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Abstract
This paper explores how a battery of unsupervised techniques can be used in order to create large, high-quality corpora for textual
inference applications, such as systems for recognizing textual entailment (TE) and textual contradiction (TC). We show that it is possible
to automatically generate sets of positive and negative instances of textual entailment and contradiction from textual corpora with greater
than 90% precision. We describe how we generated more than 1 million TE pairs — and a corresponding set of 500,000 TC pairs — from

the documents found in the 2 GB AQUAINT-2 newswire corpus.

1. Introduction

The emergence of robust, machine learning-based ap-
proaches to the recognition of textual entailment and textual
contradiction has underscored the need for large sources of
training data which can be used to construct accurate mod-
els for recognizing textual inference.

First described in (Glickman and Dagan, 2005), the task of
recognizing textual entailment (RTE) requires systems to
determine whether a short statement (conventionally known
as a hypothesis (or h)) can be conventionally inferred from
a longer passage (known as a fext (or t)). (Figure 1 presents
both a positive and negative instance of TE.")

TE Example

YES | Text: Indian firm Tata Steel has won the battle to take over
Anglo-Dutch steelmaker Corus.

Hypothesis: Tata Steel bought Corus.

NO Text: Dynamite Nobel is formed by the fusion of Nobel’s Ital-
ian and Swiss companies.

Hypothesis: Alfred Nobel is the inventor of dynamite.

Table 1: Examples of Textual Entailment

Following the success of the PASCAL RTE evalua-
tions (Dagan et al., 2005; Bar-Haim et al., 2006; Giampic-
colo et al., 2007), (Harabagiu et al., 2006) introduced a
complementary form of inference, known as textual con-
tradiction (TC). In (Harabagiu et al., 2006)’s framework, a
t is considered to textually contradict a h if there exists any
proposition inferable from ¢ which could lead to the refuta-
tion of h. (Figure 2 presents positive and negative instances
of textual contradiction.)

TC Example

YES | Text: The explosion wounded the arm of Beatriz Iero, dam-
aged the doors and walls of the offices, and broke the windows
of neighboring buildings.

Hypothesis: Beatriz Iero emerged unscathed from an explo-
sion

NO Text: In California, one hundred twenty Central Americans,
due to be deported, began a hunger strike when their deporta-
tion was delayed.

Hypothesis: The deportation of 120 Central Americans was
postponed.

Table 2: Examples of Textual Contradiction

The recognition of forms of textual inference such as TE
and TC has traditionally been considered the domain of

'Both examples are taken from the PASCAL RTE-3 Test
Set. For more information on the PASCAL RTE Challenges, see
http://www.pascal-network.org/Challenges/.

formal, logic-based methods (such as automatic theorem
proving- (Tatu et al., 2006)) or model-based approaches
(such as model building or model checking (Blackburn and
Bos, 2005)). However, a considerable amount of recent
work —including many of the top-performing systems at the
past PASCAL RTE Challenges (Hickl and Bensley, 2007;
Hickl et al., 2006; Haghighi et al., 2005) — has demon-
strated the effectiveness of using “shallow” statistical clas-
sifiers in order to recognize TE (or TC) relations. While
individual systems have exploited a wide range of differ-
ent types of features in order to perform this classification
(including syntactic heuristics (Vanderwende et al., 2006),
graph matching techniques (Raina et al., 2005), or output
from model checking (Bos and Markert, 2006) or para-
phrasing (Hickl et al., 2006) applications), access to sources
of training data has continued to be a limiting factor.

This paper follows initial work done by (Burger and Ferro,
2005; Brockett and Dolan, 2005; Dolan and Quirk, 2004)
in exploring how a battery of unsupervised techniques can
be used in order to create large, high-quality corpora for
textual inference applications. We show that it is possible
to automatically generate sets of positive and negative in-
stances of textual entailment and contradiction from textual
corpora with greater than 90% precision. In our work, we
describe how we generated more than 1 million TE pairs
— and a corresponding set of and 500,000 TC pairs — from
the documents found in the 2 GB AQUAINT-2 newswire
corpus.

This paper also investigates the impact that sources of
generated training data can have on the performance of
state-of-the-art systems for recognizing textual entailment
(RTE) (Hickl and Bensley, 2007) and recognizing tex-
tual contradiction (RTC) (Harabagiu et al., 2006). Our
results confirm the hypothesis (first suggested in (Hickl
et al., 2006)) that the performance of classification-based
systems for RTE increases with the amount of available
training data. In our experiments, increases in accu-
racy are observed when training on as many as 500,000
inference pairs; performance remains constant (or suf-
fers slight degradation) with larger training corpora. In
our experiments, we observed no significant difference in
performance when equivalent number of hand-crafted or
automatically-generated examples were used to train clas-
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sifiers for recognizing textual entailment or textual contra-
diction.

The rest of this paper is organized in the following way.
Section 2 provides an overview of the general learning-
based framework for recognizing instances of textual en-
tailment and textual contradiction previously described
in (Hickl and Bensley, 2007; Harabagiu et al., 2006; Hickl
et al., 2006). Sections 3 and 4 presents the techniques
we used to create training corpora for our RTE and RTC
systems: Section 3 discusses how we extended extraction-
based techniques (similar to those first proposed in (Burger
and Ferro, 2005)) for this task, while Section 4 examines
how a generative approach can be used to create training
pairs which can be used with either a textual entailment or
textual contradiction system. Section 5 explores the im-
pact of these sources of training data on the performance
of state-of-the-art RTE and RTC systems, while Section 6
presents our conclusions.

2. Learning Textual Inference Relationships

Recognizing whether the information expressed in a h can
be inferred from — or contradicted by the information ex-
pressed in a t can be cast either as (1) a classification prob-
lem or (2) a formal textual inference problem, performed
either by theorem proving or model checking. While these
approaches apply radically different solutions to the same
problem, both methods involve the translation of natural
language into some sort of suitable meaning representation,
such as real-valued features (in the case of classification),
or axioms or models (in the case of formal methods).

We argue that performing this translation necessarily re-
quires systems to acquire forms of (linguistic and/or real-
world) knowledge which may not be derivable from the sur-
face form of a ¢ or h. In order to acquire forms of linguistic
knowledge for recognizing textual entailment and textual
contradiction, we have developed a novel framework which
depends on the extraction of discourse commitments from
a text-hypothesis pair. Following (Gunlogson, 2001; Stal-
naker, 1979), we assume discourse commitments represent
the set of propositions which can necessarily be inferred to
be true given a conventional reading of a text. Formally, we
assume that given a commitment set {c;} consisting of the
set of discourse commitments inferable from a text ¢ and
a hypothesis h, we define the task of recognizing forms of
textual inference as a search for the commitment ¢ € {c¢;}
which maximizes the likelihood that c participates in a par-
ticular textual inference relationship with . (Examples of
commitments that can be extracted from a positive instance
of TE are presented in Figure 2.)

In our architecture (illustrated in Figure 1), discourse
commitments are first extracted from both the ¢ and the
h using the approach described in (Hickl and Bensley,
2007).2 Commitments are extracted from each ¢ and h
using an implementation of the probabilistic finite-state
transducer (FST)-based extraction framework described in
(Eisner, 2002; Eisner, 2003). Given a syntactically and

2Full details of our framework for recognizing instances of TE
can be found in (Hickl and Bensley, 2007). Full details of our sys-
tem for recognizing TC can be found in (Harabagiu et al., 2006).

semantically-parsed input string, our system returns a se-
ries of output representations which can be mapped (given
a set of generation heuristics) to natural language sentences
which represent each of the individual commitments which
can be extracted from that string. Commitments were
extracted using a series of weighted regular expressions;
weights were learned for each regular expression using our
implementation of (Eisner, 2002). After each candidate
commitment was processed by the FST, the natural lan-
guage form of each returned commitment was then resub-
mitted to the FST for additional round(s) of extraction until
no additional commitments could be extracted from the in-
put string.

Once commitment sets have been extracted for the ¢ and the
h, we then use a commitment selection module in order to
perform a term-based alignment of each commitment ex-
tracted from the ¢ against each commitment extracted from
the . We assume that the alignment of two discourse com-
mitments can be cast as a maximum weighted matching
problem in which each pair of words (¢;,h;) in an commit-
ment pair (¢;,cp,) is assigned a score s;; (¢, h) corresponding
to the likelihood that ¢; is aligned to h;. As with (Taskar et
al., 2005b), we use the large-margin structured prediction
model introduced in (Taskar et al., 2005a) in order to com-
pute a set of parameters w (computed with respect to a set
of features f) which maximize the number of correct align-
ment predictions (%;) made given a set of training examples
().

The top-ranked pair of commitments (cy,, cp,;) is then sent
to an inference computation module which estimates the
likelihood that the selected c;, textually entails (or contra-
dicts) the cp,, (and by extension, the likelihood that ¢ tex-
tually entails/contradicts ). Commitment pairs are consid-
ered in ranked order until a positive judgment is returned,
or until no more commitments above a threshold remain.
Following work done by many participants in the PASCAL
RTE Challenges, we used a decision tree (C5.0 (Quinlan,
1998)) to estimate the likelihood that a commitment pair
represented a valid instance of textual entailment or textual
contradiction.

In previous work (Hickl et al., 2006), we showed that per-
formance on the RTE task could be increased by more than
10% when a baseline classification-based system was al-
lowed to train on more than 200,000 examples of textual en-
tailment that were heuristically extracted from documents
downloaded from the Internet. Although this was an en-
couraging result, later work revealed that performance de-
graded significantly on the PASCAL RTE Test Set when
the system was trained on “smaller” datasets consisting of
between 800 and 2400 examples, roughly the size of the
manually-constructed training corpora made available by
the PASCAL RTE organizers.

In our current work, we plan to explore how automatic tech-
niques can be leveraged in order to provide sources of train-
ing data for RTE and RTC systems which are as good — if
not better than — the manually-created sources of training
data provided by the PASCAL RTE organizers or by the
authors of (Harabagiu et al., 2006)3. It is our expectation

3The PASCAL RTE organizers have released a collection of
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Figure 1: Generic Learning-based Architecture for Recognizing Textual Inference.

that by identifying techniques which are likely to generate
valid positive and negative instances of TE/TC, we can as-
semble sources of training data which will allow for the
creation of accurate inference models — even when only a
small amount of data is used.

We have grouped methods for generating training data for
inference applications into two categories. Section 3 dis-
cusses the extractive methods we have developed to find
“naturally occurring” entailment or contradiction pairs in
text, while Section 4 presents a set of generative methods
capable of creating new entailment pairs from complex text
passages.

3. Extractive Resource Creation Methods

In this section, we describe how we took advantage of com-
mon language constructs and tendencies in order to ex-
tracted sets of both positive and negative instances of TE
and TC. These methods are derived from analyzing the
ways that elaboration, contrast, and paraphrase are gener-
ally presented in professional journalism texts.

Our first extractive method follows (Burger and Ferro,
2005) in creating positive textual entailment ¢-h pairs by
pairing the first sentence of a newswire document (assumed
to be the 7) with its corresponding headline (assumed to be
the /). Since the first sentence of a document tends to be
an elaboration upon the headline, it follows that most pairs
built with this technique contain corresponding informa-
tion and are positive entailment examples. To prevent the
creation of spurious pairings involving uninformative ini-
tial sentences, we exclude pairs in which the leading sen-
tence shares no named entity* mentions with the headline.
A sample analysis performed by human annotators judged
that 2296 out of 2500 (91.8%) random pairs generated from
this method were positive entailments. (An example of one
extracted #-h pair is presented in Table 3.)

TE Example
YES | Text: The NCAA on Wednesday named a panel of scien-
tists and sports experts to study the risks associated with metal
baseball bats.
Hypothesis: NCAA Panel To Study Metal Bats

Table 3: Positive Example

Next, we assembled positive instances of textual contradic-
tion by extracting pairs of sentences (or clauses) linked by
contrastive discourse connectives such as although, even
though, in contrast, otherwise and but. These language
constructs are explicit markers of contradiction or juxta-
position between nuggets of information, and we found

4800 examples (2400 positive, 2400 negative) which can be used
to train current RTE systems. The authors of (Harabagiu et al.,
2006) created a collection of nearly 3000 (1500 positive, 1500
negative) instances of textual contradiction.

“Named entities were recognized using LCC’s CICEROLITE
named entity recognition system.

that pairs built in this manner have a very high probabil-
ity of meeting the minimum criteria for textual contradic-
tion. This technique yields significantly fewer samples than
other syntactic methods since these discourse connectives
appear less frequently in text. Given a random sample of
1000 pairs, human annotators deemed that 94.2% (942)
were judged to be valid instances of textual contradiction.
(An example of a valid instance of TC is presented in 4.)

TC Example

YES Text: The sender claimed the letter had a hazardous substance
on it, and the office was evacuated [but]

Hypothesis: It appeared there was nothing really wrong with
the letter, Police Sgt. Bruce Elrod said.

Table 4: Contradiction Example

In order to provide a large, balanced training set we also
needed a mechanism to assemble inference pairs which rep-
resented negative instances of TE and TC. In order to create
pairs in which the 7 and the & expressed similar informa-
tion, yet could not be considered to be instances of TE or
TC, we selected pairs of sentences from an individual doc-
ument that featured a full mention the same named entity.
We assume that sequential entity mentions in a document
will convey distinct bits of information with very little re-
dundancy while still making reference to the same topical
content, and therefore will almost always represent negative
instances of textual entailment or textual contradiction. In
our evaluations, human annotators determined that 85.5%
of the 2500 random pairs did not meet the minimum crite-
ria to be considered valid instances of TE or TC. (An ex-
ample of one generated pair is presented in Table 5.) The
yield of this technique is significantly higher than the other
extraction-based methods since sequential sentences con-
taining mentions of the same entity constitute the majority

of news articles.
TE/TC | Example

NO Text: The Steelers were interested in signing Hostetler be-
fore the 1997 season-Stewart’s first as an NFL starting
quarterback—but the two sides could not come to an agreement
on salary or Hostetler’s role.
Hypothesis: The Steelers” biggest problem in bringing in a
new backup quarterback might be salary.

Table 5: Negative Example

4. Generative Resource Creation Methods

In this section we describe how we experimented with
methods for generating inference pairs which leverages the
discourse commitment extraction framework introduced
in (Hickl and Bensley, 2007) in order to generate candidate
hypotheses from text passages retrieved from a document
collection.

Under this approach, the texts included in the PASCAL
RTE-1, RTE-2, and RTE-3 test sets (as well as those as-
sembled using automatic methods for extracting positive
and negative instances of TE) were analyzed using a pre-
processing module that provides part-of-speech tagging,
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media since last December.

Text: Prince Laurent of Belgium, the youngest son of King Albert Il of Belgium, has been questioned by the
Federal police and is attending today’s court session in Hasselt in a marine fraud case that has gripped Belgian

Text Commitments

T1. Prince Laurent [is from] Belgium.

T2. Prince Laurent is the youngest son of King Albert II.

T3. King Albert Il [is from] Belgium.

T4. King Albert Il [has multiple] sons.

T5. Prince Laurent [is one of multiple] sons.

T6. King Albert Il [is the father of] Prince Laurent——
T7. Prince Laurent is the son of King Albert II.

T12. Today’s court session in Hasselt [is on] a marine fraud case.

T13. [There is a] court in Hasselt.

T14. [There is a] marine fraud case in Hasselt.

T15. A marine fraud case has gripped Belgian media since last December.
T16. Belgium [has a] media.

T17. Belgium [has a] King.

T18. Belgium [has a] Prince.

T8. Prince Laurent has been questioned by the Federal polig

P Hypothesis Commitments

T9. Prince Laurent is attending a court session in Hasselt.
T10. Prince Laurent [is in] Hasselt today.
T11. Prince Laurent [is involved] in a marine fraud case.

H1. King Albert Il [is from] Belgium.
H2. Prince Laurent [is from] Belgium.
H3. King Albert Il is the father of Prince Laurent.

Hypothesis: King Albert Il of Belgium is the father of Prince Laurent of Belgium.

Positive Instance of Textual Entailment

Figure 2: Commitments Extracted from a Positive Instance of TE.

named entity recognition, and syntactic dependency pars-
ing. Keywords extracted and expanded from these prepro-
cessed texts by methods described in (Hickl et al., 2007)
were used to retrieve passages from the 2 GB AQUAINT-
2 newswire collection. Passages were then ranked based
on the density of keywords and submitted to a sentence de-
composition module, which uses a set of heuristics to trans-
form complex sentences containing subordination, relative
clauses, lists, and coordination into sets of well-formed
simple sentences. We then passed the passages to a com-
mitment extraction module which used a series of extrac-
tion heuristics (described below) to enumerate some of the
publicly-held beliefs — or discourse commitments — that
could be inferred from a text passage.

We focused on generating the following five different types
of commitments from retrieved passages.

Propositional Content: To capture assertions encoded by
predicates and predicate nominals, we use semantic depen-
dency information to generate ’simplified” commitments
for each possible combination of their optional and obliga-
tory arguments.

Supplemental Expressions: Rules to extract supplemental
expressions, including appositives, as-clauses, parentheti-
cals, non-restrictive relative clauses, and epithets were im-
plemented in our weighted FST algorithm and used to cre-
ate new sentences which specify the conventional implica-
ture (CI) conveyed by the expression.

Relation Extraction: We used an in-house relation extrac-
tion system to recognize six types of semantic relations, in-
cluding artifact, general affiliation, organization affiliation,
part-whole, social affiliation, and physical location, from
which we can build simple attribute commitments.
Coreference Resolution: We used an in-house coreference
resolution (based on (Nicolae and Nicolae, 2006) module to
resolve instances of pronominal and nominal coreference
in order to expand the number of commitments available to
the system.

Paraphrasing: A lightweight, knowledge-lean paraphras-
ing approach (Hickl et al., 2006) was used in order to ex-
pand the set of commitments considered by the system.
Each extracted commitment was then paired with its cor-
responding passage; commitments were presumed to be
hypotheses, while passages were considered to be fexts.
We also assembled inference pairs using extracted commit-
ments and any of the PASCAL RTE fexts that were used
to retrieve passages from the corpus: commitments that re-

ceived a sufficiently high similarity score with respect to a
text were also assembled into an inference pair. (An exam-
ple of an original text, a retrieved passage, and an extracted
commitment are presented in Table 6.)

TE Example

YES Text: A Revenue Cutter, the ship was named for Harriet Lane,
niece of President James Buchanan, who served as Buchanan’s
White House hostess.

Passage: Named after the niece of President James Buchanan,
the US Revenue Cutter Harriet Lane was a 750-ton side-wheel
gunboat built in 1857.

Commitment: A Revenue Cutter was named after the niece
of President James Buchanan.

Table 6: Using Commitments to Assemble TE Pairs

We used a similar approach to generate training examples
for an RTC system as well. After an h has been generated
from a retrieved passage, we use the negation processing
heuristics from (Harabagiu et al., 2006) to reverse the po-
larity of the predicate included in the h. (An example is
provided in Table 7).

TC Example

YES | Text: A Revenue Cutter, the ship was named for Harriet Lane,
niece of President James Buchanan, who served as Buchanan’s
White House hostess.

Passage: Named after the niece of President James Buchanan,
the US Revenue Cutter Harriet Lane was a 750-ton side-wheel
gunboat built in 1857.

Commitment: A Revenue Cutter was [not] named after the
niece of President James Buchanan.

Table 7: Using Commitments to Assemble TC Pairs

5. Evaluation

In this section, we present results from experiments which
demonstrate the impact that automatically-created sources
of training data can have on the end-to-end performance of
state-of-the-art systems for recognizing TE and TC.

5.1. Validating Inference Pairs

After extracting an initial set of candidate TE and TC pairs
an analysis was performed by validating samples with hu-
man annotators. For each of the techniques a random, fixed-
size sampling was pulled from the generated pairs. A team
of 8 annotators partitioned the data into three equal-sized
sets of entailment pairs for evaluation. Each subset was ex-
amined by at least two annotators to judge the correctness
of the generated pairs, and discrepancies were noted and
resolved in conference by the annotators.

From this analysis we were able to identify and remove
common sources of error using syntactic patterns. By com-
bining lexical resources with our context-free pattern en-
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gine, we built rules to deal with the most error-prone lan-
guage constructs in each of the construction methods. As
shown in Table 8, this filtering process reduces the overall
error rate by an average of 5.8% across the 4 methods.

Set

Error Before Filtering

Error After Filtering

Extraction Method 1

8.2%

5.3%

Extraction Method 2 5.8% 3.1%
Extraction Method 3 14.5% 6.4%
Generative Method 17.1% 8.3%

Table 8: Generation Errors Before and After Filtering.

Although desirable to achieve perfect error filtering on
these training samples, we found most of the remaining
sources of error are difficult issues of semantics and world
knowledge that we have not yet been able to resolve. Even
though imperfect filtering results in some slightly noisy
training data, the resilience of our machine learning frame-
work is able to overcome this discrepancy, such that there
is a net benefit to the tasks of classifying TE and TC pairs.

5.2. Impact on Existing TE and TC Systems

Following the example of the PASCAL RTE evaluations,
we evaluated the performance of our RTE and RTC sys-
tems along two dimensions: accuracy and average preci-
sion. We define accuracy as the percentage of inference
pairs correctly classified by an RTE/RTC system. Average
precision, is defined by (Glickman and Dagan, 2005) as:

i
_(correctj)
1 % ZTL Zr,1 _

L . - :correct; € 0,1
This scoring metric assumes a sorted output based on con-
fidence weights, with the highest confidence judgments ap-
pearing at the top of the sorted order.
Our first evaluation compared the impact of data generated
using the various methods against a TE system trained just
using the 2400-pair RTE development set. For the purposes
of TE evaluation, data generated to provide contradiction
pairs are considered negative entailment pairs.

Development Set Accuracy | Average Precision
PASCAL Dev 0.6900 0.7152
Extraction Method 1 0.5428 0.5520
Extraction Method 2 0.5814 0.6186
Extraction Method 3 0.5303 0.5291
Generative Method 0.6649 0.6475

Table 9: Comparison of Training Corpora for Textual En-
tailment.

Since each extraction method is designed to create pairs of a
specific polarity (e.g. method 1 generates only YES pairs),
the methods acting in isolation actually perform worse than
the baseline system trained only on the PASCAL Develop-
ment Set. By taking combinations of data constructed from
the various methods, however, we can achieve results com-
parable to a system trained on the PASCAL Development
Set as demonstrated in Table 10.

Development Set Accuracy | Average Precision
Methods 1 +2 0.6246 0.6477
Methods 1 +3 0.6194 0.6221

Methods 1 +2 +3 0.6550 0.6807

All Methods 0.6895 0.7019

Table 10: Combinations of Training Corpora Data.

Having established that the automatically generated data
compares favorably against the manually built development
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Figure 3: Entailment Scores with Increasing Training Data
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Figure 4: Contradiction Scores with Increasing Training
Data

set for a fixed number of examples, we then examined the
impact of increasing amounts of training data in the TE and
TC systems. As shown in Figure 3 and Figure 4, larger
amounts of training data provided significant performance
boosts for both TE and TC classification, confirming the
hypothesis suggested in (Hickl et al., 2006).

6. Conclusions

In this paper, we demonstrated how a battery of un-
supervised techniques could be used in order to create
large, high-quality corpora for textual inference applica-
tions, such as systems for recognizing textual entailment
and recognizing textual contradiction. We described how
more than 1 million pairs of training examples could be
generated from the documents found in a 2 GB English
newswire corpus.

In our experiments, we observed no significant difference
in performance when equivalent number of hand-crafted or
automatically-generated examples were used to train classi-
fiers for recognizing textual entailment or textual contradic-
tion. While we recognize that the techniques described in
this paper may not provide the lexicosemantic or pragmatic
knowledge needed by many textual inference applications,
we expect that they can be exploited in order to provide the
basic forms of linguistic knowledge needed to improve the
performance of classification-based systems for computing
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textual inference.

Finally, our results confirm the hypothesis (first sug-
gested in (Hickl et al., 2006)) that the performance of
classification-based systems for RTE increases with the
amount of available training data. In our experiments, in-
creases in accuracy are observed when training on as many
as 500,000 inference pairs; performance remains constant
(or suffers slight degradation) with larger training corpora.
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