what the ‘most common’ or ‘best’
pronunciation is.

Mini database validation
10 initial recordings are made in different environments
and annotated. The data is formatted and packaged as if it
were a final completed SLR, including documentation,
and submitted to the validation institute. The purpose of
this part of the prevalidation is to check if all items as
specified in the prompt sheets are recorded and, if
relevant, in the correct order. Further, the format, and the
annotations are inspected, all with the aim of preventing
errors during large-scale production. Since the
documentation is included as well, the producers are
forced to start documenting at an early stage. This may be
felt as annoying at that time, but the advantages are
clearly felt in the final production phase; the burden of
documenting in that phase is greatly reduced to some
final text editing and modifications of numeric tables.

3.2 Full validation

When all recordings are collected and annotated, the
database is packaged and shipped to the validation
institute for what is called full validation. The purpose of
the full validation is a quality assessment of the end
product. At full validation, all checks are carried out.

The validation institute may have a queue of SLRs to be
validated. This queue is typically handled on a First-In
First-Out (FIFO) basis. Nonetheless, a more efficient
procedure is possible. Upon receiving the SLR, the
validation institute can perform a so-called Quick Check:
this is a quick formal test running the validation scripts to
find out if all required files are included in the SLR and if
they have the correct formal structure. If so, the SLR can
remain in the queue as it is. If not, the producer is
requested to submit updated versions of defective or
missing files. Quick Checks avoid discovering, for
instance, missing files a few weeks later when the SLR is
at the end of the queue. Since action can be taken in the
meantime, further delays for both the producer and the
validation centre can be avoided. Quick Checks allow the
producer and the validation institute to work efficiently in
parallel.

Since the validation of the (orthographic) transcriptions is
restricted to a sample of all recordings, not all speech data
is needed during full validation. For large SLR such as
those collected in SpeeCon, copying of all speech files
onto a hard disk would use up the main part of the
validation effort. For this reason, in SpeeCon and similar
projects, the validation institute selected a list of 2000
items during the Quick Check, for which the producer
instantly had to provide the speech files. Thus, the
producer submitted only a subset of the speech files, so

that these were available at the validation institute by the
time the SLR reached the top of the queue. Note that all
orthographic transcriptions were already delivered for the
quick check and that updates of the transcriptions were
not accepted at this stage. This avoids that new
transcriptions were just made for the subset of files
selected for validation.

In case all speech data is needed for validation (e.g. for
acoustic quality measurements), submission of the
database on DVDs or on a hard disk is a sensible
alternative.

If substantial shortcomings are found during validation,
rectification and a subsequent re-validation of an SLR
may become necessary. This is decided by the owner or
the consortium in charge of the SLR production. Since
mostly not all parts are defective, re-validation is
normally of a partial nature. Re-validations are, as rule,
carried out at additional costs for the producing party, so
as not to encourage sloppy behaviour. Re-validations may
iterate until approval of the LR is achieved.

3.2 Pre-release validation

The validation of a complete database results in a report
containing a list of errors which were found in the
database. Some of them are irreparable and related to
flaws in the (manual) annotation and/or the design of the
database or the recordings themselves. However, a large
number are usually minor and refer to the documentation,
label files or other text files which are produced during
post-processing. These errors can easily be repaired and
the producers are willing to do that. The danger, however,
is the introduction of new errors or format inconsistencies
during the rectification. Therefore, a pre-release
validation has been introduced so that the envisaged
master disks can be checked again by the validation
centre. The purpose of this validation is to make sure that
the reparable errors which were found during complete
validation are fixed and that no new errors have been
introduced.

After full validation the documentation file is augmented
with an additional section: “Modifications after
validation”. It is checked if all changes agreed upon are
included in this section and if they have been
implemented in the submitted pre-release version. The
validation software is run, so that all formal checks on the
data are carried out once more.

If the pre-release validation is finished with a positive
result, the database is ready for distribution and the
producers are not allowed to make any more changes,
however minor, since these corrections can introduce new
(possibly greater) errors.

Also the pre-release phase may have one or more
iterations until the LR is approved for distribution.

4. CONCLUDING REMARKS

In this article we have clarified the concept of SLR
validation. A standard validation protocol has been
shown illustrating how validation can prove its value all

along the production phase in terms of prevalidation, full
validation and pre-release validation.

From our experience as validation centre in many (mainly
European) projects we have learnt a number of valuable
lessons:

- External validation is an important quality
safeguard

- If the validation institute is involved during the
specification phase of a SLR it can advise in the
specification of the design and setting the
validation criteria.

- The validation institute can provide important
input at strategic points along the data collection
and annotation, not only after the completion of
the SLR. A good prevalidation procedure can
avoid mistakes that would not be reparable at the
end.

- The validation institute needs to keep open
communication channels to the SLR provider

- Clear validation protocols help structuring the
work and effective quality control

- A relevant part of the work of the validation
institute is to find a proper balance between
developing automatic checks by scripts and
hand labour.

- The validation institute, as a rule, does not claim
the approval authority for a SLR.

- The validation institute, as rule, does not
perform any of the required corrections itself to
avoid the situation in which it is checking its
own work.

5. REFERENCES

Bernstein, J., Taussig, K., Godfrey, J. (1994). Macrophone: An

American English telephone speech corpus for the

Polyphone project. Proc. ICASSP-94, Adelaide, pp. 81-83.

Cieri, Chr., Liberman, M. (2000). Issues in Corpus Creation and

Distribution: the Evolution of the Linguistic Data

Consortium. Procedings LREC2000, Athens, pp. 49-56.

De Vriend, F., Maltese, G. (2004) Exploring XML-based

Technologies and Procedures for Quality Evaluation from a

Real-life Case Perspective. Proceedings ICSLP-Interspeech

2004, Jeju, Korea

Den Os, E.A. den, Boogaart, T.I., Boves, L., Klabbers E.

(1995). The Dutch Polyphone corpus. Proceedings

Eurospeech 1995, Madrid, Spain, pp. 825-828.

Fersøe, H. (2004). Validation Manual for lexica.

http://www.elra.info

Gibbon, D., Moore, R., Winski, R. (eds) (1997) The EAGLES

Handbook of Standards and Resources for Spoken Language

Systems. Mouton de Gruyter.

Höge, H., Tropf, H.S., Winski, R., Van den Heuvel, H.,

Haeb-Umbach, R. & Choukri, K. (1997) European speech

databases for telephone applications. Proc. ICASSP 97,

Munich, pp. 1771-1774.

Höge, H., Draxler, C., Heuvel, H. van den, Johansen, F.T.,

Sanders, E., Tropf, H.S. (1999) Speechdat multilingual

speech databases for teleservices: across the finish line.

Proceedings EUROSPEECH'99, Budapest, Hungary, 5-9

Sep. 1999, pp. 2699-2702.

Iskra, D., Grosskopf, B., Marasek, K., Van den Heuvel, H.,

Diehl, F., Kiessling, A. (2002) SPEECON - Speech

Databases for Consumer Devices: Database Specification

and Validation. Proceedings LREC2002, pp. 329-333.

Iskra, D., Siemund, R., Jamal Borno, J., Moreno, A., Emam, O.,

Choukri , K., Gedge, O., Tropf, H., Nogueiras, A., Zitouni, I.,

Tsopanoglou, A., Fakotakis, N. (2004) OrienTel - Telephony

Databases Across Northern Africa and the Middle East.

Proceedings LREC 2004. Lisbon, pp.591-594.

Maegaard, B., Choukri, K., Calzolari, N., Odijk, J. (2005)

ELRA – European Language Resources Association –

Background, recent developments and future perspectives.

Language Resources and Evaluation (39), pp. 9-23.

Moreno, A., Lindberg, B., Draxler, Chr., Richard, G., Choukri,

K., Euler, S., Allen, J. (2000a) SpeechDat Car. A large

speech database for automotive environments. Proceedings

LREC 2000, Athens, pp. 895-900.

Moreno, A., Comeyne, R., Haslam, K., Van den Heuvel., H.,

Horbach, S., Micca, G. (2000b). SALA: SpeechDat across

Latin America. Results of the First Phase. Proceedings

LREC 2000, Athens, Greece, Vol. II, pp. 877-882

Moreno, A., Choukri, K., Hall, Ph., Van den Heuvel, H.,

Sanders, E., Tropf, H. (2004) Collection of SLR in the

Asian-Pacific area. Proceedings LREC 2004, Lisbon,

Portugal, pp. 101-104.

Schiel, F., Draxler, Chr. (2003) The production and validation

of speech corpora. Bavarian Archive for Speech Signals.

Bastard Verlag München.

Strassel, S., Miller, D., Walker, K., Cieri Chr. (2003). Shared

Resources for Robust Speech-to-Text Technology.

Proceedings EUROSPEECH 2003, Geneva, pp. 1609-1612.

Van den Heuvel, H. Boves, L., Sanders (2000) Validation of

content and quality of existing SLR: Overview and

Methodology. ELRA Technical report D1.1.

Van den Heuvel, H., Boudy, J., Bakcsi, Z., Cernocky, J.,

Galunov, V., Kochanina, J., Majewski, W., Pollak, P., Rusko,

M., Sadowski, J., Staroniew, P., Tropf, H.S. (2001)

SpeechDat-E: Five Eastern European Speech Databases for

Voice-Operated Teleservices Completed. Proceedings

EUROSPEECH 2001, Aalborg, Denmark, Vol. 3, pp.

2059-2062.

Van den Heuvel, H., Hall, Ph., Moreno, A., Rincon, A., Senia,

F. (2004a). SALA II across the finish line : a large collection

of mobile telephone speech databases from North & Latin

America completed. Proceedings LREC 2004, Lisbon,

Portugal, pp. 97-100

Van den Heuvel, H., Iskra D., Sanders, E., De Vriend F.

(2004b). SLR Validation : Current Trends & Developments.

Proceedings LREC 2004, Lisbon, Portugal, pp. 571-574

Van den Heuvel, H., Choukri, K., Gollan, Chr., Moreno, A.,

Mostefa, D. (2006) TC-STAR: New language resources for

ASR and SST purposes. Proceedings LREC 2006, Genova.

Project Type of SLR Number
of SLR

Period Ref.

SpeechDat(M) Fixed telephone network,
for voice-driven
teleservices, European
languages

8 1994-1996 Höge et al. (1997)

SpeechDat(II) Fixed and cellular
telephone network, for
voice-driven teleservices,
European languages

28 1995-1998 Höge, et al. (1999)

Speechdat-Car Car recordings incl. GSM
channel, European
languages

9 1998-2001 Moreno, et al (2000a)

SpeechDat-East Fixed telephone network,
for for voice-driven
teleservices, Central and
East European languages

5 1998-2000 Van den Heuvel, et al. (2001)

SALA Fixed telephone network,
for for voice-driven
teleservices, Latin America

5 1998-2000 Moreno, et al. (2000b)

SALA II Cellular telephone network,
for for voice-driven
teleservices, America (full
continent)

16 2002-2005 Van den Heuvel, et al. (2004a)

Speecon Broadband recordings for
commanding consumer
devices
(major world languages)

28 1999-2002 Iskra et al. (2002)

Network-DC Broadcast News (Arabic) 1 2000-2001 http://www.elda.org/article45.html

OrienTel Fixed & Mobile telephone
network, for for
voice-driven teleservices
(Oriental region)

23 2001-2003 Iskra et al. (2004)

TC-STAR Parliamentary speeches &
TTS

3 2004-2007 Van den Heuvel, et al. (2006)

LILA Mobile telephone network,
for for voice-driven
teleservices (Asian &
Pacific region)

6+ 2005- Moreno et al. (2004)

Table II. Overview of SLR data collection projects with an external validation component. Information about all projects

can be obtained via http://www.speechdat.org. For TC-STAR see: http://www.tc-star.org.

The Notion of Quality in Language Resources – Validation of the Spoken Dutch
Corpus

Hanne Fersøe, Bart Jongejan, Sussi Olsen

Center for Sprogteknologi (CST) – Københavns Universitet
Njalsgade 80, Copenhagen, Denmark

hanne, bart, sussi@cst.dk

Abstract
This paper discusses the notion of quality on which Center for Sprogteknologi, generally bases validation of language resources. It
emphasizes in particular the importance of resources having good documentation and it illustrates some of the problems that arise if
the documentation, which is the formal object of the validation, turns out not to be completely sufficient and adequate to base the data
validation on. The basic principles and steps in a validation are illustrated through the detailed description of the planning and
preparation of the validation of the linguistic annotations of the Spoken Dutch Corpus.

1. Measuring Quality

1.1. Background
Center for Sprogteknologi (CST) has a background as

ELRA’s validation centre, also called operational unit, for
validation of written resources since 2003, (Fersøe et al.,
2006). Our work in this context is the development of
methodologies for validation of lexica (Fersøe, 2004,
Fersøe & Olsen, 2005) and the validation of a selection of
resources in ELRA’s catalogue according to these
methodologies. In addition to this experience, we have
also validated the linguistic aspects of the 13 lexica
developed in the LC-STAR project (Fersøe et al., 2004),
we have validated the Nemlar Arabic Written Corpus
(Yaseen et al., 2006), and we have described other
validation methodologies in the context of the ENABLER
project (Calzolari et al., 2004). Future planned validation
tasks include the lexica to be developed in the LC-STAR
II project, and the two Dutch corpora to be developed in
the projects D-Coi (Dutch Language Corpus Initiative)1 ,
and DPC (Dutch Parallel Corpus), respectively. The most
recently completed validation task is the validation of the
linguistic layers of the Dutch Spoken Corpus, or CGN
(Corpus Gesproken Nederlands)2, which will be described
in more detail in this article.

1.2. The Notion of Quality
A Google search on the string ‘Definition of Quality’

yielded 138 million hits. Just a few checks of the first of
these revealed that definitions of quality, not surprisingly,
are context dependent (e.g. product quality, service
quality, process quality, etc.) and relative to specific
phenomena in that context. The ISO 9000 plain English
definition of quality3 says that it is a desirable
characteristic that a product must have, and that quality is
achieved when the product meets needs and expectations
of customers. In the validation section of ELRA’s website,
the concept of quality is associated with adherence to
standards in the definition of validation: “The term
"validation" in ELRA is used in reference to the activity

1 http://lands.let.ru.nl/projects/d-coi/
2 http://lands.let.kun.nl/cgn/ehome.htm
3 http://www.praxiom.com/iso-definition.htm

of checking the adherence to standards, and the quality
control of the LR product.”

Our notion of quality in validation tasks is in line with
these definitions. The quality of a language resource
cannot be determined by measuring it against a
generically defined quality level. It is neither possible nor
realistic to define for instance that specific sets of
attributes must be applied or that they must be defined in
specific ways. The quality of a resource must always be
measured against the specifications by which it was
produced, and the more and better it is in conformance
with its underlying specifications, the better its quality is.
The question of adherence to standards then applies to the
specifications and to the whole resource package as such.
Here the validation methodologies developed by ELRA
(Fersøe, 2004, van den Heuvel et al., 2003) offer
recommendations on minimal sets of criteria that spoken
and written resources must fulfill.

1.3. The Role of the Documentation
Our experience from completed validation tasks shows

that the documentation of a resource is absolutely crucial
for the quality measurement of the resource and thus for
future users of the resource. Without a good
documentation, a resource is both difficult and costly to
access and consequently use.

It is our experience that, in general, the speech
community has a more trained view on the role and
importance of a good documentation than does the written
community. For written resources it is not unusual to see
well elaborated and voluminous linguistic descriptions
that are cumbersome to overview and access for those not
directly involved in the production process, and which
turn out to represent ideal specifications which were not in
the end implemented in the resource. Such discrepancies
between the data and its documentation constitute major
flaws in the quality of a resource.

2. Introduction to the CGN Validation
The Spoken Dutch Corpus, CGN, is well described on

its own publicly available web site and in many scientific
publications. It is a corpus with recordings of approx. 9
million words of contemporary Dutch as spoken by adults

in Flanders and the Netherlands with all accompanying
transcriptions and annotations.4

All rights to the corpus are held by the Dutch HLT
Centre5 who has also organized the validation of the
corpus by external experts. The validation of the speech
aspects of the corpus (32 DVDs) was carried out by BAS
Services Schiel from the Institut für Phonetik in
Universität München. The validation of the linguistic
annotations of the corpus (1 DVD) was carried out by
CST, University of Copenhagen. The Dutch HLT Centre
will publish the two validation reports on their web site.

2.1. Validation of the Speech Aspects
The validation is documented in a very thorough report

of 41 pages and 25 pages of appendices. The validation
was organized in three standard steps: Validation of
Documentation and Metadata, Formal Validation and
Manual Validation. In the summary the author explains
that the corpus “has been validated against general
principles of good practice and the validation
specifications of the CGN consortium. The validation
covered completeness, formal checks and manual checks
of randomly selected samples. Data types covered by this
validation are corpus structure, signal files, orthographic,
phonetic, prosodic annotation, segmentation in chunks and
words (manual and automatic), the single word
pronunciation dictionary and all English documentation
files. Manual checks were carried out by native Dutch and
Flemish speakers and an experienced phonetician (for
phonetic transcripts and word segmentation only).”

In the summary the author concludes that the corpus is
of a far above average quality. He regrets the fact that the
most important protocols are only available in Dutch, and
suggests that a more detailed description of the annotation
process and some missing information should be added in
the next corpus release.

2.2. Validation of the Linguistic Annotations
The validation is documented in a main report of 55

pages including all appendices and sub documents. In
summary the validation shows that the CGN is a carefully
and skillfully elaborated language resource of a very high
quality. Only few content errors were detected considering
the size and complexity of the corpus: Lemmatization 74
errors (error rate 0.25%), PoS-tagging 123 errors (error
rate 0.41%) MWU (Multi Word Unit) precision 98.6% (4
errors in 290 MWUs), MWU recall 86.4% (45 of 290 not
found), and Syntactic annotation 73 errors (error rate
2.43%). The formal validation, which checked the
technical quality and integrity of the CD and the
organisation of the files, revealed that all the validation
criteria were met. The validation of the documentation,
which checked three specific documentation files for
availability of specific information, completeness of
information, and adequacy for future users of the corpus,
identified a number of areas where the criteria were not
met or inadequately met, one of these being that the
protocols are only available in Dutch, and a number of
shortcomings which made it impossible to decide the
correctness of some annotations. The validation centre

4 Only one million words of the corpus have been
annotated with syntax.
5 http://www.tst.inl.nl/index_en.php

recommends that these errors and shortcomings in the
documentation be repaired in the next corpus release.

3. The Validation Process
The validation process can be summarized in these

steps: specification of validation criteria; unpacking and
installation of all the files on the DVD; formal validation;
documentation validation; creation of samples;
development of a validation template; training of
validators, content validation; error counting and results;
validation report. The steps need not necessarily be
completed in this order, and some of them were in fact
performed simultaneously while others were completed in
several iterations, but basically these steps represent the
distinct activities that took place. The content checks,
specifically, require a lot of data preparation and common
understanding of the specifications in order for a group of
people to be able to complete them in a consistent way.

Below we describe in more detail some of the
validation steps, and in section 4 we give examples of
some of the more challenging aspects of the validation of
the documentation versus the implementation of these
specifications in the corpus.

3.1. Specification of Validation Criteria
The first deliverable of the validation task was the

definition of the specific and full set of criteria to be
applied. The producer had specified which aspects of the
linguistic annotations would be the object of the validation
and how large samples should be, so the task was to make
these specifications operational by pinning them out into
more detail. This also included the sampling.

For the documentation the producers wanted us to
validate three documents in Dutch of approx. 180 pages in
total, and they wanted them validated with respect to
quality and adequacy for future users of the corpus. We
made these requirements operational by setting up
checklists of specific pieces of information that would be
checked for availability and completeness: administrative
information, formal technical information and content
information. It was not considered relevant to define a
measurement scale or grading system or some other
notation to express the quality based on e.g. how many
pieces of information were missing and/or not complete.

For the formal technical aspects of the data there were
no requirements from the producers, but we agreed to very
basically just check that the DVD contained all the
required files with their correct file names, and that the
layout and file structure corresponded to the
documentation.

For the content, the producers wanted the linguistic
annotations checked on samples of certain sizes. The
lemmatization and PoS tagging layers were to be checked
for correctness and consistency on a sample of 30,000
words with the purpose of determining the error rate.
Multi word units were to be checked for correctness and
completeness with the purpose of determining precision
and recall in a sample of 30,000 words. The syntactic
annotation layer was to be checked for correctness on a
sample of 3,000 sentences. These checks in themselves
are quite straightforward and do not require long
additional checklists, so only a few additional checks were
defined that could be made semi-automatically and in-
house.

The sampling was to be made randomly with a
uniform distribution over the various components that
constitute the CGN. The data consists of 14 components.
Two thirds of the data was collected in the Netherlands
and one third originated from Flanders. Moreover, each
component contains a variable number of sessions, and
each session contains at least one file, resulting in a quite
large number of files.

3.2. Creation of Samples
The sample for the PoS, lemma and MWU checks

consisted of 30,000 words selected randomly from the
different corpus components. This was quite a complex
task. The sample could not be created just by randomly
selecting 0.00333% of the words from each corpus
component since the sample should not only represent the
different corpus components, but during sampling it
became clear that it should also reflect the sentence length
distribution in each component. A sampling algorithm
involving several steps of measuring sentence length was
developed to assure that the correct number of words
would be extracted from each corpus component. The
sampling script worked on xml annotated files. The
relevant data, without the xml annotation, was
subsequently imported into approx. 35 Excel files. The
validation had to be made within a rather short time frame,
and we had to be able to measure progress almost on a day
to day basis. Several persons would work on different files
at the same time out of the house, and therefore the files
had to be relatively small, and the data in the samples had
to be very easy to overview and understand for the
validators.

A sample of 3,000 sentences was created for the
syntax validation. The sampling process was more or less
the same as for PoS, lemma and MWUs but here the
sentence length distribution was even more relevant, since
the complexity of the syntactic structure of a sentence is
closely related to the sentence length. The syntax
validation would be accomplished in-house by one person,
and therefore there was no need to convert the sample into
file sizes and formats that could be handled by e-mail.

3.3. Development of a Validation Template
In order to make the data easy to overview and access

for their work with the content validation, the relevant
data for validation of PoS, lemma and MWU checks were
presented in Excel files in what we call the validation
template. The design of the validation template was not a
trivial task, so it was the subject of much consideration
and discussion. The basic requirements to the template are
that the validators must be able to have easy access to all
the relevant information and only that, and that it must be
easy to mark and correct errors and to count them.
Consequently we should not create more columns than
what could be displayed on the screen at the same time,
and the information should be organized in such a way as
to minimize scrolling and keying. In addition, related
information must be shown together.

The validation template also forms the basis for
processing the results afterwards. In connection with the
design of the template we therefore had to make various
decisions. The first question was whether all errors are of
the same category or whether they should be classified
into severe and minor errors. Is a PoS assignment error

more severe than a value error in an attribute like e.g.
number in a noun? The producers clarified that all errors
were to be treated alike. Other considerations were related
to the precise method of counting errors in MWUs and
whether to mark all the words of an MWU or only the first
one. The design decisions we made will follow from the
detailed description of the template below.

The Excel file which a validator opens displays the
data according to the template. The first row shows the
identifier (a number) of the corpus file from which the
sentence was extracted; this is for easy reference. The
second row displays the entire sentence horizontally
across the columns, this is for easy context overview
while checking the individual words. The following rows
each display one individual word of the sentence with all
its associated annotations in individual columns.

The columns are divided into data columns which
should not be modified and columns for validation
annotation. The data columns are showed in the following
order: first a column for corpus name, sentence number
and the entire sentence below each other, and then
followed by columns for the identifier of the MWU, the
word form, the lemma, the PoS, the word reference, i.e.
the position of the word in the sentence.

The columns for validation annotation needed to
reflect the way the errors should be handled. The
validation columns are located immediately after the first
data column with the entire sentence and before the other
data columns.

The PoS correction column allows the validator to
insert a correction from a pick list of the entire tag set.
This implies that an incorrect PoS tag is counted as one
PoS error regardless of the number of errors within the
current tag.

In the lemma correction column the validator inserts
the correct lemma. An incorrect lemma counts as one
error.

The MWU error column is for marking words that
have been wrongly identified as part of an MWU. Since
the validation did not include correction of the MWUs the
validator only inserts a ‘1’ for each error found. Only the
first word of a wrongly identified MWU is marked and so
an MWU only counts as one error regardless of the
number of wrongly identified words that occur in it.

The missing MWU column is where the validator
marks the MWUs not identified. Here again the errors
were not to be corrected, so the job of the validator was
only to insert the mark ‘1’ in the line corresponding to the
first word of the non-identified MWU. For reporting a
candidate list was produced, see section 3.5.

To make the overview easier the template was
designed with colour codes such that the colour of a
column reflects the annotation type it displays. So the data
column for PoS and the PoS correction column have the
same colour while the lemma data column and its
corresponding lemma correction column has a different
colour. Columns like word form, the entire sentence and
word reference were left white. Figure 1 illustrates a
validation file.

Figure 1 Validation template

3.4. Training of validators

The content validation was completed by a temporary
staff of junior linguists with a mother tongue or expert
knowledge of Dutch. Their training and preparation for
the task consisted in first reading the documentation and
familiarizing themselves with it. Secondly they all
participated in a workshop we organised in order to
discuss and clarify in a common forum any question that
came up from reading the documentation. This discussion
for instance led to the creation of the pick list with tags in
the validation template. In the workshop we also presented
the validation template and a detailed task description
documenting the template and its use and describing the
file handling and file naming conventions that would be
used.

During the course of validation there was an active
communication between the validators. Cases of doubt
were discussed via e-mail and frequent reunions where
difficult cases were discussed led to a higher inter-
validator agreement.

3.5. Error Counting and Results
The requirement from the producer was to deliver

error rates and for MWUs recall and precision. We were
not asked to correct the errors we identified. In the
process, however, it turned out to be more practical for the
validators to correct errors instead of simply marking
them. This allowed the validators to go back to previous
validation decisions and thus ensure consistency and
intervalidator agreement. We also thought this would
make the validation more useful for the producers.

For identified PoS and lemma errors, the errors and
their corrections were listed in the validation report.

For MWUs two lists were produced: One list of
wrongly identified MWUs and one list of MWU
candidates for not identified MWUs. Precision and recall
were calculated on the basis of the number of wrongly
identified MWUs found (precision) and the number of
non-identified MWUs (recall).

For syntax the list of errors with corrections was
simply described in text.

The validation template was not designed with a
column in which to register shortcomings or gaps in the
documentation. Problems encountered were discussed
between the validators in order to establish whether they
were due to the documentation or whether they were e.g.
systematic errors in the annotation.

4. Documentation Validation
During the content validation process the validators’

judgments had to be in agreement with the documentation
at hand. Formally we were asked to validate three
documentation files, which consisted of four sets of
guidelines - for lemmatisation, for the demarcation of
multiple word units, for syntactic annotation and for part
of speech tagging, respectively. Two additional sources
were also used as authoritative documentation: For the
identification of one type of multiple word units the
guidelines refer to a dictionary, the 13th edition of the
dictionary Groot Woordenboek der Nederlandse Taal
published by Van Dale, and for the correct part of speech
tagging of pronouns, the guidelines refer to the electronic
CGN-lexicon.

By and large, these six sources covered the annotation
in our sample very well, but we were also confronted with

problems that we were not able to solve by looking at
these sources of information alone. In such cases we
always gave the annotation in the corpus the benefit of the
doubt and we attributed the lack of clarity to the
guidelines.

After the validation of the data, but before the final
report was delivered, it came to our knowledge that the
annotators had worked with supplementing guidelines for
the syntactic annotation. It was also made clear to us that
the electronic CGN-lexicon was created only partly before
the creation of the corpus and that it contained many data
describing, rather than prescribing, the corpus. It therefore
contained both authoritative and after-the-fact data. This
background information led us to the revision of some of
our findings, in part cancelling some found errors in the
corpus, in part adding some. At the same time remarks
regarding the disagreement between the documentation
and the annotation practice were added to the final
validation report.

The CGN-lexicon, encompassing much more
information than the aforementioned list of pronouns, was
an invaluable source of information during the validation
process, although we always were in doubt how much
authority we really could attribute to it. The CGN-lexicon
is composed of data from several sources, for example the
Van Dale dictionary mentioned before. These sources do
not always agree, and in those cases the creators of the
lexicon had to make a choice. The way these choices were
made is hidden from those validating or otherwise using
the CGN-corpus. This makes the CGN-lexicon a unique,
irreplaceable, and canonical linguistic resource for users
of the corpus, whatever the lexicon’s authoritative status
compared with the supreme authoritative status of the four
sets of guidelines.

Adding to the confusion was the lexicon field that
indicated that the CGN-lexicon had been through a
validation process, all word entries being marked with ‘V’
(valid), ‘C’ (correct), ‘I’ (incorrect) or ‘O’ (not validated).
This validation process was not mentioned in the
guidelines at hand and it never became clear to us how it
had been done. Nevertheless, because of these quality
stamps, but even more because there was no other
dictionary that we could trust more, we occasionally based
our validation decisions on the CGN-lexicon even in cases
were the guidelines did not explicitly attribute authority to
this lexicon.

The reason we sometimes took refuge to a lexicon was
that some annotation decisions were very word specific
and could therefore not be based on the documentation,
they had to be based on some other source. Native-speaker
intuition was an option we could have chosen to solve
such issues, but the CGN-lexicon seemed to be the best of
all choices, combining all the lexical resources (including
native speaker intuition) that had played a role during the
construction of the corpus.

4.1. PoS-tagging
The following is an example that illustrates how the

validation process sometimes critically depended on the
CGN-lexicon. In this example, the validity of the
annotation of word A was depending on the mere
existence of word B. In the corpus, beneden in the
sentence hij ging naar beneden (down, as in he went
down) is annotated as a postpositional preposition. We

thought this was wrong, because according to the Van
Dale dictionary beneden in naar beneden is an adverb and
this was in agreement with the CGN documentation,
which says: ‘We count only those words as postpositional
prepositions which can be preceded by an adverbial
pronoun; accordingly, heen and af are regarded as
prepositions, but not terug, weg and geleden (*erterug,
*hierweg, *waargeleden); the latter we count as adverbs.’
In other words, if beneden can be preceded by an
adverbial pronoun (hierbeneden), then beneden is a
postpositional preposition, otherwise it is an adverb. The
word hierbeneden is not in the Van Dale dictionary, and
therefore we concluded that beneden is an adverb and not
a postpositional preposition. But we were wrong: the word
hierbeneden is a word in the CGN lexicon, and it has a
‘V’-marked (validated) reading, so we accepted that
beneden in naar beneden is a postpositional preposition
after all.

It was only after seeing that almost 100% of the
occurrences of naar beneden were annotated as
postpositional prepositions that we began to doubt our
decision to count this annotation as an error in the corpus.
So, in fact, this example not only shows that the required
fairness of the validation process forced us to use a lexical
resource with a dubious authoritative standing, it also
illustrates that we sometimes faced an overwhelming
majority of instances that cast doubt on the rightness of
the judgment and that we therefore decided to revise the
judgment.

4.2. Lemmatisation
In one case we were so much overwhelmed by a

wrong annotation practice that we were misled to give all
the occurrences of the wrong annotation the benefit of the
doubt. This was the case with the lemmatisation of dialect
words. According to the guidelines, the lemma of dialect
words always is identical with the word itself. However,
for most dialect words that seemed to be (or are) inflected
forms of non-dialect words the uninflected wordform was
taken as the lemma (diejen – die, nen – een, etc.). This
practice was fully supported by the CGN-lexicon, which
has ‘validated’ entries for such words. We assumed that
the guidelines were wrong, not the corpus and the CGN-
lexicon. However, a representative of the CGN-team told
us that the guidelines were right and that the corpus and
lexicon were wrong. Luckily it was very easy to spot all
dialect words in our sample and we could report an
additional 50 lemmatisation errors, tripling the total
number of lemmatisation errors.

4.3. Multiple Word Units
There was no friction between the guidelines for the

identification of multiple word units on the one hand and
other lexical resources on the other. The guidelines were
very clear. We found one case that was difficult to decide:
the words hot shots (both loans from English). According
to the guidelines we had to check two circumstances:
First, if each of the words occurs in the Van Dale
dictionary, then the sequence is not a multiple word unit.
Secondly, if the sequence as a whole occurs in the Van
Dale dictionary, then the sequence is a multiple word unit,
even if each word also is in the dictionary by its own.
Now, both hot and shot are in the Van Dale dictionary and
hot shot as a sequence is not. So, formally, hot shots is not

a multiple word unit. On the other hand, shot in hot shots
has a different meaning than shot in the dictionary and the
compound word hotshot occurs in the dictionary. So, in
the spirit of the guidelines, hot shots is a multiple word
unit, but it would have been better if the expression had
been spelled hotshots (thereby again losing the status of
multiple word unit). However, the spelling of the corpus
was not to be validated and therefore the only solution
was to just accept whatever the corpus annotator had
chosen, which was not to regard hot shots as a multiple
word unit.

4.4. Syntactical Annotation
In general, the guidelines for the syntactic annotation

were sufficient to be able to validate the syntactic
annotation. There were, however, also some white spots
and constructions that needed worked-out examples. The
most notable lacuna was the correct treatment of
constructs like van A naar B (from A to B). The corpus
annotators had chosen to annotate these constructs as
prepositional phrases with two complements A and B of
the same type OBJ1. However, according to the guidelines
this was not allowed. We decided to count the practiced
annotation as erroneous. However, the supplementing
guidelines for the syntactic annotation, the existence of
which we became aware of after the validation, nicely
filled out the white spots and also presented many
worked-out examples for difficult constructs. These
supplementing guidelines supported the coding practice
for prepositional phrases with two OBJ1 complements and
one or two heads.

5. References
Calzolari, N., K. Choukri, M. Gavrilidou, B. Maegaard, P.

Baroni, H. Fersøe, A. Lenci, V. Mapelli, M. Monachini,
S. Peperidis (2004): ENABLER Thematic Network of
National Projects: Technical, Strategic and Political
Issues of LRs. In Proceedings of LREC 2004,
International Conference on Language resources and
Evaluation, Lisboa 2004, side 937-940.

Fersøe, H., H. van den Heuvel, S. Olsen (2006):
Validation of third party Spoken and Written Language
Resources – Methods for performing Quick Quality
Checks. To appear in Proceedings of LREC 2006,
International Conference on Language resources and
Evaluation, Genoa 2006.

Fersøe, H., S. Olsen (2005): Methodology for a Quick
Quality Check for WLR-Lexica. Report submitted to
ELRA under the ELRA/0209/VAL-1 contract.

Fersøe, H., E. Hartikainen, H. van den Heuvel, G.
Maltese, A. Moreno, S. Shammass, U. Ziegenhain
(2004): Creation and Validation of Large Lexica for
Speech-to-Speech Translation Purposes. In Proceedings
LREC 2004, International Conference on Language
resources and Evaluation, Lisboa 2004, page 1431-
1434.

Fersøe, H. (2004). Validation Manual for Lexica. Report
submitted to ELRA under the ELRA/0209/VAL-1
contract. See under Validation Standards in
http://www.elra.info

van den Heuvel, H., D.J. Iskra, E. Sanders & F. de Vriend
(2004): SLR Validation: Current Trends &
Developments. In Proceedings LREC 2004, Lisbon,
Portugal, pp. 571-574.

Yaseen, M., M.Atiyya, C. Bendahman, B. Maegaard, K.
Choukri, N. Paulsson, S. Haamid, H. Fersøe, S.
Krauwer, M. Rashwan, B. Haddad, C. Mukbel, A.
Mouradi, A. Ali, M. Shahin, A. Ragheb, N. Chenfour:
Building Annotated Written and Spoken Arabic LRs in
the NEMLAR Project. To appear in Proceedings of
LREC 2006, International Conference on Language
resources and Evaluation, Genoa 2006.

Quality control of treebanks: documenting, converting, patching

Sabine Buchholz, Darren Green

Speech Technology Group, Cambridge Research Lab, Toshiba Research Europe Ltd
St George House, 1 Guildhall St, Cambridge CB2 3NH, United Kingdom

{sabine.buchholz, darren.green}@crl.toshiba.co.uk

Abstract
We report about our experiences with using many different syntactically annotated corpora (treebanks). We list various types of format
and annotation errors we have noticed and propose common sense as well as novel ways to prevent, detect and handle these. We show
how the quality of a treebank’s annotation and its documentation are related and how the concepts of patching and versioning that come
from the software community can be applied to treebanks in order to improve quality.

1. Introduction
The first author is one of the organizers1 of the shared
task on multilingual dependency parsing for the 2006
Conference on Computational Natural Language Learning,
CoNLL-X.2 For that task, treebanks for 13 different lan-
guages were converted to a common format (Buchholz et
al., 2006). A further three (Sampson, 1995; Sima’an et al.,
2001; Aduriz et al., 2003) were studied or partially con-
verted but in the end not included in the task. So the shared
task is easily the biggest “user” of treebanks to date. The
converted treebanks have been made available to 28 inter-
ested groups and some bugs have already been reported.
Through our work at Toshiba Research Europe we have ex-
perience with a further four treebanks that offer commercial
licenses.
While the majority of treebanks are of high quality, we have
noticed problems with some. As many of the treebanks are
for languages we do not speak, we tend to notice issues
with the form rather than with the content of the annotation.
Such problems can often be detected by relatively simple
means and are thereforeeasily avoidable. In this paper, we
discuss the issues we encountered and suggest methods to
detect them. In addition to quality of annotation, we want to
draw attention to two other aspects of quality control. One
is the quality of documentation of resources and the other is
the handling of defects once they are noticed. We will show
that these three aspects are related and how improvements
in one can benefit the others.

2. Issues with treebanks
The issues we noticed range from pure format to more lin-
guistic problems. While linguists using a treebank are nor-
mally only bothered by the latter, computational linguists
should be concerned about the former as well, as they can
directly affect the outcome of any experiment on the data.

2.1. End-of-line convention

Different operating systems use different control characters
to terminate a line. We have encountered one treebank in
which some files followed the Macintosh convention of car-
riage returns and others the UNIX convention of line feeds.

1Many thanks to the other organizers: Erwin Marsi, Amit
Dubey and Yuval Krymolowski.

2http://ilps.science.uva.nl/ erikt/signll/conll/

2.2. Whitespace

People who look at treebank annotations, including annota-
tors, normally do not care much about whitespace. How-
ever, when faced with the task of converting a treebank
from one format to another, whitespace becomes relevant.
We cannot recall any treebank documentation that defined
explicitly how whitespace is used. However, when looking
at treebank files, it often becomes apparent that whitespace
is used in a certain way. Our first version of a script for
converting one of the treebanks to the shared task format
made many assumptions about where spaces, tabs or blank
lines were required or forbidden, based on our study of sev-
eral treebank sentences. However, every single one of these
assumptions was violated by at least one other sentence.
From this we draw two conclusions: First, scripts taking
a treebank as input should never make such assumptions,
as they would introduce errors in the output. Second, tree-
bank providers should explicitly mention any rules about
whitespace that should hold, and then ensure that they do.
We have noticed spurious whitespace in at least two other
treebanks.

2.3. Other delimiting characters

Sometimes, characters other than whitespace are used to
separate one field from another in a treebank. Typically
colons or semicolons, single or double quotation marks and
round, square, curly or angle brackets fill this role. We have
encountered four treebanks where for various sentences one
of these characters was missing, doubled, misplaced, or re-
placed by another character.
These errors are particularly serious if they occur with
XML delimiters, such as the quotation marks around at-
tribute values or the angle brackets around XML tags. In
one treebank, several files were not valid XML due to this
kind of error.

2.4. Character encoding

We have encountered one treebank in which some files
were encoded in UTF-8 (Unicode) and others in the
Windows-1254 encoding.

2.5. Encoding of special characters

In spite of Unicode, which can encode practically all
languages, language group-specific encodings remain in
use. In fact, only one treebank we encountered uses

Unicode (Hajič et al., 2004). Sometimes, an encoding
(e.g. ASCII or one from the ISO-8859 family) is used
for a treebank because it is the standard encoding for
the treebank’s language, but the texts on which the tree-
bank is based originally contained a few characters that
are not covered by the encoding. A common solution is
then to encode these characters as named character en-
tities. For example, the Prague Dependency Treebank
(Böhmová et al., 2003) usesà for à, the British
component of the International Corpus of English (ICE-
GB) (Greenbaum, 1996) uses°ree; for ◦ and SU-
SANNE (Sampson, 1995) uses<deg> for the same sym-
bol. In ICE, we have encountered some inconsistencies
in these entity names, e.g. both&much-less-than;
and &much-smaller-than; and bothΒ and
&BETA; are used. In addition, some special characters that
should have been encoded were not.

Certain characters have a special meaning in most annota-
tion schemes (see Section 2.3.). Therefore, they should be
encoded or escaped when they are meant to represent the
original character. In XML, either single or double quota-
tion marks must enclose attribute values.3 If the attribute
value is meant to contain the same quotation mark as is
used for the enclosure, it has to be encoded as' or
" respectively.4 In addition,& has to be encoded as
& .5 We have encountered two treebanks that failed
to do that and therefore contained files that were not valid
XML.

Actually, the need to encode quotation marks can be
avoided by putting information such as the stem or lemma
in an element of its own instead of some element’s at-
tribute.6 However, this annotation style was not chosen in
any of the four XML-encoded treebank which we encoun-
tered that contain lemma information7 (although it is used
in the SGML version of the Prague Dependency Treebank).
Three treebanks even encode the word forms as attributes
in their XML versions.

2.6. Presence and order of all fields

We have encountered two treebanks where the POS tag for
a word was missing, another one where the lemma informa-
tion was missing in part of the treebank, a fourth one where
one word token had two conflicting PoS attributes and a
fifth one where one lemma was empty, four constituent la-
bels were missing and one constituent had two different
function labels. Two of these treebanks also had at least
one case where pieces of information (such as lemma, POS
and other features) were in a different order than in the rest
of the treebank.

3<token lemma="O’Neill"> O’Neill </token>
4<token form=’O'Neill’> O’Neill

</token>
5See the W3C Recommendation (http://www.w3.org/)

on XML 1.1, Section 2.4 “Character Data and Markup”
6<token> <lemma> O’Neill </lemma> <form>

O’Neill </form> </token>
7Possibly because it was felt that only the original word forms

are “data” and everything else is meta-data.

2.7. Typos in labels

We have encountered five treebanks that had typos in labels,
i.e. in the names of POS, constituents, grammatical func-
tions or additional features. There was also at least one case
of the lemma being for a completely different word than the
token itself and one treebank where a few XML labels had
inconsistent case (<W> ended by</w > and vice versa).

2.8. Typos in structure

Tree structure can be expressed in various ways: for ex-
ample, phrase structure by indentation or paired brackets
or tags, dependency structure by a dependency tree with
indexes on the leaves indicating linear order or by a lin-
early ordered list where each token has a field containing
the index of its head. In all these cases, typos in the struc-
ture can lead to incorrect annotation. If the result is in-
correct attachment, it is very hard to detect automatically.
However, we have encountered four types of problems that
can be spotted automatically. One XML-encoded phrase
structure treebank contained more than 40 cases of XML
tags that were not properly nested. One dependency tree-
bank contained some tokens for which the index of the head
was larger than the highest index in the sentence. Two de-
pendency treebanks contained sentences with dependency
cycles, i.e. where either a token directly links to itself or
it links to another token that links to another token, etc.,
that links back to the first. One treebank encoded phrase
structure but allowed for discontinuous constituents. The
beginning and end of a discontinuity in a constituentxp is
marked by a mirrored pair of symbolsxp– and –xp. We
have encountered cases where there were beginnings with-
out ends and vice versa and at least one case where the
depth of the beginning and end was different (although it
must be identical). In theory, the same problem can occur
with normal phrase structure brackets, although we have
not encountered that.

2.9. Potential errors in the linguistic annotation

It is rare that one notices errors in the linguistic annotation
for a language one does not speak. However, sometimes
a general linguistic understanding of a treebank’s annota-
tion scheme is enough to at least suspect that something
is wrong (and consequently report it to the treebank’s au-
thors). For example, one treebank has separate labels for
finite, non-finite and averbal (sub)clauses. Given these la-
bels, we suspect an error when we encounter, for example,
a constituent without a verb being labelled a finite clause or
a constituent with a verb labelled an averbal clause. Some-
times a dependency treebank annotation scheme contains a
designated label for the root token of the whole sentence or
clause. For example, in the Metu-Sabancı treebank (Oflazer
et al., 2003; Atalay et al., 2003), this is theSENTENCEla-
bel. So we suspect an error when we encounter a sentence
that does not contain this label.

3. Preventing and detecting problems
In the previous section, we listed many types of problems
that we noticed in various treebanks. In this section, we
propose ways to prevent or detect these problems.

3.1. Explicit documentation

We think that the first step towards ensuring that a tree-
bank does not exhibit any of the problems discussed in
Sections 2.1. to 2.7. is to explicitly document the conven-
tions used for a treebank. This will raise awareness of these
conventions in everybody working on or with the treebank.
In particular, machine-readable lists of all special character
encodings and labels used in the treebank would be very
helpful. Creating such lists encourages treebank providers
to check for mistakes, and having such lists readily avail-
able encourages script writers to actually check whether
the data adheres to it. The majority of the treebanks do
not provide such lists in easily machine-readable form (al-
though sometimes they can be copy-pasted from web pages
or PDF files).

3.2. Format checker

An explicit documentation of conventions can be used as
a specification for an automatic format checker, i.e. soft-
ware that reads in treebank files and flags cases that violate
the specification. Such software could automatically detect
the problems described in Sections 2.1. to 2.8. Some tree-
bank projects use tools, such as Annotate (Plaehn, 2002),
for treebank creation/editing that directly enforce the for-
mat, for example by providing a pull-down menu of labels
instead of having annotators type in labels by hand. How-
ever, creating such a tool from scratch or even adapting an
existing one to a different annotation scheme can be too big
an overhead for a treebank project. The next best thing then
is to write a format checker, and use it at regular intervals,
ideally after each editing session. Once explicit documen-
tation is available, writing such a format checker should
be relatively easy for somebody with experience in script-
ing languages such as Perl or Python. If the treebank au-
thors do not have this experience themselves, they should
encourage users to write and submit such software, as it is
in everybody’s interest that it is used.
Some people might think that some treebank formats, such
as XML, are inherently less susceptible to format errors.
In our experience, however, this is not true. We have en-
countered at least two treebanks that use the XML format
but apparently have been created or modified with a sim-
ple text editor and without validating the XML afterwards
(see Sections 2.3. and 2.5.). In fact, only three out of seven
XML-encoded treebanks came with a DTD or a reference
to an XML Schema. We have also seen several scripts for
converting treebanks to or from XML that parse or con-
struct XML “by hand”, i.e. through regular expressions
and print statements instead of by using available XML li-
brary functions. This method is error-prone and should be
avoided. In general we think that writing a format checker
for a non-XML format is not more difficult than writing
a DTD/Schema for an XML-based format. Note also that
some restrictions, e.g. on cycles cannot be expressed in a
DTD/Schema.
In general, we have not found one format better than an-
other. We have, however, noticed two practices which we
would discourage as they make the introduction of errors
easier and their automatic detection harder. The first one
is using XML attribute values with internal structure, e.g.

attribute values (encoded as strings) that are lists or sets
of more atomic values, such as morphological feature val-
ues. Such an annotation style means that annotators have
to deal with two different ways to encode structure, one
that uses XML tags and one that uses for example brack-
ets. It also means that these attributes cannot easily be vali-
dated through a DTD/Schema. The second practice that we
would like to discourage is to keep different levels of anno-
tation in separate files, e.g. one file with the part-of-speech
annotation and another with the syntactic annotation of the
same text. This approach has several disadvantages:

• Annotators of one level do not see the other level, so
there is a higher chance of inconsistent annotation and
a missed chance for detecting errors in the lower levels
(e.g. the Penn treebank (Marcus et al., 1994) contains
some VPs whose only verb is tagged as a noun).

• Some information, such as the words themselves, has
to be repeated. This can lead to inconsistencies be-
tween the two versions if any corrections (e.g. of ty-
pos or tokenization errors) or changes (e.g. to the mul-
tiword policy) are carried out in only one version.

• Format checkers and especially conversion scripts
would have to read in and parse more than one file at a
time and establish the correspondence between tokens
before being able to check or convert the content. This
makes these tools more complicated and therefore less
likely to be developed and used.

We have encountered at least one treebank that used the
separate-file approach and suffered from not being format
checked.

3.3. Conversion by head table

The errors in clause labelling described in Section 2.9. were
detected during the conversion from the original phrase
structure to the shared task dependency format. Jelinek
et al. (1994) introduced the idea of a head table to auto-
matically determine the head child of each constituent in a
phrase structure treebank and Magerman (1995) used the
first version for the Penn Treebank (Marcus et al., 1994).
Collins (1996) slightly modified that table and used it to
convert the Penn Treebank phrase structures into a collec-
tion of bilexical dependencies. Yamada and Matsumoto
(2003) and Nivre and Scholz (2004) built on that idea
and used a slightly modified version of Collins’ head ta-
ble to convert the Penn Treebank into an unlabelled or la-
belled dependency treebank respectively, on which a de-
pendency parser can be trained and tested. A similar ap-
proach was used to convert the Alpino (van der Beek et
al., 2002), BulTreebank (Simov et al., 2005; Marinov and
Nivre, 2005), Bosque (Afonso et al., 2002), Cast3LB (Civit
Torruella and Martı́ Antonı́n, 2002), Sinica (Chen et al.,
2003), Talbanken05 (Nilsson et al., 2005), TIGER (Brants
et al., 2002) and Japanese Verbmobil (Kawata and Bartels,
2000) treebanks to labelled dependency treebanks (or par-
tially labelled in the case of Cast3LB).
If one looks at Magerman’s and especially Collins’ head ta-
ble (Collins, 1999, p.240), one notices a number of linguis-
tically implausible potential head children, e.g. ADJP, NN,

NNS8 or NP as head children of VP. For anyone who has
worked with the Penn Treebank, it is clear that these try to
compensate for annotation errors in the treebank. Although
this makes sense for the researcher only interested in con-
verting a messy treebank as well as possible, we propose to
actually use the conversion by head table as an instrument
of quality control. This can be achieved by three additions
to the head table format.
Firstly, a flag for each element in a rule stating whether
this is a linguistically sound or rather a “heuristic” potential
head child. Whenever a “heuristic” rule part has to be used,
the head finding algorithm should output a warning about
this fact. Secondly, the direction is not specified per line
(parent constituent) but per element (head child). This was
implicitly already needed for Collins (1999)’s special rules
for NPs and explicitly realized in Bikel (2002)’s reimple-
mentation of Collins’ parser. Thirdly, in addition to the di-
rections “left” and “right” that state that the head child isthe
leftmost, respectively rightmost, matching child, we pro-
pose a requirement of “exactly one”.9 If for example one
thinks that an adjective is a potential head child of an ADJP,
and that at most one adjective should occur as a direct child
of an ADJP, one would write a ruleADJP: "only" A .
The algorithm that applies the head table should then out-
put a warning whenever it tries to apply an “only” rule
in a context where there are several matching elements.
“Only” rules will be especially frequent for treebanks such
as Alpino, Bosque, Sinica, Talbanken05, TIGER and Verb-
mobil, which explicitly mark heads, as the linguistic defini-
tion entails that there should be only one head (although
multi-words can sometimes be an exception). The pro-
posed method for detecting errors, which involves linguis-
tic understanding, can be complemented by fully automatic
methods such as Ule and Simov (2004) and Dickinson and
Meurers (2005).

4. Handling problems
Magerman’s original head table dates from 1995 and the
much-cited work by Collins that also uses it dates from
1996 and 1997. There has been a new release of the Penn
Treebank since then (Treebank-3, 1999). However, many
of the errors that necessitated the “heuristic” head rules
are still in the treebank, see e.g. (Dickinson and Meurers,
2005). There are two possible explanations for this: Either
the treebank users did not tell the treebank authors about
these errors10 or the treebank authors did not do anything
with this information.
Whenever we or one of the shared task participants11 no-
ticed errors in the shared task data that were due to errors
in the original treebank (and not to conversion bugs), we
reported these back to the treebank providers, and we are
very pleased to report that, whenever feasible, they were

8NN and NNS are the Penn Treebank POS tags for singular
and plural nouns, respectively.

9Based on an idea by Montserrat Civit (p.c.), although with a
slightly different interpretation.

10Note that Michael Collins was a PhD student at the University
of Pennsylvania itself at that time.

11Thanks to Ryan McDonald, Svetoslav Marinov and Masayuki
Asahara for reporting bugs.

corrected, sometimes within days. As a consequence, some
of the errors reported in this paper are no longer present in
the respective treebanks.

4.1. The challenges

We think that this feedback loop is an important part of
quality control and should be encouraged explicitly. This
can be done by clearly stating in the treebank’s documenta-
tion that bug reports are welcome and by providing a con-
tact address for reporting them. Although a quick fix of
reported problems is the best encouragement for users ac-
tively working with the treebank to report further problems,
should they find any, this might not always be feasible. In
addition, treebank providers might be reluctant to officially
release new versions of a treebank at very short intervals or
for very minor changes. Also, funding for the project might
have ended, and the original authors might have moved on
to other jobs. In that case, even if users notice errors and fix
them in their own copies of the treebank, there is currently
no easy way for future users to profit from those fixes, as
license restrictions often prohibit one user from passing on
modified versions to another. Finally, when treebanks are
used to train and test systems such as taggers and parsers,
and when one wants to be able to compare results by differ-
ent systems at different times, it is vital that one compares
against exactly the same version of the treebank.

4.2. Patching treebanks

We think that we can learn from software developers, es-
pecially the open source community, how to achieve these
goals and overcome these problems. We introduce the con-
cept of “patches” to treebanks. In essence, treebanks are
text files, just as source code is. After a treebank author or
user has made changes to a treebank in order to fix reported
or noticed problems, the Unixdiff utility allows them
to list all changes in a very concise manner. If produced
with the options-c or -C , the output ofdiff can be used
as the input of the Unixpatch utility to apply the same
changes to somebody else’s copy of the original treebank.
This means that

• if users think they know how to fix a problem, they can
make fixes to their copy and then have a very easy and
foolproof way to report back to the treebank authors
how they propose to change the treebank.

• treebank authors then simply have to decide whether
to accept or reject the proposed patch; in either case
they can simply post it to the treebank’s web site with
an explanation. This directly makes accepted patches
available to other users without the need for a new re-
lease of the treebank. Also, authors can automatically
apply patches accepted since the last release for the
next release, thereby keeping their own effort to a min-
imum.

• if a treebank is not maintained any longer by the
license holders, users can probably share patches
among themselves without violating the treebank’s li-
cense, as patches only contain fragments of the tree-
bank texts and are useless without the original tree-
bank. This would allow even the Penn Treebank to be

patched. Obviously there is a risk of diverging or dis-
puted fixes, as noted in Blaheta (2002), and there is
also the problem of new users not knowing about or
not having access to older fixes.12

4.3. Versioning
Out of the twenty-one treebanks we studied, four used num-
bers for major releases/versions only (e.g. TIGER Version
1 and 2), nine used two-part numbers for the major and
minor release (e.g. Bosque 7.3) and eight did not use any
apparent version numbers. We propose that all treebanks
follow a versioning scheme similar to software, with major
and minor releases and numbered patches. This will allow
researchers to state precisely which version of a treebank
their reported results pertain to. Ideally, all old versions
should be kept available, so that if some researchers wants
to replicate or compare to somebody else’s results years
later, they can still get the appropriate version. They can
then state something like “applying our new method to the
same treebank version as X, we gety% while X got only
z%; applying our method to the latest version (i.j.k), we
getu%”. As treebanks can be big, treebank authors might
decide to keep only major releases and allow users to recon-
struct in-between versions by applying a number of patches
to the preceding major release.
Obviously the boundary between a major and a minor re-
lease or between a minor release and a patch is a fuzzy
one but the term “release” seems to suggest some im-
portant improvement has been made. Therefore treebank
providers are probably reluctant to make a new “release” if
the changes “only” fix problems such as the ones discussed
in Sections 2.5. to 2.7. and prefer to wait for the next re-
lease, which might be years in the future. It is for the quick
fixes to these problems in particular that we advocate the
use of patches.
Finally, we can only recommend the use of versioning soft-
ware such as CVS (Concurrent Versions System)13 or Sub-
version14, both of which are available for free, to help keep
track of versions.

5. Summary
We have described the quality problems we encountered
during our work with a large number of treebanks. We pro-
pose preventing and detecting these problems through the
explicit documentation of format conventions, in particular
machine-readable lists of labels, through the use of format
checkers and, for phrase-structure treebanks, through ad-
ditions to the head table mechanism. We also plead for
a structured approach to handling reported problems and
propose to adopt the software concepts of patching and ver-
sioning. We hope that this paper will help to improve exist-
ing and future treebanks.

Acknowledgements
Many thanks to the treebanks providers who kindly allowed
the use of their treebanks for the shared task, answered

12For example, the URL mentioned in Blaheta (2002) for his
list of corrections to the Penn Treebank does not exist anymore.

13See e.g.http://www.nongnu.org/cvs/cvs.html
14Seehttp://subversion.tigris.org/

questions about the annotation and fixed errors, to the other
organizers and some treebank providers who converted the
treebanks and to the shared task participants who asked use-
ful questions and noticed bugs. Without the help of all these
people the work on which this paper is based would not
have been possible.

6. References
I. Aduriz, M. Aranzabe, J. Arriola, A. Atutxa, A. Daz

de Ilarraza, A. Garmendia, and M. Oronoz. 2003. Con-
struction of a Basque dependency treebank. InProc. of
the Second Workshop on Treebanks and Linguistic The-
ories (TLT).

S. Afonso, E. Bick, R. Haber, and D. Santos. 2002. ”Flo-
resta sintá(c)tica”: a treebank for Portuguese. InProc.
of the Third Intern. Conf. on Language Resources and
Evaluation (LREC). ELRA.

N. Atalay, K. Oflazer, and B. Say. 2003. The annotation
process in the Turkish treebank. InProc. of the 4th In-
tern. Workshop on Linguistically Interpreteted Corpora
(LINC).

D. Bikel. 2002. Design of a multi-lingual, parallel-
processing statistical parsing engine. InProc. of the Hu-
man Language Technology Conf. (HLT).

D. Blaheta. 2002. Handling noisy training and testing data.
In Proc. of the Conf. on Empirical Methods in Natural
Language Processing (EMNLP), pages 111–116.

A. Böhmová, J. Hajič, E. Hajičová, and B. Hladká. 2003.
The PDT: a 3-level annotation scenario. In A. Abeillé,
editor,Treebanks: Building and Using Parsed Corpora.

S. Brants, S. Dipper, S. Hansen, W. Lezius, and G. Smith.
2002. The TIGER treebank. InProc. of the First Work-
shop on Treebanks and Linguistic Theories (TLT).

S. Buchholz, E. Marsi, A. Dubey, and Y. Krymolowski.
2006. CoNLL-X shared task on multilingual depen-
dency parsing. InProc. of the Tenth Conf. on Com-
putational Natural Language Learning (CoNLL-X).
SIGNLL. To appear.

K. Chen, C. Luo, M. Chang, F. Chen, C. Chen, C. Huang,
and Z. Gao. 2003. Sinica treebank: Design criteria, rep-
resentational issues and implementation. In A. Abeillé,
editor,Treebanks: Building and Using Parsed Corpora.

M. Civit Torruella and MaA. Martı́ Antonı́n. 2002. Design
principles for a Spanish treebank. InProc. of the First
Workshop on Treebanks and Linguistic Theories (TLT).

M. Collins. 1996. A new statistical parser based on bigram
lexical dependencies. InProc. of the 34th Annual Meet-
ing of the ACL.

M. Collins. 1997. Three generative, lexicalised models for
statistical parsing. InProc. of the 35th Annual Meeting
of the ACL.

M. Collins. 1999. Head-Driven Statistical Models for
Natural Language Parsing. Ph.D. thesis, University of
Pennsylvania.

M. Dickinson and W. D. Meurers. 2005. Prune diseased
branches to get healthy trees! InProc. of the Fourth
Workshop on Treebanks and Linguistic Theories (TLT),
pages 41–52.

S. Džeroski, T. Erjavec, N. Ledinek, P. Pajas,
Z. Žabokrtsky, and A.̌Zele. 2006. Towards a Slovene

dependency treebank. InProc. of the Fifth Intern. Conf.
on Language Resources and Evaluation (LREC).

S. Greenbaum, editor. 1996.Comparing English World-
wide: The International Corpus of English. Clarendon
Press, Oxford.

J. Hajič, O. Smrž, P. Zemánek, J.Šnaidauf, and E. Beška.
2004. Prague Arabic dependency treebank: Develop-
ment in data and tools. InProc. of the NEMLAR Intern.
Conf. on Arabic Language Resources and Tools.

E. Jelinek, J. Lafferty, D. Magerman, R. Mercer, A. Ratna-
parkhi, and S. Roukos. 1994. Decision tree parsing us-
ing a hidden derivation model. InProc. of the Workshop
on Human Language Technology.

Y. Kawata and J. Bartels. 2000. Stylebook for the Japanese
treebank in VERBMOBIL. Verbmobil-Report 240,
Seminar für Sprachwissenschaft, Universität Tübingen.

M. T. Kromann. 2003. The Danish dependency treebank
and the underlying linguistic theory. InProc. of the
Second Workshop on Treebanks and Linguistic Theories
(TLT).

D. Magerman. 1995. Statistical decision-tree models for
parsing. InProc. of the 33rd Annual Meeting of the ACL.

M. Marcus, G. Kim, M. Marcinkiewicz, R. Mac-Intyre,
A. Bies, M. Ferguson, K. Katz, and B. Schasberger.
1994. The Penn treebank: Annotating predicate argu-
ment structure. InProc. of the Workshop on Human Lan-
guage Technology.

S. Marinov and J. Nivre. 2005. A data-driven dependency
parser for Bulgarian. InProc. of the Fourth Workshop on
Treebanks and Linguistic Theories (TLT), pages 89–100.

J. Nilsson, J. Hall, and J. Nivre. 2005. MAMBA meets
TIGER: Reconstructing a Swedish treebank from antiq-
uity. In Proc. of the NODALIDA Special Session on Tree-
banks.

J. Nivre and M. Scholz. 2004. Deterministic dependency
parsing of English text. InProc. of the 20th Intern. Conf.
on Computational Linguistics (COLING).

K. Oflazer, B. Say, D. Zeynep Hakkani-Tür, and G. Tür.
2003. Building a Turkish treebank. In A. Abeillé, editor,
Treebanks: Building and Using Parsed Corpora.

O. Plaehn. 2002. Annotate Bedienungsanleitung. NEGRA
project report, Universität des Saarlandes, Germany.

G. Sampson. 1995.English for the Computer: The SU-
SANNE Corpus and analytic scheme. Clarendon Press.

K. Sima’an, A. Itai, Y. Winter, A. Altman, and N. Nativ.
2001. Building a tree-bank of modern Hebrew text. In
B. Daille and L. Romary, editors,Journal Traitement Au-
tomatique des Langues (t.a.l.) — Special Issue on Natu-
ral Language Processing and Corpus Linguistics.

K. Simov, P. Osenova, A. Simov, and M. Kouylekov. 2005.
Design and implementation of the Bulgarian HPSG-
based treebank. InJournal of Research on Language and
Computation – Special Issue, pages 495–522. Kluwer
Academic Publishers.

T. Ule and K. Simov. 2004. Unexpected productions may
well be errors. InProc. of the Fourth Intern. Conf.
on Language Resources and Evaluation (LREC), pages
1795–1798.

L. van der Beek, G. Bouma, R. Malouf, and G. van Noord.

2002. The Alpino dependency treebank. InComputa-
tional Linguistics in the Netherlands (CLIN).

H. Yamada and Y. Matsumoto. 2003. Statistical depen-
dency analysis with support vector machines. InProc.
of the 8th Intern. Workshop on Parsing Technologies
(IWPT).

Evaluation of a diachronic text corpus
Mikko Lounela

Kotimaisten kielten tutkimuskeskus
Sörnäisten rantatie 25

00510 Helsinki
Finland

mikko.lounela@kotus.fi

Abstract
This paper describes an evaluation procedure of a two-part diachronic corpus of 20

th century periodicals, and the results of the evaluation.
The corpus was composed by scanning the original papers, running them through OCR, and automatically re-structuring the text to TEI-
based XML format, with original images linked to the text. A small sub-corpus was extracted and its structure was enhanced and
corrected manually. The testing procedure was based on manual evaluation of random samples of the corpus, from which both the
markup and the OCR quality were tested. In addition to the manual evaluation, the OCR quality was tested semi-automatically, using a
morphological analysis tool. The results show that the composing method leaves a considerable amount of errors both in the markup and
the actual text, and suggest directions for correcting actions. The testing procedure itself brings up some questions about how this kind
of internally varying, structurally complex corpus should be tested, and what would be the best base for composing the test material.

1. Introduction
In year 2003, The Academy of Finland allocated 300 000
euros for a one-year project composing a diachronic re-
search corpus of Finnish periodicals published in twentieth
century. Three institutions took part in the project. The Re-
search Institute for the Langauges of Finland (RILF) coor-
dinated the project, and accounted for composing and eval-
uating the final corpus. The Microfilming- and Conserva-
tion Centre of the Helsinki University Library was respon-
sible for collecting the periodicals, and scanning and opti-
cal character recognition (OCR) of the text material. The
Copyright Society Kopiosto worked out the leagal issues
considering (limited) re-publisihing of the texts for research
purposes.
When composing the corpus, text was re-structured
from layout-based WordML to text-structure-based TEI-
compatible XML, see TEI (2006). A small sub-corpus
was extracted from the whole, and its markup and meta-
information were enhanced by hand. The original images
of the periodical pages were linked to corresponding parts
of the text. No morphological or syntactic analysis was in-
cluded in either part of the corpus. Henceforth, the main
corpus will be called base corpus, and the subcorpus will
be called core corpus. For overview of our data model, see
Lounela (2002) and Lehtinen and Lounela (2004). Note
that the current corpus was only structured to paragraph
level.

2. Goal of the paper
In this paper, I describe the effort of evaluating the re-
sult corpus of the project, concentrating on three problems:
sampling a varying, annotated corpus, evaluating the XML
and OCR quality of the corpus manaually, and using a mor-
phological analyser for evaluation of OCR. First, I have to
explain briefly the structure of the compiled corpus. Then I
go through the methods and results of evaluating the XML-
structure and OCR quality. Finally, I make some points

about collecting and testing this kind of a diachronic text
corpus.

3. The Corpus
The size of the base corpus is about 8.1 million words
and 3.4 million markup items (XML tags or attribute-value
pairs). It consists of material of 26 annual volumes of 4
periodicals, totaling 385 issues. The publishing time of the
periodicals in the corpus is between years 1917 and 1972.
Suomen Kuvalehti (5 461 557 words, 343 issues, 7 annual
volumes) is a general weekly periodical. Lakimies (1 362
392 words, 15 issues, 8 volumes) is a periodical of a ju-
ridical association. Suomi (728 589 words, 7 issues, 5 vol-
umes from 1917 to 1938) is a national romantic scholarly
periodical from the beginning of the century. Historiallinen
aikakauskirja (590 985 words, 20 issues, 5 volumes from
1917 to 1945) is a periodical of a historical society.
The base corpus is organised in such a way, that each file
includes one issue of a periodical. The automatic markup
process aimed at recognising feature borders, headers, para-
graphs, captions, line-, column-, and page breaks, and such
non-editorial elements as page numbers. Captions, page
numbers, and other text elements disturbing the regular
text flow were moved to the end of the files, and linked
to their original positions. An automatically created meta-
information file was attached to each issue, including pub-
lishing information about the text, along with links to the
images of the original paper issue. The meta-information
system follows the guidelines of expressing Dublin Core
elements in RDF format, see Kokkelink and Schwänzl
(2002).
The core corpus consists almost solely of Suomen Kuvale-
hti (SK), a periodical that also forms the backbone of the
base corpus. It includes four issues of each annual vol-
ume of SK, plus one issue of each of the other periodi-
cals, including about 667 000 words and 359 000 markup
items. The texts are re-structured so that each XML-file
consists of one feature, and each feature has its own meta-

information file. The markup of the texts in the core cor-
pus is based on the automatic markup of the base cor-
pus, but it is (partly) corrected manually: the feature bor-
der elements and text displacing decisions were checked,
along with some markup considering headers and para-
graphs. The meta-information consists of publishing in-
formation, augmented manually with key words according
to VESA key word thesaurus, see HUL (2000), and fea-
ture type codes. For a metadata-oriented introduction to the
corpus, see Heikkinen et al. (2005) (in Finnish).
In addition to the XML-texts and the meta-information, the
corpus includes images of the originals of each page in
the corpus. The page break and feature border tags in the
XML-markup act as links to the corresponding image. The
images are also linked to XML-files through the metadata-
files. One of the purposes of this linking is to provide the
interested researchers the look and feel of the original text,
other is to make it possible to check the correctness of the
OCR:ed text in suspicious cases.

4. The Corpus Evaluation Scheme
The corpus validation was carried on using random sam-
ples of the XML files. The sample amount and size were
based on a validation manual released by Oxford University
Computing Services, (OUCS, 2003). The samples were
collected, and the markup made visible in HTML-format
with a self-written program. We used a test material of
70 samples from the base corpus. Each sample included
500 meaningful items (elements, attributes, or word parts).
The test material included 24 201 words (after words di-
vided by line breaks were united), 6 315 tags and 1 843
attribute-value pairs (1 196 of which were rendering infor-
mation that was not tested). The core corpus was tested
with 50 such samples, totaling 14 585 words, 3847 tags, and
1 257 attribute-value pairs. The proportion of text (words)
vs. markup (tags and attribute-value pairs) in test material
was 74.8 / 25.2 % for the base corpus, and 74.1 / 25.9 % for
the core corpus.
The corpus was tested by proofreading the sample sets,
comparing them to the linked images. The actual work was
carried out using a self-designed, HTML-based test bed that
shows the test material and linked images side by side. A
regular WWW-browser acted as user interface for the work.
We found different kinds of XML and OCR errors in the
digitised text, depending on varying quality and layout of
the original periodicals. We created classifications of the
failures (for OCR and XML separately), taking into account
the effect on usability of the corpus. This was done previ-
ous to the actual evaluation, with a preliminary sample set.
The precision of the markup was reduced somewhat after
the preliminary classification. We noticed that the layout-
based recognition of the text elements disturbing the text
flow did not work properly. About half of the text trans-
ferring decisions were mistaken. So, we decided to return
the transferred elements (other than page numbers) to their
original places before the final test round. This applies to
the base corpus. For the core corpus, these failures were
corrected manually. Also the distinction between line- and
column breaks worked so badly that we decided to reduce
the column breaks to line breaks in both parts of the corpus.

For the actual evaluation, we produced another pair of sam-
ple sets. The base corpus test material was read through
twice - first for evaluating the markup, then for evaluating
the OCR quality. For the core corpus, only markup was
tested, as the same text content appears in the base corpus.
The detected errors were counted and divided into classes.
After manual evaluation, a morphological analyser for
Finnish, Fintwol, was used to re-test the OCR quality of the
base corpus. About the morphological analyser, see LING-
SOFT (2006), Koskenniemi (1983). The text contents were
run through Fintwol, and unrecognised words were cap-
tured. These were again checked against the images, and
classified with another classification. The results of the two
OCR quality tests were compared.
The test results were produced by people who were not di-
rectly involved in producing the data they were testing. The
meta-information files of the corpus were not tested.
The results of the OCR test lead to a decision of manually
proofreading the text content of the core corpus. This work
is in progress. That way we will have a small corpus with
manually corrected markup and manually corrected text,
along with the larger corpus of worse quality.

5. Evaluating the markup
The failure types of the XML-structure, along with their
frequencies in the base and core corpus tests are expressed
in table 1. The table shows also the size of the markup
item sets in which the failures can occur (applicable ele-
ments). The failures are classified according to their level
in the text structure. The classes are: feature-level failures
(errros in the distribution of the feature boundary elements),
paragraph-level failures (errors in selection and distribution
of the paragraph and header elements), line-level failures
(superfluous or missing line break elements), discontinuous
text recognition failures (errors in detecting and displacing
discontinuous text), and image linking failures (errors in
links to original images from feature boundary and page
break elements).
When we relate the figures of the classified failures to the
sizes of the relevant tag sets, we may come to some conclu-
sions about the structural evaluation of the corpus.

* The figures show that the automatic feature boundary
heuristics worked badly - more than half (66.7 %) of
the decisions made by it failed. This was corrected by
hand to the core corpus, resulting in an error rate of
2.9 per cent.

* The failure rate in paragraph-level was 6.9 % in base
corpus, and 7.6 % in core corpus. Many of these er-
rors origin from the advertising material with some-
what lively layout. This material is more frequent in
SK, which is better represented in the core corpus.

* The line level errors give rates of 2.7 / 2.1 %. The
markup of this level is copied directly from the
WordML markup. Most of these errors can be ex-
plained by the fact that super- and subscript caused
extra line breaks int the OCR of the scholarly periodi-
cals.

Failure Base Corpus Applicable elements Core Corpus Applicable elements
Feature-level failures 48 72 2 69
Paragraph-level failures 83 1199 41 538
Line-level failures 122 4528 54 2616
Discontinuous text recognition failures 16 153 3 187
Linking failure 2 144 4 125
Total failures 271 6196 104 3535

Table 1: Text structure errors

* Discontinuous text recognition failures (including
page numbers etc. and in core corpus also captions and
other elements moved aside from disturbing the main
text flow) give 10.5 % / 1.6 % failure rate. These num-
bers are not mutually comparable, because most of the
text diplacings were cancelled in the base corpus, and
the displacing decisions were checked by hand for the
core corpus.

* Linking failure rates are 1.4 / 3.2 %, a number that
indicate higher error rate in the core corpus. The
amounts of failures are only 2 and 4, though. Over-
all, it seems that the linking is working quite well in
both parts of the corpus.

The total failure rate is 4.4 % of the applicable elements (the
element set in which these errors can occur) in the base cor-
pus, and 2.9 % in the core corpus. Corresponding numbers
when compared to the amount of all the markup items are
3.3 % and 2.5 %.
To evaluate the adequacy of sampling, we produced two ex-
tra sample sets from the base corpus. These were produced
with the same specifiactions as the original sample set. The
total amounts of the markup items in these sets are 6 248 (4
150 elements) and 6 738 (4 078 elements).

* Extra set 1 (4 150 elements):

- 3228 line breaks (77.8 % of elements),
- 647 paragraphs (15.6 %),
- 118 divisions (28.4 %),
- 111 gaps (2.7 %),
- 56 headers (1.3 %).

* Extra set 2 (4 078 elements):

- 2943 line breaks (72.2 %),
- 784 paragraphs (19.2 %),
- 187 gaps (4.6 %),
- 155 divisions (3.8 %),
- 78 headers (1.9 %).

A statistical evaluation of the distribution of the most com-
mon elements in the sets suggest that the sample set of this
size is adequate for testing the structure of this kind of ma-
terial. This is indicated by a t-test, calculated from the ab-
solute numbers of the elementsd in the extra sets. The test

shows that the significance values are well below the 0,05
border value1 (see table 2, below).

6. Evaluating the text recognition
The quality of the text recognition was only tested from the
base corpus. Forr this, we used the same test material that
was used for evaluating the XML-structure. The text was
read through, and all the discovered differences between
the corpus text and the digitised image of the original page
were classified. The OCR errors that would lead to accept-
able words in morphological analysis were counted sepa-
rately for further purposes.
Word-level errors were separated from punctuation-level
errors (strings not including alphanumeric characters). The
word-level failures were classified to misrecognised, at-
tached, split, suoperfluous, missing and unrecognisable
words. The last category sources from phonetic transcrip-
tion in one of the original periodicals. Such errors as sub- or
superscripts separated from words were not considered text
level errors as they are included in the line break recognis-
ing failures in the XML structure test. The Suomi-magasine
includes a lot of linguistic articles containing phonetic tran-
scription, which is not recognisable by OCR, let alone by
morphological analyser. This error type was counted sepa-
rately (and included in the overall error rate). Table 3 shows
results of this test.
The overall failure rate of the test material is 5.6 %. Some
of these failures can be seen as more severe than others,
eg. an extra punctuation mark is less harmful than a mis-
recognised word. The punctuation recognition errors are
mostly such that they can’t be noticed using a morpholog-
ical analyser. Also, a fair amount of OCR errors lead to
words that the morphological analyser will recognise as a
normal word.
If we divide the word-level OCR failures to ones that are
detectable with Fintwol, and ones that are not, we get fig-
ures that are better comparable with validation using mor-
phological analyser. Two figures interest us, the amount
of word-level failures (total failures excluding failures con-
serning non-alphanumeric strings), and the word-level fail-
ures that Fintwol interprets as correctly spelled words. To-
tal word-level failure rate is 4.7 % of tested words. The
errors that resemble some real word, abbreviation or other
entity so that Fintwol would not capture the error are in-
cluded in this number. These constitute 0.5 % tested words.

1The satistical test was performed by Tuula Kähkönen, of
which I want to express my gratitude.

Test value = 0
t df Significance (2-tailed) Mean difference 95 % Confidence interval of the difference

Lower Upper
Set 1 1.367 4 .243 832.000 -857.63 2521.63
Set 2 1.527 4 .202 829.400 -878.78 2337.58

Table 2: The t-test results of the extra sample sets.

Failure type Number of failures % of failures (1346) % of words (24 201)
Words with misrecognised letters 505 37.5 % 2.1%
Attached words 51 3.8 % 0.2 %
Split words (number of extra parts) 146 10.8 % 0.6 %
Superfluous words 24 1.8 % 0.1 %
Missing words 159 11.8 % 0.7 %
Unrecognisable words (phonetic transcription) 262 19.5 % 1.1 %
Total word-level OCR failures 1147 85.2 % 4.7 %
Failures conserning non-alphanumeric strings 199 14.8 % 0.8 %
Total OCR failures 1346 100 % 5.6 %

Table 3: OCR errors

7. Evaluating the text recognition using a
morphological analyser

The OCR quality was re-tested using the morphological
analyser Fintwol. The XML codes were stripped off the
test material, and the text was run through the analyser. The
words not recognised by Fintwol were captured and com-
pared to same text in digitised image originals. Table 4
shows results of this test.
The rate of words and names, that were correctly recog-
nised by OCR, but not recognised by Fintwol is 4.5 % of
the text content (43.5 % of Fintwol alarms). This comes
mainly from three sources: change of spelling and punctu-
ation conventions during the 20

th century, the amount of
foreign words (mainly Swedish and English) in the cor-
pus, and the fact that Fintwol does not recognise all proper
nouns.
Earlier we noticed that Fintwol leaves 0.5 % of misrecog-
nised words of the test material undetected. The amount of
misrecognised and unrecognisable words in the Fintwol test
(table 5) is 963, which is 4.0 % of all the words. Assuming
that Fintwol lets through 0.5 % of the misrecognised words
would lead us to overall OCR error rate of 4.5 %. This is
quite close to the rate of all word-level errors in manual test
(4.7 %, see table 3).
Finally, to relate Fintwol results of the test to the whole base
corpus, we made still another classification for the words
not recognised by Fintwol. This classification can be ap-
plied automatically to large material. The words are di-
vided to those consisting of character entities, those includ-
ing character entities, and those consisting of alphanumeric
characters (and possible final punctuation mark). Fintwol is
not XML-compliant, so it cannot tackle character entities.
This means that all the strings containing entities end up as
unrecognised. This classification is not exhaustive, but it
covers most of the unrecognised words. The frequencies of
these types among words unrecognised by Fintwol in the

test material and in the base corpus are expressed in tables
5 and 6.
The all-automatic Fintwol-error classification test supports
the reliability of the original Fintwol test. In all the propor-
tional figures in tables 5 and 6, the difference between the
test material and the base corpus is less than 1.5 %.
To better understand the errors made by Fintwol, we can
have a look at two lists. The lists show 15 most common
words that were not recognised by the analyser. Table 7
shows the words extracted from the test material, and table
8 the same list extracted from the core corpus. Here we
see, that the most common unrecognised words are names,
abbreviations, foreign words and old-fashioned or collo-
quial/poetic words. The names dominate the list extracted
from the test material, while the old-fashioned and foreign
words dominate the list extracted from the whole core cor-
pus. This is quite natural, as the latter are less dependent on
the subject of the text.
Using the error rate of the manual evaluation or corrected
error rate of the analyser-based evaluation, we can estimate
that from 4.5 to 4.7 % of the words in the corpus are mis-
recognised. This would lead us to total amount of 367 00
to 383 000 misrecognised words in the whole corpus. This
would include about 80 000 words (1 % of word mass) of
phonetic transcription from the Suomi-magasine.

8. discussion
I have described a way of testing the XML structure and
the OCR quality of a corpus with one steady sample set
(per corpus), using different methods of exploring the set
both manually and semi-automatically. This seems to be an
economical way of evaluating a corpus, and it tells us a lot
about its overall quality and typical flaws. However, some
questions arise about the sampling and testing procedure,
and also about the corpus composing process itself. Finally,
I present a list of questions and comments considering these
subjects.

Error type Words % of errors (2505) % of words (24 201)
OCR misrecognition or unrecognisable word 963 38.5 % 4.0 %
Unrecognised words (names incl.) 1090 43.5 % 4.5 %
A non-word character string 452 18.0 % 1.9 %
Total reported 2505 100 % 10.4 %

Table 4: Words not recognised by Fintwol, manually classified

Classification Amount % of Fintwol errors (2 505) % of words (24 201)
Include character entities 404 16.1 % 1.7 %
Consist of character entities 333 13.3 % 1.4 %
Consist of word characters 1591 63.5 % 6.6 %

Table 5: Automatic classification of non-recognised words in the test material

Word Amount Type
Brenner 7 Name
VValdheim 6 OCR error (name)
Vanishing 5 Foreign
Stählbergin 5 OCR error (name)
Pond 5 Name
mä 5 Colloquial/poetic
Freisler 5 Name
aˆömä 5 OCR error
Stählberg 4 OCR error (name)
Ondreiko 4 Name
KirjanpitoL:n 4 Abbreviation
Keder 4 Name
it 4 Foreign
ECONOMIC 4 Foreign
Bastian 4 Name

Table 7: Test material: top 15 words unrecognised by Fint-
wol

* The different tests seem to support the view that 70
samples of 500 meaningful items may give somewhat
reliable picture of the overall error rate of OCR quality
of a corpus of this kind and size. Note, that 10 % of
different material with special error sources may add
considerable uncertainty. This was the case with the
phonetic transcriptions in the Suomi magasine. Also,
the vocabulary and the quality of the originals vary
according to the publishing time. To handle this kind
of variation, the material from different sources and
times should probably be tested separately. Ensuring
the adequacy of the sampling for testing the markup
would probably require some more work, especially
for such varying material.

* When evaluating the testing scheme, the representa-
tiveness of the test material for the XML structure does
not proof to be sufficient for evaluating all the quali-
ties we tried to test. It seems that more accurate results
could have been achieved, if we had chosen some ba-
sic qualities of the markup, calculated a statistically
significant sample set for each quality, and tested ac-

Word Amount Type
niinkuin 1563 Old-fashioned
och 1385 Foreign
Valok 1299 Abbreviation
den 866 Foreign
ennenkuin 865 Old-fashioned
N:ot 786 Abbreviation
Mr 688 (Foreign) abbreviation
und 640 Foreign
mä 606 Colloquial/poetic
ko 596 Fragment
att 588 Foreign
om 584 Foreign
ikäänkuin 572 Old-fashioned
rahap 564 Abbreviation
ta 527 Fragment

Table 8: Core corpus: top 15 words unrecognised by Fint-
wol

cordingly. However, it is not guaranteed that the re-
sults would have described the qualities and typical
errors of the markup better than the current approach.

* In evaluating the errors, their classification to differ-
ent levels (structural levels in XML evaluation and
word and character levels in OCR evaluation) seems
to be necessary for different reasons. In OCR evalua-
tion, it is necessary to to distinguish punctuation-level
failures from word-level failures, and in XML evalu-
ation superfluous line breaks are of different impor-
tance than mistaken links. Suitable classifications can
also help relating the tests to each other, as in the case
of the manual and analyser-based OCR tests above.

* Using a morphological analyser for evaluating the text
contents of a corpus is possible, but our experience
shows that in real-life text, about half of the words that
the analyser does not recognise may be false alarms.
Also, the analyser may leave considerable part of the
misrecognised words undetected. This means that the
analyser behaviour should be carefully examined, and

Classification Amount % of Fintwol errors (816 569) % of words (8 148 189)
Include character entities 143 115 17.5 % 1.8 %
Concist of character entities 114 240 14.0 % 1.4 %
Concist of word characters 513 921 62.9 % 6.3 %

Table 6: Automatic classification of non-recognised words in the base corpus

corrected with two estimates: the error slip-through
rate and the proportion of false alarms. A preliminary
manual evaluation seems to be necessary to get this
done.

* In practise, the evaluation proved to be useful, as it
showed how to improve the quality of the corpus.
Based on the testing, we decided to reduce the col-
umn breaks to line breaks in both parts of the corpus,
cancel the displacements of (most of) the discontinu-
ous elements in the base corpus, and manually correct
the OCR results of the core corpus.

During the evaluation, we constantly had a feeling, that sta-
tistical methods could have been used more effeciently to
solve some of our problems, especially considering sam-
pling. We would have liked to experiment on calculating
statistically sufficient sets for evaluating the text content
of different subsets of the the corpus (eg. different time
periods and different periodicals) and relating them to the
whole. Our resources and abilitites did not suffice for this
kind of work, though. A simple and focused guide to ba-
sic statistics for corpus evaluation would have been useful
throughout the process.
The evaluation results may cast a doubt on the method of
collecting and automatically structuring a diachronic cor-
pus based on scanning and OCR. The facts, that the quality
of the originals and also the text structure conventions vary
depending on the original publishing time make this quite a
challenge. This experience showed us once more, that there
is no cheap lunch without a following bill. However, we
have managed to collect a diachronic 8 million word cor-
pus with bearable costs and within a relatively short time
– and while the corpus certainly has its deficiences, it is
a useful tool already, and a good starting point for future
improvements.

9. References
Vesa Heikkinen, Tuure Hurme, Mikko Lounela, and

Mikko T. Virtanen. 2005. Teksti, aihe ja laji: diakro-
nisen korpuksen koostaminen ja käyttäminen. Forth-
coming in the papers from the 32nd Finnish Conference
of Linguistics; In Finnish.

HUL. 2000. Vesa - verkkosanasto/webbtesaurus. Online:
http://vesa.lib.helsinki.fi/. In Finnsh / Swedish; Referred
21.3.2006.

Stefan Kokkelink and Roland Schwänzl. 2002. Ex-
pressing qualified dublin core in rdf / xml. Online:
http://dublincore.org/documents/dcq-rdf-xml/. Referred
21.3.2006.

Kimmo Koskenniemi. 1983. Two-level Morphology: A
General Computational Model for Word-Form Recogni-

tion and Production. University of Helsinki, Department
of General Linguistics.

Outi Lehtinen and Mikko Lounela. 2004. A model for
composing and (re-)using text materials for linguistic re-
search. In M. Nenonen, editor, Papers from the 30th
Finnish Conference of Linguistics, Studies in Language,
University of Joensuu, pages 73–78. University of Joen-
suu, Joensuu.

LINGSOFT. 2006. Fintwol: Finnish morphological anal-
yser. Online: http://www.lingsoft.fi/doc/fintwol/. Re-
ferred 21.3.2006.

Mikko Lounela. 2002. Aiming towards best practices in
xml techniques for text corpora annotation: City of
helsinki public works department - a case study. In
Eero Hyvönen and Mika Klemettinen, editors, Towards
the Semantic Web and Web Services. Proceedings of
the XML Finland 2002 Conference, HIIT Publications,
pages 123–135. Institute for Information Technology,
Helsinki.

OUCS. 2003. D1: Validation manual
for written language resources. Online:
http://www.oucs.ox.ac.uk/rts/elra/D1.xml. Referred
21.3.2006.

TEI. 2006. Tei: Yesterday’s information tomorrow. On-
line: http://www.tei-c.org/. Referred 21.3.2006.

Measuring Monolinguality

Uwe Quasthoff, Chris Biemann

NLP Department,
Faculty of Mathematics and Computer Science

University of Leipzig, Germany
{quasthoff,biem}@informatik.uni-leipzig.de

Abstract
We present an approach to measuring the amount of material in a natural language text corpus that consists of text in languages other
than the main language. Having a presumably monolingual corpus at hand, we ask for the amount of multilingual noise by comparing
the frequency of high-frequent words in monolingual corpora of different languages to their frequency in the corpus in question. The
ratio of the expected and the measured frequencies per language quantifies the amount of noise per language. The measure is very
effective since it requires only the comparison of a few thousand frequency counts.
We evaluate the method by artificial mixtures of two language corpora for different noise levels and demonstrate the effect of a corpus
cleaning method by measuring monolinguality before and after cleaning.

1. Introduction

When building a large corpus for a given language,
one has to assure that the data are as clean as possible.
This is especially important when using resources from
the Web, where neither top-level-domain nor source
guarantees monolinguality in any respect. See (Kilgarriff,
2001) for a discussion about the web as a corpus;
multilinguality on the same web servers is even employed
by (Resnik and Smith 1995) to construct aligned bilingual
corpora. The definition for cleanness may vary according
to the principles chosen for the corpus construction. For
this paper, we want to assume the following:

• The corpus is sentence separated and the order of
the sentences is not important.

• Clean means monolingual, i.e. during pre-
processing, sentences belonging not to the
specified language should be identified and
removed.

The question whether a sentence belongs to a given
language is not at all trivial because a German sentence
can, for instance, contain an English movie title or a Latin
medical term. The principles for corpus construction
might contain hints how many foreign language objects
should be tolerated. Usually one will allow such isolated
foreign language items, but not foreign language
sentences (which might contain some words in the corpus
language). At this tolerance level (i.e. we allow only a few
foreign language objects), the cleaning becomes more
difficult and one has to check the quality of the cleaning
process.

The aim of the paper is not to describe algorithms for
cleaning procedures but to measure their result. A
numerical value of monolinguality can be considered as a
quality measure for corpora. This measure should also
give satisfactory results if the languages considered have
some words in common.

Note that the usual tests for language detection (e.g.
described in (Dunning, 1994)) are not sufficient for
cleaning because they allow a considerable amount of
multilingual material to pass, dependent on document
length. The test described here should be able to quantify
this amount. As shown in the examples, foreign language

material of 0.001% can be measured. The lower bound of
the verifiability depends only on the corpus size.

The availability of clean monolingual resources is
important for a variety of applications. To name a few,
methods that construct language models from corpora
(e.g. Brown et al. 1992) will be disturbed by alien
language material and morphology induction (like
described in (Goldsmith, 2001) inter al.) will face
undesired problems. In dimensionality reduction steps
(e.g. Derweester et al. 1990), some of the dimensions will
be occupied by other languages than the target language,
hampering performance.

2. A Measure for Monolinguality

2.1. Informal description

We propose a measure, which distinguishes between
random foreign noise, and foreign language objects of a
certain special kind like proper names, quotations etc.
While the latter might be allowed in a corpus of language
A, we will measure mainly typical text of another
language B contained in the corpus. Such typical text will
contain nearly all high frequency words of language B.

If the absolute amount of word of language B is large
enough, their distribution will be like in an ordinary
language B corpus for many of these words. Hence, many
of those words will be a similar ratio of there usual
relative frequency compared to their relative frequency in
the language A corpus.

Of course, this is not true for all words of language B
under consideration. Exceptions are words often used in
typical foreign language objects like named entities or
titles. And, of course in the case of words being used in
both languages A and B. However, their number turns out
to be surprisingly low.

Hence, we get a clear peak when counting the number
of words for different frequency ratios. Moreover, the
resulting peak does not depend on the number of high
frequent words used. In the examples, we use always the
1000 most frequent words.

2.2. Comparing high frequency words

Assume a corpus of a language A contains x% of noise
of some language B. Moreover, the corpus should be large
(say, more than 1.000.000 sentences) and the noise should
be typical text of language B. Then we consider the top-
1000 high frequent words of language B. If such a high
frequent word w is not contained in language A, it should
appear in the corpus with a relative frequency of roughly
x% of its relative frequency in language B. If w is also a
valid word in language A, its relative frequency will be
much higher. We define the frequency ratio of w as the
relative frequency of a word w in A divided by its relative
frequency in the corpus B.

There are four groups of words in the top 1000 words
of language B:

• Words that do not occur in language A. Their
frequency ratio will be around x%.

• Words that are also amongst the highest frequency
words of language A and moreover have the same
function. Their frequency ratio will be around 1.

• Words that occur in language A, but at different
frequency bands. They are a random sample of
words of L and distributed in a Zipf way, cf. (Zipf,
1949).

• Words of B that are often used in named entities
and titles (such as capitalized stop words). They
appear in the corpus of language A more frequently
then the expected x% of noise.

The second group of words is only present in

languages that are very similar to each other. Table 1
shows overlaps in the top 1000 words of some European
languages.

 da de ee en es fr is it nl no
de 36
ee 11 5
en 41 26 11
es 18 14 7 27
fr 33 19 10 59 52
is 43 13 7 9 6 11
it 31 11 9 25 98 51 9
nl 69 56 10 52 25 40 21 30
no 489 33 18 38 25 35 55 40 64
se 221 23 15 27 23 32 50 32 54 257

Table 1: overlap in some European languages with regard
to the most frequent 1000 words: Danish (da), German

(de), Estonian (ee), English (en), Spanish (es), French (fr),
Icelandic (is), Italian (it), Dutch (nl), Norwegian bokmål

(no), Swedish (se)

2.3. The dominant frequency ratios

In the figures 1 and 2, we have the frequency ratios at
the x-axis ranging from 10-4 to 10 on a logarithmic scale.
After discretizing the frequency ratios it is counted, how
many words fall into the corresponding intervals. We find
a Gaussian shaped curve with a clear maximum at the
amount of noise at x% caused by words of group 1, a
similar peak near 1 due to the second group (if the
languages are similar) and some uniformly distributed
noise introduced by the words of group three. Words of
group four are scattered between x% and 1.

German noise in English Corpus

at different noise levels

0,11220

0,01202

0,001288

0

5

10

15

20

25

30

35

40

0,0001 0,001 0,01 0,1 1 10

frequency ratio

#
 w

o
rd

s

10% 1% 0.1%

Figure 1: German noise in English corpus. The numbers attached to the peaks are the results of our measure (experiment 1a)

3. Experiments

In the following two examples we search for foreign
language noise in English and German corpora. In the first
experiment, this noise is manually inserted into the British
National Corpus (BNC, http://www.natcorp.ox.ac.uk/,
(Leech, 1992)). As a result we should measure the exact
amount of the previously inserted noise. Moreover, the
effect of very similar languages is discussed using
Scandinavian languages.

The second experiment uses randomly collected text
from the web using only .de-domains. For the reduction to
a corpus in German language, foreign language sentences
are automatically removed. The amount of foreign
language text is shown before and after cleaning.

3.1. Experiment 1: Artificial Noise

In order to test our measure we performed two
experiments with introducing noise in monolingual
corpora. In experiment 1a we aimed at finding out how
well the measure captures different noise levels, in
experiment 1b we tested very similar languages.

Figure 1 shows the frequency ratio interval counts for

a 10%, 1% and 0.1% German noise as taken from
http://www.wortschatz.uni-leipzig.de (Biemann et al.,
2004) injected in a chunk of the BNC corpus. All mixtures
consisted of about 20 Million tokens. The noise levels
measured are slightly larger than expected, see figure 1.
This is due to the fact that the BNC corpus contains
German sentences (some containing errors) like e.g.

• Geschichte in Literatur und Film seit den sechziger
Jahre , in : Geschichte als Literatur , ed .

• Cantatas No. 140 , Wachet auf , ruft uns die
Stimme ; No. 147 , Herz und Mund and Tat und
Leben .

• Prince : Hans Adam von und zu Liechtenstein II .

• Nur an den beiden Poien menschlicher Verbindung
, dort , wo es noch keine oder keine Worte mehr
gibt , im Blick und in der Umamung , ist eigentlich
Glück zu finden , denn nur dort ist Unbedingtheit ,
Freiheit , Geheimnis und tiefe Rücksichglosigkeit .

Figure 2 depicts the distribution for very similar
languages (in terms of table 1). Again, the measure
deviates not severely from the goal of 1% noise. Material
was taken from http://corpora.informatik.uni-leipzig.de to
build corpora of about 17 Million words.

3.2. Experiment 2: Web Text

Experiment 2 uses a corpus of about 40 million
sentences randomly collected from .de-domains. We
measured the amount of foreign languages before and
after cleaning, which was carried out as outlined in
(Quasthoff et al. 2006). Table 2 contains not only the main
frequency ratios, but also the number of top-1000-words
of a foreign language found in the corpus. As stated in 2.1,

Before cleaning After cleaning
Number
of top-
1000-
words
found

Approx.
Frequency
ratio

Number
of top-
1000-
words
found

Frequency
ratio

German 1000 0.708 1000 0.946
English 995 0.126 987 0.0010
French 924 0.0398 906 0.00002
Dutch 995 0.000891 775 0.000006
Turkish 642 0.0000631 562 0.000006

Table 2: frequency ratios and number of top 1000 words
when cleaning a German web corpus

1% Noise in a Danish Corpus

0,01698

0,01334

0,01161

0

5

10

15

20

25

0,0001 0,001 0,01 0,1 1 10

frequency factor

#
 w

o
rd

s
1% Norwegian 1% Dutch 1% Swedish

Figure 2: Norwegian, Dutch and Swedish noise in Danish corpus (experiment 1b)

 (nearly) all of the top-1000-words of the noise language
are expected to appear in the corpus. The smaller numbers
for Turkish and Danish (only in the cleaned version)
indicate that the limits of the method are reached in the
case where (size of top-wordlist) / (frequency ratio) has
the same order of magnitude as the frequency of the most
frequent word in the corpus. Figure 3 visualizes the
findings of table two.

Moreover, the table shows that language cleaning can
reduce the noise by a factor of at least 100. The
corresponding noise can be measured down to a frequency
ratio of approximately 10-5.

4. Conclusion

We presented a measure for estimating the amount of
multilingual noise in monolingual corpora. It can be
calculated efficiently as it involves only 1000 frequency
counts per noise language tested. Experiments show that
the measure correlates well with artificial mixtures of
monolingual corpora. For large corpora, noise will be
detected down to a ratio of 10-5.

A possible application in a World Wide Web context
is to measure the amount of web sites that belong to a
defined set of languages. This is done by querying the
index of a search engine for the top 1000 words per
language for frequency to produce statistics as e.g. in
(Langer 2001).

5. References

Biemann, Chr., Bordag, S., Heyer, G., Quasthoff, U. and
Wolff, Chr. (2004): Language-independent Methods for
Compiling Monolingual Lexical Data. Proceedings of

CicLING 2004, Seoul, Korea and Springer LNCS 2945,
pp. 215-228, Springer Verlag Berlin Heidelberg

Brown, P.F., Della Pietra, V. J., deSouza, P., Lai, J.C. and
Mercer, R. L. (1992): Class-Based n-gram Models of
Natural Language. Computational Linguistics
18(4):467-479

Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer,
T.K. and Harshman, R. (1990): Indexing by latent
semantic analysis. Journal of the Society for
Information Science, 41(6):391-407

Dunning, T. (1994): Statistical Identification of Language.
Technical report CRL MCCS-94-273, Computing
Research Lab, New Mexico State University

Goldsmith, J. (2001): Unsupervised learning of the
morphology of a natural language. Computational
Linguistics, 27:153-198

Kilgarriff, A. (2001): Web as corpus. In Proceedings of
Corpus Linguistics 2001, Lancaster, England.

Langer, S. (2001): Natural languages on the Word Wide
Web. In: Bulag. Revue annuelle. Presses Universitaires
Franc-Comtoises, S. 89-100

Leech, G. (1992): 100 million words of English: the
British National Corpus. Language Research 28:1, 1-
13.

Quasthoff, U., Biemann, C. and Richter, M. (2006):
Corpus Portal for Search in 16 Monolingual Corpora.
Proceedings of LREC-2006, Genoa, Italy

Resnik, P. and Smith, N.A. (2003): The Web as a Parallel
Corpus. Computational Linguistics 29(3):349-380

Zipf, G. K. (1949). Human behaviour and the principle of
least effort. Addison-Wesley, Reading, MA.

.de corpus before cleaning

0,708

0,126

0,00398

0,000891

6,31E-05

0

25

50

75

100

125

0,0000001 0,00001 0,001 0,1 10
frequency ratio

#
 w

o
rd

s

de en fr nl tr

.de corpus after cleaning

0,946

0,0010
2,00E-05

6,31E-06

0

25

50

75

100

125

0,0000001 0,00001 0,001 0,1 10

frequency ratio

#
 w

o
rd

s

de en fr nl tr

Figure 3: The effects of corpus cleaning with regard to the monolinguality measure

JTaCo & SProUTomat: Automatic Evaluation and Testing of Multilingual
Language Technology Resources and Components

Christian Bering†, Ulrich Schäfer∗

†Computational Linguistics Department, Saarland University
P.O.Box 151150, D-66041 Saarbrücken, Germany

christian.bering@acrolinx.com
∗Language Technology Lab, German Research Center for Artificial Intelligence (DFKI) GmbH

Stuhlsatzenhausweg 3, D-66123 Saarbrücken, Germany
ulrich.schaefer@dfki.de

Abstract
We describe JTaCo, a tool for automatic evaluation of language technology components against annotated corpora, and SProUTomat, a
tool for building, testing and evaluating a complex general-purpose multilingual natural language text processor including its linguistic
resources (lingware). The JTaCo tool can be used to define mappings between the markup of an annotated corpus and the markup
produced by the natural language processor to be evaluated. JTaCo also generates detailed statistics and reports that help the user to
inspect errors in the NLP output. SProUTomat embeds a batch version of JTaCo and runs it after compiling the complex NLP system
and its multilingual resources. The resources are developed, maintained and extended in a distributed manner by multiple authors and
projects, i.e., the source code stored in a version control system is modified frequently. The aim of JTaCo & SProUTomat is to warrant a
high level of quality and overall stability of the system and its lingware.

1. Introduction

The development of multilingual resources for language
technology components is a tedious and error-prone task.
Resources (lingware) like morphologies, lexica, grammars,
gazetteers, etc. for multiple languages can only be devel-
oped in a distributed manner, i.e., many people work on
different resources.
However, the resulting systems are supposed to deliver the
same good recognition quality for each language. Depen-
dencies of resources and subsystems may lead to subop-
timal performance, e.g., reduced recognition rates, of the
overall systems in case of errors creeping in during the de-
velopment process. Hence, in analogy to software engi-
neering, testing and evaluation of the developed lingware
has to be carried out on a regular basis, both for quality as-
surance and comparability of results in different languages.
Annotated natural language corpora can be thought of as
providing a rich and potentially very useful body of test
material in this context. However, it is often not possible to
flexibly incorporate the material at hand into the develop-
ment process. The reasons are manifold: Not only may an-
notations in different sources be of very diverse nature, but
the NLP component under development usually generates
a markup in yet another format defined by the development
environment.
In this paper, we describe a framework consisting of two
major components, JTaCo and SProUTomat, that facilitates
frequent (e.g., daily) building, testing and evaluation of
multilingual language components and resources in a qual-
ity assurance and development cycle as depicted in Fig-
ure 1. We have implemented and will demonstrate the
framework for the multilingual SProUT processor. How-
ever, the concepts and mechanisms described could be ap-
plied to any other resource-intensive natural language pro-
cessing system.

Figure 1: Quality assurance and development cycle for
multilingual linguistic resources.

2. SProUT
SProUT is a shallow, multilingual, general-purpose natu-
ral language processor (Drozdzynski et al., 2004). SProUT
comes with a powerful, declarative grammar formalism
XTDL that combines finite-state techniques and typed fea-
ture structures with structure sharing and a fully-fledged,
efficiently encoded type hierarchy—in contrast to systems
like GATE (Cunningham et al., 2002) that support only
simple attribute-value pairs.
SProUT rules consist of regular expressions over typed fea-
ture structures1. A rule is matched against a sequence of
input feature structures which are filled by basic compo-
nents like tokenisers, morphology or gazetteer lookup run-

1The acronym SProUT stands for Shallow Processing with
Unification and Typed feature structures. SProUT’s homepage is
http://sprout.dfki.de.

ning on input text or, in more complex cases, XML output
from external NLP components or even output from previ-
ous SProUT grammar stages.
The matching condition is unifiability of the input sequence
with the expanded regular expression of the left hand side
of a rule. In case of a match, feature structure unification is
used to transport information from the matching left hand
side to the output feature structure on the right hand side
of the rule. The output feature structure can then, e.g., be
transformed to any XML format.
The SProUT system provides basic components like to-
kenisers, morphologies and domain-specific gazetteers for
languages such as English, German, French, Spanish,
Greek, Japanese, Italian, Chinese, Polish and Czech, and
comes with a user-friendly integrated development envi-
ronment (IDE). The current main applications of SProUT
are information extraction and named entity recognition
(NER).
To illustrate the SProUT formalism, we give a short ex-
ample in Figure 2 of a grammar rule that recognises river
names. The rule matches either expressions consisting of
an (unknown) capitalised word (via token type match), fol-
lowed by a noun with stem river or brook (via the English
morphology component; disjunction has a higher prece-
dence than concatenation), or Gazetteer entries of type
gaz river containing English river names represented by
the Gazetteer type gaz river. The generated output struc-
ture of type ne-location contains a location type river and
the location name transported via the coreference symbol
loc name . To sum up, this rule recognises both unknown
river names (via a pattern involving morphology lookup
that tolerates morphologic variants) and known river names
(via a gazetteer match), using a concise, declarative pattern
and returning a structured description.
SProUT has been and is currently used in many research
and industrial projects for opinion and text mining, in-
formation extraction, automatic hyperlinking, question an-
swering and semantic web applications (Drozdzynski et al.,
2004).

3. JTaCo
The aim of JTaCo (Bering, 2004; Bering et al., 2003) is
to allow the developer of an NLP component or resource,
e.g., of a grammar, to make unified use of variably anno-
tated source material for testing. The component developer
provides suitably, i.e., usually semi-manually or manually
marked-up reference sources on the one hand, and a parser
or similar NLP component on the other hand. JTaCo ex-
tracts the original annotation from the corpus, compares
this annotation with the markup the component in question
generates for the same input, and generates statistics and
reports from the comparison results2.
Since a focus of JTaCo lies on the integration of diverse
manual annotation schemes one the one hand and differing
NLP components on the other, JTaCo employs a very mod-
ular architecture in which its different processing stages al-
low independent adaptations to varying input and differ-
ent environments. JTaCo is realised as a pluggable light-

2JTaCo stands for Java Tagging Comparator.

weight, mostly architecture-independent framework. Cur-
rently, there are two JTaCo plug-in realisations for usage
with grammars developed in SProUT: A GUI plug-in inte-
grated into the SProUT IDE, and a batch version integrated
into SProUTomat.

3.1. JTaCo’s Processing Stages
JTaCo works in four separate transformational processing
stages. Figure 3 gives an overview of these stages, of their
input and the results they generate. The process starts from
an annotated written corpus against which the NLP compo-
nent or resource is to be tested. In the first step, JTaCo uses
an AnnotationParser to separate the corpus into

• the ‘raw’ text contained in the corpus (i.e., the text
without any annotation) and

• its true annotation (interchangeably also called the ref-
erence or manual annotation).

The extracted text is fed into the Parser (or a similar com-
ponent) which the developer wants to test, yielding the an-
notation to compare with the manual annotation. The com-
parison is executed by a TaggingComparator. The com-
parator’s result in turn is used by an OutputGenerator to
select, format and output the needed information.

jTaCo

AnnotationParser

Parser

TaggingComparator

OutputGenerator

Annotated Corpus

True Annotation

Raw Text

Parsed Annotation

Comparison Result

Result Tables

Grammar
Developer

provides

Figure 3: An overview of JTaCo’s processing stages and
the (intermediate) results they yield.

There are two main advantages gained from such a modular
architecture: On the one hand, the abstract representations
in the intermediate results hide details specific to the corpus
or component used. For instance, differing types of anno-
tations are mapped to an abstract annotation representation,
for which a comparison operation – i.e., especially the no-
tion of equality between entities in the two annotations –
can be defined in an adequately flexible manner, and the
underlying annotated sources as well as NLP components
can be exchanged transparently. Thus, whenever a new an-
notation format or component makes it necessary to inte-
grate a tailored module into JTaCo, the capabilities of the
new module can readily interact with existing functionality
of other modules.
The second, more practically relevant advantage is that the
settings of any one stage can be changed, and the process
at that stage rerun with the new settings without having to

river :>


 token

TYPE first capital word
SURFACE loc name

 •




morph
STEM "river"
POS noun
SURFACE key

 |


morph
STEM "brook"
POS noun
SURFACE key






|


gazetteer
GTYPE gaz river
CONCEPT loc name
DESIGNATOR key

 →


ne-location
LOCTYPE river
LOCNAME loc name
DESCRIPTOR key

 .

Figure 2: A SProUT grammar rule recognizing river names. Boxed feature values denote structure sharing, type names are
typeset in italics. The dot after the first token indicates concatenation, the vertical bars separate alternatives.

re-iterate the previous process stages, as long as their re-
sults are still available. This can be especially useful for the
last two stages in an interactive environment (i.e., compari-
son and report generation), where the developer might want
to experiment with different settings without repeatedly
having to rerun the probably time-consuming processes of
reading the corpus and parsing it.
For each of the stages, a JTaCo plug-in uses one or more
processing realisations adapted to the desired representa-
tions. In what follows, we will draw upon the implementa-
tions integrated into SProUT and SProUTomat to illustrate
the information flow in JTaCo.

3.2. Reading the Annotated Corpus
For use in the following processing stages, JTaCo extracts
from the annotated corpus the ‘raw’ content, i.e., the writ-
ten text without any markup, on the one hand, and the
reference annotation on the other. Both the extraction
of the text and of the annotation can be configured ac-
cording to the specific annotation scheme. E.g., a corpus
usually not only contains the annotated textual material,
but also meta-information intended for, e.g., administra-
tive purposes. Such information has to be exluded from
the text extracted to be used for testing. Currently, JTaCo
includes support for annotations which satisfy certain reg-
ular constraints and for XML annotations such as found in
MUC corpora (Grishman and Sundheim, 1996). For use
with SProUT, JTaCo transforms the XML-encoded entities
into typed feature structures.
As an illustration, consider the following MUC time ex-
pression:

<TIMEX TYPE="DATE">07-21-96</TIMEX>

The textual content consists just of the date expression 07-
21-96. JTaCo transforms the tag information as well as the
surface and character offsets into feature-value pairs in a
feature structure:

timex
TYPE "DATE"
CSTART "27"
CEND "34"
SURFACE "07-21-96"


Here, CSTART and CEND indicate the inclusive start and
end character positions of the annotated element in the

‘raw’ text, i.e., without counting the markup. The resulting
reference annotation is the collection of all feature struc-
tures generated from the corpus. More complex, embedded
annotations would be translated in a similar manner.

3.3. Parsing the Extracted Text
In this second processing stage, JTaCo feeds the NLP com-
ponent which the developer wants to test with the text re-
trieved from the previous stage, and the NLP component
in turn produces some specific markup of the text. As in
the previous stage, JTaCo transforms this annotation into a
format which it can compare with the reference annotation.
For the previously employed example expression, 07-21-
96, SProUT’s named entity recognition markup delivers
structured output in an XML-encoded typed feature struc-
ture3, where CSTART and CEND indicate start and end
character positions of the matched named entity in the input
text: 

point
SPEC temp-point
MUC-TYPE date
CSTART "27"
CEND "34"
SURFACE "07-21-96"
YEAR "1996"
MONTH "07"
DOFM "21"



3.4. Comparing the Annotations
In this stage, the annotations obtained from the two previ-
ous tranformation processes are compared, i.e., the ‘man-
ual’ annotation read directly from the corpus, and the
‘parsed’ annotation obtained through the NLP component.
For JTaCo, an annotation is a collection of tags, where a
tag consists of some linguistic information about a piece of
text. Minimally, a tag contains

• some name, e.g., a linguistic label,

3Transformation of typed feature structures and general XML
markup is discussed in the context of the upcoming ISO standard
in (Lee et al., 2004). Actually, SProUT’s default XML output
format is very close to the proposed ISO format for typed feature
structures.

• the surface string to which the label applies,

• token count information about where this string is
found in the corpus.

Usually, the setup uses tags which incorporate more infor-
mation, and the relation used to determine entity equality
between the two annotations typically depends on this in-
formation. For instance, for use with, SProUT JTaCo gen-
erates an annotation consisting of tags which are augmented
with feature structure information. The equality notion of
these tags is defined though unification.
An important feature of JTaCo is that the comparison can
be configured to accomodate for a variety of systematic dif-
ferences in annotations:

• The annotations may use different labels, differing
perhaps even in granularity. E.g., one annotation
might globally use the label organisation, while the
other uses subclasses such as university, government,
etc.

• The annotated entities may differ in their surface
spans. E.g., one annotation might consider the ex-
pression President Hugo Chavez to be a named entity,
while the other might exlude the title.

• One annotation may contain sequences of entities
which in the other annotation correspond to one sin-
gle entity. For instance, MUC will usually separate
a date followed by a time into two named entities
(TIMEX-DATE and TIMEX-TIME), while SProUT
considers this to be one entity.

The screenshot in Figure 4 shows a part of the defined
tag mappings used when comparing SProUT’s annota-
tion to the original MUC markup. Most of the map-
pings constitute simple entity label correspondences, e.g.,
a MUC TIMEX-DATE can correspond to a point, a
span, a duration, or an interval in the annotation
generated by SProUT. An entity named a duration by
SProUT can in turn be a MUC TIMEX-DATE as well as
a TIMEX-TIME. In the example settings, all of these cor-
respondences are further ‘softened’ to ignore surface span
discrepancies: The open left and open right switches allow
for a mismatch in the CSTART and CEND features, respec-
tively. The example settings also contain a mapping of the
sequence TIMEX-DATE and TIMEX-TIME in MUC to the
SProUT entity point. The strictness is a measure of how
far apart these two elements are allowed to occur and still
be valid elements for a sequence matched against a single
point.

3.5. Generating a Report
Finally, JTaCo generates a report of the comparison. JTaCo
can output statistical information (precision, recall, etc.)
as well as detailed occurrence lists of entities that were
or were not correctly identified in the parse. The settings
for this processing stage determine which results are shown
(e.g., for which tags) and how the information is format-
ted. JTaCo can export the generated reports as ASCII and
as HTML tables.

Figure 4: Definition of comparison settings in JTaCo’s
SProUT IDE plug-in. See Section 3.4. for a detailed ex-
planation.

4. SProUTomat
SProUTomat, described in more detail in (Schäfer and
Beck, 2006), is an automatic build, testing and evaluation
tool for linguistic resources and components that has been
implemented for SProUT. SProUTomat is used for daily
building and testing the development and runtime system
from the program and lingware source code checked out
from a version control system.

4.1. Build Procedure
SProUTomat is an extension of the build mechanism for
language technology components and resources we have
developed for the SProUT system using Apache Ant
(http://ant.apache.org). Ant is a standard open
source tool for automatic building and packaging complex
software systems. On the basis of target descriptions in an
XML configuration file, Ant automatically resolves a target
dependency graph and executes only the necessary targets.
Before testing and evaluating, a system has to be built, i.e.,
compiled from the sources checked out from the source
control system. The Java program code compilation of
SProUT is a straightforward task best supported by Ant.
The case is, however, different for lingware sources (type
hierarchy4, tokeniser, morphology, gazetteer, XTDL gram-
mars).
While the appropriate Java code compilation tasks know

4The SProUT formalism uses a subset of TDL (Krieger and
Schäfer, 1994) that is compiled using the flop compiler of the PET
system (Callmeier, 2000).

what a compiled class file is and when it has to be re-
compiled (source code changes, dependencies), this has to
be defined explicitly for lingware resources which Ant na-
tively is not aware of. The uptodate task can be used to
compare source files (.tdl in the following example) against
their compiled version (.grm).

<uptodate property="tdl_input_is_uptodate"
srcfile="${typehierarchy}.tdl"

targetfile="${typehierarchy}.grm"/>

For each of the different lingware types, these source file
dependencies are defined as are the calls to the dedicated
SProUT compilers and parameters for their compilation.
Lingware-specific targets have common parameters and
properties like "lang", "project" or the lingware type
that are used to locate, e.g., the source and compiled files in
the hierarchically defined directory trees or "charset"
to specify encodings for source files to read.

<!--usage : ant compile_ne -Dlang=en -->
<target name="compile_ne" depends="jar"
description="Compile NER grammar.">
<property name="lang" value="en"/>
<property name="project" value=""/>
<property name="charset" value="utf-8"/>
<!-- compile type hierarchy -->
<antcall target="compile_tdl"/>
<!-- compile tokeniser -->
<antcall target="compile_tokenclass"/>
<!-- compile gazetteer -->
<antcall target="compile_gazetteer"/>
<!-- compile XTDL grammar for NER -->
<antcall target="compile_grammar"/>

</target>

Figure 5: A sample target definition: named entity grammar
compilation.

Dependencies between different lingware types are handled
by calls to defined sub-targets. Figure 5 shows the defini-
tion of the compile_ne target that calls four other compi-
lation sub-targets. Each subtarget compiles only when nec-
essary, and the compile_ne target itself depends on the
jar target that provides working and up-to-date SProUT
lingware compilers.
Besides the program and lingware compilation, many other
targets exist, e.g., to generate documentation, package run-
time systems, start the integrated development environ-
ment, etc.
Thus, using a single command, it is possible to compile
the whole system including code and all dependent avail-
able linguistic resources, or to update it after changes in the
sources.

4.2. Test and Evaluation
When SProUTomat is started, it first updates all program
and lingware sources from the version control system, and
compiles them. For each language resource to test, a ref-
erence text is then analysed by the SProUT runtime sys-
tem. This checks for consistent (re)sources. The next step is
comparison of the generated named entity and information

extraction annotation against a gold standard. SProUTomat
uses the batch version of JTaCo for the automatic evalu-
ation and computation of precision, recall and f-measure.
For English, the annotated corpus is taken from the MUC
evaluation data. For other languages for which no MUC
annotations exist (e.g., German), a manually developed cor-
pus is employed.

4.2.1. Report
Finally, a report is generated and emailed to the developers
with an overall status (OK or ERROR) for quick informa-
tion. The report also contains diagrams consisting of pre-
cision, recall and f-measure curves since beginning of reg-
ular measurements per language that visually give a quick
overview of the resource development progress over time
(cf. Figure 6). To this end, the evaluation numbers are also
added to a global evaluation database.

 0

 0.2

 0.4

 0.6

 0.8

 1

08/05 09/05 10/05 11/05 12/05 01/06 02/06 03/06

FM
ea

su
re

Date

NUMEX-PERCENT
NUMEX-MONEY

ENAMEX-LOCATION

ENAMEX-ORGANIZATION
ENAMEX-PERSON

TIMEX-DATE

TIMEX-TIME

Figure 6: F-measure curves of the English MUC-
compatible NER grammar collected by SProUTomat from
08/05 to 03/06. The drop in August/September was caused
by a code change not followed by an immediate adaptation
of the lingware.

5. Summary
We have presented a comprehensive framework for auto-
matically testing and evaluating multilingual linguistic re-
sources and language technology components. The sys-
tem is in daily use since March 2005 and successfully
helps to maintain the quality and reliability of the multilin-
gual language processor with its various resources that are
developed by many authors and used in several projects.
The framework greatly helps to improve and accelerate the
development - evaluation/comparison - refinement cycle,
gives motivating feedback (such as raising recall and preci-
sion curves over time) and thus provides continuous quality
assurance for a complex natural language processing sys-
tem.

6. Acknowledgements
We would like to thank Daniel Beck for helping to im-
plement SProUTomat, the SProUT grammar developers
for their feedback, Witold Drożdżyński for extending the
SProUT API to our needs and the reviewers for helpful
comments.

This work has been supported by research grants from the
German Federal Ministry of Education and Research in the
context of the projects QUETAL (FKZ 01 IW C02) and
COLLATE (FKZ 01 IN A01).

7. References
Christian Bering, Witold Drozdzyski, Gregor Erbach, Clara

Guasch, Petr Homola, Sabine Lehmann, Hong Li, Hans-
Ulrich Krieger, Jakub Piskorski, Ulrich Schäfer, At-
suko Shimada, Melanie Siegel, Feiyu Xu, and Dorothee
Ziegler-Eisele. 2003. Corpora and evaluation tools for
multilingual named entity grammar development. In
Proceedings of Multilingual Corpora Workshop at Cor-
pus Linguistics, pages 42–52, Lancaster, UK.

Christian Bering, 2004. JTaCo User Guide. Saarbrücken,
Germany. Saarland University, Computational Linguis-
tics Department.

Ulrich Callmeier. 2000. PET – A platform for experimen-
tation with efficient HPSG processing techniques. Natu-
ral Language Engineering, 6(1):99–108.

Hamish Cunningham, Diana Maynard, Kalina Bontcheva,
and Valentin Tablan. 2002. GATE: A framework and
graphical development environment for robust NLP tools
and applications. In Proceedings of the 40th Anniversary
Meeting of the Association for Computational Linguis-
tics, Philadelphia, PA.

Witold Drozdzynski, Hans-Ulrich Krieger, Jakub Pisko-
rski, Ulrich Schäfer, and Feiyu Xu. 2004. Shallow
processing with unification and typed feature structures
– foundations and applications. Künstliche Intelligenz,
2004(1):17–23. Available online.

Ralph Grishman and Beth Sundheim. 1996. Message un-
derstanding conference - 6: A brief history. In Proceed-
ings of COLING-96, pages 466–471, Copenhagen, Den-
mark.

Hans-Ulrich Krieger and Ulrich Schäfer. 1994. TDL –
a type description language for constraint-based gram-
mars. In Proceedings of COLING-94, pages 893–899.

Kiyong Lee, Lou Burnard, Laurent Romary, Eric de la
Clergerie, Ulrich Schäfer, Thierry Declerck, Syd Bau-
man, Harry Bunt, Lionel Clément, Tomaz Erjavec, Azim
Roussanaly, and Claude Roux. 2004. Towards an inter-
national standard on feature structure representation (2).
In Proceedings of the LREC-2004 workshop on A Reg-
istry of Linguistic Data Categories within an Integrated
Language Resources Repository Area, pages 63–70, Lis-
bon, Portugal.

Ulrich Schäfer and Daniel Beck. 2006. Automatic testing
and evaluation of multilingual language technology re-
sources and components. In Proceedings of the 5th Inter-
national Conference on Language Resources and Evalu-
ation LREC-2006, Genoa, Italy.

Panel Session

Panelists:
Chris Cieri (LCD, USA)

Khalid Choukri (ELDA, France)
Chu-Ren Huang (Acad Sin, Taiwan)
Takenobu Tokunaga (TIT, Japan)

In this panel we will get back to the question What is Quality, addressed by Chris

Cieri in his invited talk at the beginning of this workshop, in the light of the
presentations given at this workshop. Panelists will be asked to give their own views

on what the essence of quality is, and which impact this has on best practice in quality
assurance and validation of language resources.

	Aims of the workshop
	Relevance
	Sponsors
	lrec2006qa-prefix.pdf
	The Workshop Programme
	Workshop Organiser(s)
	Workshop Programme Committee

	Table of Contents

	Numbx:
	C:
	L:
	R:

	P2:
	Numb:
	Numbx:
	C:
	L:
	R: 1

	P3:
	Numb:
	Numbx:
	C:
	L:
	R: 2

	P4:
	Numb:
	Numbx:
	C:
	L:
	R: 3

	P5:
	Numb:
	Numbx:
	C:
	L:
	R: 4

	P6:
	Numb:
	Numbx:
	C:
	L:
	R: 5

	P7:
	Numb:
	Numbx:
	C:
	L:
	R: 6

	P8:
	Numb:
	Numbx:
	C:
	L:
	R: 7

	P9:
	Numb:
	Numbx:
	C:
	L:
	R: 8

	P10:
	Numb:
	Numbx:
	C:
	L:
	R: 9

	P11:
	Numb:
	Numbx:
	C:
	L:
	R: 10

	P12:
	Numb:
	Numbx:
	C:
	L:
	R: 11

	P13:
	Numb:
	Numbx:
	C:
	L:
	R: 12

	P14:
	Numb:
	Numbx:
	C:
	L:
	R: 13

	P15:
	Numb:
	Numbx:
	C:
	L:
	R: 14

	P16:
	Numb:
	Numbx:
	C:
	L:
	R: 15

	P17:
	Numb:
	Numbx:
	C:
	L:
	R: 16

	P18:
	Numb:
	Numbx:
	C:
	L:
	R: 17

	P19:
	Numb:
	Numbx:
	C:
	L:
	R: 18

	P20:
	Numb:
	Numbx:
	C:
	L:
	R: 19

	P21:
	Numb:
	Numbx:
	C:
	L:
	R: 20

	P22:
	Numb:
	Numbx:
	C:
	L:
	R: 21

	P23:
	Numb:
	Numbx:
	C:
	L:
	R: 22

	P24:
	Numb:
	Numbx:
	C:
	L:
	R: 23

	P25:
	Numb:
	Numbx:
	C:
	L:
	R: 24

	P26:
	Numb:
	Numbx:
	C:
	L:
	R: 25

	P27:
	Numb:
	Numbx:
	C:
	L:
	R: 26

	P28:
	Numb:
	Numbx:
	C:
	L:
	R: 27

	P29:
	Numb:
	Numbx:
	C:
	L:
	R: 28

	P30:
	Numb:
	Numbx:
	C:
	L:
	R: 29

	P31:
	Numb:
	Numbx:
	C:
	L:
	R: 30

	P32:
	Numb:
	Numbx:
	C:
	L:
	R: 31

	P33:
	Numb:
	Numbx:
	C:
	L:
	R: 32

	P34:
	Numb:
	Numbx:
	C:
	L:
	R: 33

	P35:
	Numb:
	Numbx:
	C:
	L:
	R: 34

	P36:
	Numb:
	Numbx:
	C:
	L:
	R: 35

	P37:
	Numb:
	Numbx:
	C:
	L:
	R: 36

	P38:
	Numb:
	Numbx:
	C:
	L:
	R: 37

	P39:
	Numb:
	Numbx:
	C:
	L:
	R: 38

	P40:
	Numb:
	Numbx:
	C:
	L:
	R: 39

	P41:
	Numb:
	Numbx:
	C:
	L:
	R: 40

	P42:
	Numb:
	Numbx:
	C:
	L:
	R: 41

	P43:
	Numb:
	Numbx:
	C:
	L:
	R: 42

	P44:
	Numb:
	Numbx:
	C:
	L:
	R: 43

	P45:
	Numb:
	Numbx:
	C:
	L:
	R: 44

	P46:
	Numb:
	Numbx:
	C:
	L:
	R: 45

	P47:
	Numb:
	Numbx:
	C:
	L:
	R: 46

	P48:
	Numb:
	Numbx:
	C:
	L:
	R: 47

	P49:
	Numb:
	Numbx:
	C:
	L:
	R: 48

