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Abstract 

Tokenization is one of the initial steps done for almost any text processing task. It is not particularly recognized as a challenging 
task for English monolingual systems but it rapidly increases in complexity for systems that apply it for different languages. This 
article proposes a supervised learning approach to perform the tokenization task. The method presented in this article is based on 
character transitions representation, a representation that allows compound expressions to be recognized as a single token. 
Compound tokens are identified independent of the character that creates the expression. The method automatically learns 
tokenization rules from a pre-tokenized corpus. The results obtained using the trainable system show that for Romanian and 
English a statistical significant improvement is obtained over a baseline system that tokenizes texts on every non-alphanumeric 
character. 

  

1 Introduction 

Tokenization is the process of isolating word-like units 

from a text (Grefenstette and Tapanainen 1994); the 

process of mapping sentences from character strings 

into strings of words (Guo 1997).  

Even though we may think that tokenization is not very 

important, it can be a step that influences the final 

results of a more complex task. For example McNamee 

and Mayfield (2004) show that the results for an 

information retrieval system based on N-gram 

tokenization for several European languages is 

influenced by the length of the N-grams. They also 

show that an average N-gram word tokenization 

representation outperforms a space-based word 

tokenization representation because raw words work 

relatively worse with morphologically complex 

languages. 

High-level tasks (e.g., machine translation, named 

entity recognition) can influence the way tokenization is 

done. Grefenstette and Tapanainen (1994) explain how 

the Brown corpus is tokenized differently from the 

Susanne corpus, both being English corpora but 

designed for different tasks. 

The method that is proposed in this article differs than 

the traditional methods by its supervised learning 

approach and by the fact that it can solve the non-

alphanumeric character attachment (e.g. hyphen in 

hyphenated words), a problem for languages like 

Romanian and French, languages that tend to have a 

large number of compound expressions. 

For Bio-Informatics texts, tokenization is an important 

step that can influence the results for tasks like 

information extraction, gene discovery, gene 

interaction, etc. Drug names, gene names, are most of 

the time compound expressions that can contain eater 

spaces eater hyphens eater a different non-alphanumeric 

character that defines the multiword expression (e.g. G-

protein-coupled Receptor Kinase, Glycogen SYnthase). 

A system that can automatically learn and apply 

tokenization rules for all non-alphanumeric characters 

can play an important role for high-level tasks 

performed on medical domain texts.  

 

2 Related Work 

The traditional approach to perform the tokenization 

task uses hand-crafted rules with regular expressions 

and/or finite state automata (NLTK (Loper and Bird 

2002)). MtSeg, a system developed by P. di Cristo
1
 is a 

rule-based tokenization system that can be tuned for 

various languages. The system was enhanced with the 

corresponding resources for several Western European 

languages including Romanian by Tufis et al. (1998). A 

second approach for tokenization is based on sequence 

labeling algorithms such as Hidden Markov Models 

(HMMs). In Gil et al. (2002) tokenization and part-of-

speech tagging are done in one step using an HMM 

algorithm.  

This paper addresses the tokenization task as a stand-

alone problem and not performing it in combination 

with other tasks. The method proposed in this article 

does not use human expertise or any type of 

dictionaries, the only source of information required is a 

pre-tokenized corpus; the language knowledge is 

hypothesized to be encoded in a training corpus. A 

comparison of the proposed trainable method with a 

traditional hand crafted rule-based system, BaLIE
2
, is 

performed.   

 

                                                           
1 http://aune.lpl.univ-aix.fr/projects/multext/MtSeg/ 
2 http://balie.sourceforge.net/ 
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3 Problems in Tokenization 

Ambiguity: An ambiguity occurs for every unit of text 

that can play multiple syntactic roles within a sentence 

or within different languages. For example in the 

Romanian and French big numbers (e.g. thousands, 

millions, etc.) contain dot as a mark, while for English 

comma is used.  

Round-up: The round up problem appears when multi–

word expressions need to be recognized as single 

tokens. Having lists of compound words can help but 

sometimes they are not available for all languages. 

Moreover, languages are under a continuous process of 

change new words and new expressions are added to a 

language all the time  

Hyphenation: Hyphenation is problematic when it 

serves the purpose of end-of-line hyphen and most 

importantly for languages that allow multi-word 

expressions to be created with the hyphen. (e.g vowel 

elision ─ “ont-ils”, in French and “dintr-un”, in 

Romanian). The hyphen attachment is an important 

problem in the Romanian language.  

 

4 Trainable Tokenizer 

This article proposes a supervised learning approach for 

the tokenization task. The method requires a training 

corpus where lexical units (tokens) are identified. 

Usually part-of-speech tagged corpora are well suited 

for this task since they already have the lexical units 

divided.  

The method presented in this article is evaluated on a 

Romanian and English corpus, Orwell’s novel 1984, 

from the MulText
3
 project. Romanian was chosen as a 

language of study because is not a very resourceful 

language and also because the tokenization task differs 

in the way it is done in English.  

4.1 Instances and Features 

To create a training corpus to be used by the ML 

algorithm, both the raw text version (textual, readable 

version) and the pre-tokenized versions (one token per 

line) of the novel are used.  

The method uses two types of textual units to create the 

training corpus:  

1. Sequence of alphanumeric characters. The 

sequences represent consecutive alphanumeric 

characters from the raw text. A sequence of alphabetic 

characters is considered as an atomic unit since it is 

highly intuitive that for segmented languages there is 

not a split inside such a sequence in order to create 

different tokens. 

2. Non-alphanumeric characters. This unit 

contains a single character. It can be either a 

punctuation character or another special character that 

is not alphanumeric, but not a space. Consecutive non-

                                                           
3 http://nl.ijs.si/ME/V3/doc/ 

alphanumeric characters are not merged in a unit since 

they are often part of different tokens. 

3. Besides type 1 and type 2 text units, space is also 

identified as a special character. The space is not 

considered a non-alphanumeric unit of type 2 since it 

has the property of being a good token divider but it is 

never considered a token by itself.  

An instance is created on each transition between 

textual unit of type 1 or 2 and for each space in the raw 

text. Our goal is to learn to classify transitions as a Split 

or a Not-Split decision.  

The features used are:  

IsASpace (boolean): true if the character that creates 

the current transition is a space, false if not. 

PrecedingSegment (nominal): the string values of 

the preceding text unit (type 1 or type 2) of the 

character that creates the transition.  

    FollowingSegment (nominal): the string value of the 

following unit of text (type 1 or type 2) of the character 

that creates the transition.  

    Class: (Split or Not-Split).  The class of a given 

instance can be Split ─ the current transition (the 

character that creates the transition) is a token 

delimitation, a token ends and another token start, Not-

Split ─ the current transition is not delimitating two 

tokens.  

 

 
Figure 1: Sample instances created on each transition 

for a Romanian text. 

 

The tokenized corpus contains the following tokens: 

{“stia”, “ca”, “,”, “intr-un fel”, “sau”, “altul”, “,”} 

 

Each segment becomes an instance: 

Instance i1: true, stia, ca, Split  

Instance i2: false, ca, ',', Split  

Instance i3: true, ',', intr, Split  

Instance i4: false, intr, -, Not-Split(etc.) 

 

If we look at Instance i4, we can see that this text 

representation and the fact that we consider every non-

alphanumeric character as a transition can capture the 

hyphen attachment that is needed to be solved for a 

correct tokenization.  

4.2 Datasets 

The referenced Romanian pre-tokenized novel that is 

used in the experiments has 117,866 tokens. About 

5.5% percent of the tokens are compound (multi-word 

expressions that contain space or hyphen). From 3,478 

hyphen appearances in the corpus 1,788 times it was 

part of a multi-word expression and 1,301 times it was 

attached to a token. 126,185 instances are created 
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(117,865 with the class Split and 8,321 with the class 

Not-Split).  

The English version of the novel contains 113,400 

tokens with 116,308 instances created. 1% of the total 

numbers are compound tokens.  The Split class contains 

113,399 instances and the Not-Split class 2,909. The 

class imbalance for the English version of the novel is 

more than double as for the Romanian data set. This is 

explained by the fact that the Romanian language 

contains more locutions and hyphenated words than 

English. This observation supports the fact that specific 

rules need to be applied for each language.  

The class imbalance for our data set is 1:14 for the 

Romanian version and 1:38 for the English version. No 

rebalance was done because the natural distribution 

found in the corpus was meant to be preserved. Even 

though the imbalance is high, the results show that the 

method is able to significantly outperform a baseline 

that will always predict the majority class, in this case 

the Split class. 

 

5 Evaluation and Results 

The evaluation was done using a 10-fold cross-

validation technique for both versions of the novel. 

ZeroR classifier was chosen to be used as a baseline 

(always predicts the majority class, the Split class). 

Naïve Bayes and AdaBoost are additional classification 

algorithms used from the Weka
4
 Tool.   

 

Classifier Accuracy_RO Accuracy_ENG 

ZeroR (Baseline) 93.40% 97.40% 

AdaBoost 93.49% 99.57% 

Naïve Bayes 95.50% 99.70% 

 

Table 1. Accuray results obtained with the trainable 

tokenizer. 

 

Some experiments using simple tokenization rules were 

also performed. For this experiments CTS ─ number of 

correctly recognized tokens divided by the total number 

of tokens in the pre-tokenized corpus is reported.  

 

Splitting Characters CTS 

RO 

CTS 

ENG 

Space 67.6% 75.8% 

" ",,".","!",",",":",";","?","/","(",")" 94.4% 98.2% 

All non-alpha/numeric 94.3% 98.4% 

Balie
5
 System 94.4% 99.1% 

 

Table 2. Results for simple tokenization rules. 

 

 

                                                           
4 http://www.cs.waikato.ac.nz/ml/weka/ 
5 http://balie.sourceforge.net 

5.1 Discussion of Results 

For both Romanian and English corpus the 

improvements that were obtained are 0.95 statistically 

significant on the t-test even when using highly 

imbalanced data sets. For the Romanian language the 

majority of errors were done for the Not-Split class on 

multi-word expressions, compound adverbs and 

conjunctions. Examples of errors that were made by the 

method on the Not-Split class are presented in Figure 2. 

 

Figure 2. Errors on the Not-Split class for Romanian. 

Text1: din moment ce inceputul continea 

Instance i1: true, din,moment, Not-Split 

 

Text2: Pe de-o parte 

Instance i2: false, -, o, Not-Split 

 

For the English version they were done on the Split 

class on punctuation marks (e.g. “.”, “?”) and some 

made on apostrophe.  Some examples of the errors on 

the split class are presented in the following figure:  

 

Figure 3. Errors on the Split class for English. 

Instance i1: true,”.”, Charrington, Split 

Instance i2: false, conspirator, ? , Split 

Instance i3: false, artist, "'", Split 

 

The obtained results show that for both corpora a 

trainable tokenization is significantly better than a 

hand-crafted rule-based tokenization. From Machine 

Learning (ML) point of view, the tokenization task is 

associated here with a classification task. The possible 

classes used in the classification task are Split and Not-

Split and are used by the method to determine if a non-

alphanumeric character is or not a token delimitation.  

The system also outperformed several hand-crafted rule 

based systems and was also shown to be able to 

determine non-alphanumeric token attachment, a 

problem that was not especially addressed before. 

Although tokenization is thought to be an easy task this 

work is motivated by the need to adapt tokenization to 

languages and sometimes to tasks.  

 

6 Conclusions and Future Work 

Although tokenization is thought to be an easy task this 

work is motivated by the need to adapt tokenization to 

languages and sometimes even to tasks.  

The evaluation step, for the method proposed in this 

paper was done on corpora from two different 

languages: Romanian and English. The system 

outperformed several hand-crafted rule based systems 

and statistically outperformed a base-line system. 

Besides the encouraging results, the method also 

showed to be able to determine non-alphanumeric token 

attachment, a problem that was not especially addressed 

before. 
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Appling the method to other languages, choosing 

different data representations ─ looking at more context 

features and using syntactic/semantic relations features 

are just few of the main ideas that are part of the future 

work plans. 
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8 Translations 

dintr-un / dintre = from / among;  

nici un = none; 

stia ca, intr-un fel sau altul = he 

knew that in a  way or another; 

din moment ce inceputul continea = 

because the beginning contained; 
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