
Does Netgraph Fit Prague Dependency Treebank?

Jiří Mírovský
Charles University in Prague

Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics

Malostranské nám. 25, 118 00 Prague 1, Czech Republic

mirovsky@ufal .mff.cuni.cz

Abstract

On many examples we present a query language of Netgraph – a fully graphical tool for searching in the Prague Depen-
dency Treebank 2.0. To demonstrate that the query language fits the treebank well, we study an annotation manual for
the most complex layer of the treebank – the tectogrammatical layer – and show that linguistic phenomena annotated
on the layer can be searched for using the query language.

1 Introduction

Netgraph is a client-server tool for searching in treebanks,
designed to be as simple to use as possible, although with
sufficient query power. It can be used both for dependen-
cy and constituent-structure types of treebanks, as long as
the treebank is transformed to a suitable format.

In this paper, we show how well is Netgraph adapted
for the Prague Dependency Treebank 2.0 (PDT 2.0, Hajič
et al., 2006). We study the annotation manual for the tec-
togrammatical layer of PDT 2.0 (annotation manual,
Mikulová et al., 2006), which is the most advanced and
complex layer in the treebank, and show that linguistic
phenomena described in the manual can be searched for
with Netgraph.

In section 1 (after this introduction) we give a short in-
troduction to the Prague Dependency Treebank 2.0, to
make the subsequent examples understandable.

In section 2 we present the basics of Netgraph query
language along with the idea of meta-attributes.

In section 3 we create queries for linguistic phenomena
from the annotation manual and present additional fea-
tures of Netgraph query language, as they are needed.

We conclude in section 4.

1.1 Prague Dependency Treebank 2.0
The Prague Dependency Treebank 2.0 is a manually anno-
tated corpus of Czech. The texts are annotated on three
layers – morphological, analytical and tectogrammatical.

On the morphological layer, each token of every sen-
tence is annotated with a lemma (attribute m/lemma),
keeping the base form of the token, and a tag (attribute
m/tag), keeping its morphological information.

The analytical layer corresponds to the surface syntax
of the sentence; the annotation is a rooted dependency tree
with labeled nodes. Attribute afun describes type of de-
pendency between a dependent node and its governor. The
left-right order of the nodes corresponds exactly to the
surface order of tokens in the sentence (attribute ord).

The tectogrammatical layer, which we focus on in this
paper, captures the linguistic meaning of the sentence in
its context. Again, the annotation is a dependency tree
with labeled nodes (Hajičová, 1998). The correspondence
of the nodes to the lower layers is often not 1:1 (Mírovský
(2006) about Netgraph addressing this issue).

Attribute functor describes the dependency between
a dependent node and its governor. A tectogrammatical
lemma (attribute t_lemma) is assigned to every node. 16
grammatemes (prefixed gram) keep additional annotation
(e.g. gram/verbmod for verbal modality).

Topic and focus (Hajičová et al., 1998) are marked (at-
tribute tfa), together with so-called deep word order re-
flected by the order of nodes in the annotation (attribute
deepord).

Textual and grammatical coreference relations between
nodes of certain category types are captured. Each node
has a corpus-wide unique identifier (attribute id). At-
tributes coref_text.rf and coref_gram.rf con-
tain ids of coreferential nodes of the respective types.

2 Netgraph Query Language

The query in Netgraph is a tree that forms a subtree in the
result trees. The result of a search consists of trees that
match the query – the query is found as a subtree of the
result tree. The query can also consist of several trees
joined either by AND or OR relation. In that case, all the
query trees at the same time (or at least one of the query
trees, respectively) are required to match the result tree.

The query has both a textual form and a graphical form.
We will use both forms in the paper, the textual form for
simple examples, the graphical form for more complex
ones.

The syntax of the query language is very simple. In the
textual form, square brackets enclose a node, attributes
(pairs name=value) are separated by a comma, quota-
tion marks enclose a regular expression in a value. Paren-
theses enclose a subtree of a node, brothers are separated

436

mailto:mirovsky@ufal.mff.cuni.cz

by a comma. In multiple-tree queries, each tree is on a
new line and the first line contains only a single AND or
OR. Alternative values of an attribute, as well as alterna-
tive nodes, are separated by a vertical bar. It almost com-
pletes the description of the syntax, only one thing – refer-
ences – will be added in the next subsection.

The following example shows a simple query, consist-
ing of one node with a condition set on two attributes. We
search for all nodes that are verbal but not Predicates:
[functor!=PRED,gram/sempos=v]

More interesting queries usually consist of several
nodes, forming a tree structure. The following example
query searches for trees containing a Predicate that direct-
ly governs an Actor and an Effect:
[functor=PRED]([functor=ACT],[func-
tor=EFF])

Please note that there is no condition in the query on
the order of the Actor and the Effect, nor on their left-right
position to their father. It does not prevent other nodes to
be directly governed by the Predicate either.

2.1 Meta-Attributes
Meta-attributes add more power to this simple query lan-
guage. They allow to use real negation, restrict the posi-
tion of the query in the result tree and the size of the result
tree, or control the order of nodes. Meta-attributes are not
present in the corpus but they pretend to be ordinary at-
tributes and the user uses them the same way like normal
attributes. Their names start with an underscore. We show
only an example of their usage now and present more of
them in the next section, whenever we need them. A de-
tailed description of all meta-attributes was given in
Mírovský (2008).

Meta-attribute _optional marks an optional node.
The node then may but does not have to be in the result. It
can be used for skipping coordination. If we are interest-
ed, for example, in Predicates governing Actors and want
to get both cases (with coordination and without it) in one
query, we can use this query:
[functor=PRED]([functor=CONJ|
DISJ,_optional=1]([functor=ACT])).

The coordination (Conjunction or Disjunction) be-
comes optional. If there is a node between the Predicate
and its Actor in the result tree, it has to be the coordinat-
ing node. But the Actor may also be a direct son of the
Predicate, omitting the optional coordination. Since we set
meta-attribute _optional to 1, only one such optional
node may appear in the result tree. The picture shows the
graphical representation of the query:

It is also possible to set relations (other than dependen-
cy) between nodes in the result trees (such as order, agree-
ment, coreference). All this can be done using meta-at-
tribute _name (which names a node) and a system of ref-
erences.

Curly brackets enclose a reference to a value of an at-
tribute of another node (with a given name) in the result
tree.

In the following example (knowing that attribute
deepord controls the order of nodes in the tree from left
to right), we search for an Actor that is on the right side
from a Predicate and is dependent on it:
[functor=PRED,_name=N1]
([functor=ACT,deepord>{N1.deepord}]
)

We have named the Predicate node N1 and specified
that deepord of the Actor node should be bigger than
deepord of node N1.

3 Fitting the Annotation Manual

After we have presented the basics of the query language,
we can proceed to showing how to search for linguistic
phenomena described in the annotation manual. Since it is
impossible to list everything from the manual here (the
manual contains more than a thousand pages), we will fo-
cus on the interesting, important and complex parts.

3.1 Trivia
Most parts of the annotation manual are covered with in-
structions how to annotate linguistic phenomena in the
means of one node. It is of course trivial to search for any
combination of values of attributes of one node. Many
other cases only require to create a simple tree-structure as
a query. We shall rather concentrate on more complex
cases, where a more complex query-tree (and usually us-
age of a meta-attribute) is required.

3.2 References
We use a technical term “references” to cover all phenom-
ena represented in the annotation by a reference to an
identifier of another node. It includes linguistic corefer-
ence (textual and grammatical), predicative complement
and effective parentage. A dedicated attribute exists for
each of these relations. The following example searches
for predicative complements and uses attribute com-
pl.rf, which points from the complement to the govern-
ing noun (“second dependency”). The query searches for
those cases of predicative complement where the second
dependency goes to a Patient:

The following tree is a possible result for the query:

437

In Czech: Inflace je definována jako růst cenové hladiny.

In English: Inflation is defined as an increase of the
prices level.

A similar technique can be used for all other types of ref-
erences. The following example shows how to search for
type-1 control constructions, a type of grammatical coref-
erence where an infinitive (gram/sempos=v,
gram/verbmod=nil) depends on a control verb
(gram/sempos=v). This time, the referential attribute is
coref_gram.rf . We do not set any other condition on
the nodes:

And one of the result trees:

In Czech: Přední politici začali rozšíření unie o ČR pova-
žovat za samozřejmost, uvedl během rozhovorů premiér
ČR Václav Klaus.

In English: Prominent politicians started to take the ex-
tension of the union for granted, the prime minister of CR
Václav Klaus pointed out during the discussions.

3.3 Valency
A simple example of searching for a Predicate governing
an Actor and an Effect was given in section 2. For real
studies of valency, we need a way of restricting number
and type of dependent nodes of a Predicate (or another
node with valency). Meta-attribute _#sons controls the
exact number of sons of a node in the result tree. In the
following example, we search for a Predicate that governs
an Actor and a Patient and nothing else:

To control the type of sons of a particular node, there is
meta-attribute _#occurrences available. It is used in
the next example, where we require the Predicate to gov-
ern an Actor but not a Patient. It may have other sons,
though:

3.4 Coordination and Apposition
The query language should be able to skip a coordinating
node. In general, there should be a possibility to skip any
type of node.

Meta-attribute _optional can be used directly to
skip a node or a chain of nodes of a certain property. Let
us repeat the example given in section 2.1, searching for a
Predicate governing an Actor with an optional coordinat-
ing node in between:

The query skips simple cases of coordination but cannot
find the required relation between the nodes in a more
complex structure. The following picture shows a tree
where the structure of coordinations is more complex and
skipping a node does not help. The two Predicates are co-
ordinated with Conjunction, as well as the two Actors.
The linguistic dependencies go from each of the Actors to
each of the Predicates but the tree dependencies are quite
different:

438

In Czech: S čím mohou vlastníci i nájemci počítat, na co
by se měli připravit?

In English: What can owners and tenants expect, what
they should get ready for?

Since the information about the linguistic dependency is
annotated in the treebank (by the means of references),
there is no problem in creating a general query skipping
any possible combination of coordinations (the same ap-
plies to apposition):

We do not presume any special relative position of the
two nodes in the tree and therefore use a multi-tree query
(the trees are combined with logical expression AND). At-
tribute eparents keeps identifiers of all effective lin-
guistic fathers of a node. If we wanted to search only for
the cases where the linguistic father(s) differ(s) from the
technical father, we might instead use attribute epar-
ents_diff, which keeps identifiers of all effective lin-
guistic fathers of a node only if they differ from its techni-
cal father.

3.5 Idioms (Phrasemes) etc.
Some idioms/phrasemes and secondary prepositions are
linguistic phenomena that can be easily recognized in the
surface form of the sentence but may be difficult to find in
the tectogrammatical tree. Meta-attribute _sentence
can be used to search directly in the linear form of the sen-
tences, regardless of the way a phenomenon is or even is
not captured in the tectogrammatical tree.

Let us present two examples. The first query searches
for a phrase “v souvislosti s” (“in relation to”), regardless
of its position in the sentence. To avoid matching each
node in the tree, meta-attribute _depth is added; it con-
trols distance from the root in the result tree:

The second query searches for sentences containing words
“Klaus” and “Zeman”, in this order, anywhere in the sen-
tence, even in forms like “Klause” or “Zemanovi”:

3.6 Topic-Focus Articulation
To study topic-focus articulation and communicative dy-
namism, it is essential to be able to control the order of
nodes, in combination with setting values of attribute tfa
(f=focus, t=topic, c=contrastive topic). As was shown in
section 2, a system of references and attribute deepord
allow setting the order of nodes. The following query
demonstrates searching for a Predicate governing an Actor
and a Patient, the Patient in focus and less dynamic (on
the left side in the tree) than the Actor in topic:

And a possible result tree:

In Czech: Začaly ale růst i houby jedovaté.

In English: But also poisonous mushrooms started to
grow.

3.6.1 Focus Proper
Focus proper is the most dynamic and communicatively
significant contextually non-bound part of the sentence.
Focus proper is placed on the rightmost path leading from
the effective root of the tectogrammatical tree, even
though it is at a different position in the surface structure.
The node representing this expression will be placed right-
most in the tectogrammatical tree.

The following query searches for focus proper; the first
version of the query uses two transitive edges (meta-at-
tribute _transitive) to place the two sons of the root
anywhere in the result tree:

439

The same query can be expressed with a multiple-tree
query with logical expression AND:

In both cases, we search for a node in focus named N1,
which is the focus proper, by defining that there cannot be
a node in focus on the right side from N1 anywhere in the
tree.

The following tree is a possible result for both the
queries; yet, the highlighted nodes show that the first ver-
sion was used:

In Czech: Nepotrestaný zločin je stimulem pro zločiny bu-
doucí.

In English: An unpunished crime is a stimulant for future
crimes.

3.6.2 Rhematizers
Rhematizers are expressions whose function is to signal
the topic-focus articulation categories in the sentence,
namely the communicatively most important categories -
the focus and contrastive topic.

There are two cases of rhematizers that we need to dis-
tinguish:

● a rhematizer (i.e. the node representing the rhe-
matizer) is placed as the closest left brother (in
the underlying word order) of the first node of
the expression that is in its scope.

● if the scope of a rhematizer includes the govern-
ing predicate, the rhematizer is placed as the
closest left son of the node representing the gov-
erning predicate.

We present two queries to show how to study rhematizers.
The first query searches for rhematizers with the Predicate
in its scope, i.e. for a rhematizer that is the rightmost left
son of the Predicate:

The query defines that there is not a node that is left from
the Predicate but right from the rhematizer. Since we can-
not set two different conditions with two different rela-
tions on one attribute, we have to use meta-attribute
_#lbrothers to define that the undesired node is on
the right side from the rhematizer. The following tree is a
possible result for the query:

In Czech: Veřejnost si na podobné výzvy již zvykla.

In English: The public has already got accustomed to
such calls.

The second query searches for the cases where the Predi-
cate is not in the scope of the rhematizer. The query also
states that the first rhematized node is an Actor:

This time, the Predicate is on the left side from the rhema-
tizer and the Actor is an immediate right brother of the
rhematizer.

440

The following tree is a possible result for the query:

In Czech: Stejný názor má i řada našich soukromých
podnikatelů.

In English: Also a number of our private investors have
the same opinion.

3.6.3 (Non-)Projectivity
Non-projective constructions (studied for many languages
in Havelka (2007)) are not frequent on the tectogrammati-
cal layer of PDT 2.0, yet they are allowed and present.
Projectivity of a tree is defined very simply: between a fa-
ther and its son (in left-right order) there can only be di-
rect or indirect sons of the father. To capture all types of
non-projective edges in one query, we have to combine
four query-trees with OR-logical expression that represent
four non-projective configurations: the node causing the
non-projectivity is or is not on the path from the non-pro-
jective edge to the root of the tree, and the father-node of
the non-projective edge is on the left side from its son or
on the right side. The following query is one of those trees
(the other three are similar). The query uses meta-attribute
_transitive, which defines a transitive edge. Its spe-
cial value exlusive ensures that no nodes are shared by
two exclusively transitive edges:

If we used attribute ord instead of deepord, the same
query might be used for searching for non-projective con-
structions on the analytical layer, where they are much
more often. The following tree is a possible result on the
tectogrammatical layer. It represents the sentence:

In Czech: Na toto téma by měla v televizi proběhnout be-
seda.

In English: A discussion on this theme should take place
on the TV.

4 Conclusion

We have shown that the most complex linguistic phenom-
ena annotated in PDT 2.0 can be searched for with Net-
graph query language with quite simple queries. Of
course, it is even easier to search for the other phenomena,
which are less complex and more numerous. We can con-
clude then that Netgraph fits PDT 2.0 well.

5 Acknowledgment

This research was supported by the Grant Agency of the
Academy of Sciences of the Czech Republic, project IS-
REST (No. 1ET101120413).

6 References

Hajič J. et al. (2006). Prague Dependency Treebank 2.0.
CD-ROM LDC2006T01, LDC, Philadelphia.

Hajičová E. (1998). Prague Dependency Treebank: From
analytic to tectogrammatical annotations. In Proceed-
ings of 2nd TST, Brno, Springer-Verlag Berlin Heidel-
berg New York, pp. 45-50.

Hajičová E., Partee B., Sgall P. (1998). Topic-Focus Ar-
ticulation, Tripartite Structures and Semantic Content.
Dordrecht, Amsterdam, Kluwer Academic Publishers.

Havelka J. (2007). Beyond Projectivity: Multilingual
Evaluation of Constraints and Measures on Non-Projec-
tive Structures. In Proceedings of ACL 2007, Prague,
pp. 608-615.

Mikulová M. et al. (2006). Annotation on the tectogram-
matical level in the Prague Dependency Treebank. An-
notation manual. Tech. Report 30, ÚFAL MFF UK,
2006.

Mírovský J. 2006. Netgraph: a Tool for Searching in
Prague Dependency Treebank 2.0. In Proceedings of
TLT 2006, Prague, pp. 211-222.

Mírovský J. 2008. Towards a Simple and Full-Featured
Treebank Query Language, In Proceedings of ICGL
2008, Hong Kong, 9th - 11th January 2008, pp.
171-178.

441

