
A Trainable Tokenizer, solution for multilingual texts and compound expression

tokenization

Oana Frunza

School of Information Technology and Engineering

University of Ottawa Ottawa, ON, Canada, K1N 6N5

 ofrunza@site.uottawa.ca

Abstract

Tokenization is one of the initial steps done for almost any text processing task. It is not particularly recognized as a challenging
task for English monolingual systems but it rapidly increases in complexity for systems that apply it for different languages. This
article proposes a supervised learning approach to perform the tokenization task. The method presented in this article is based on
character transitions representation, a representation that allows compound expressions to be recognized as a single token.
Compound tokens are identified independent of the character that creates the expression. The method automatically learns
tokenization rules from a pre-tokenized corpus. The results obtained using the trainable system show that for Romanian and
English a statistical significant improvement is obtained over a baseline system that tokenizes texts on every non-alphanumeric
character.

1 Introduction

Tokenization is the process of isolating word-like units

from a text (Grefenstette and Tapanainen 1994); the

process of mapping sentences from character strings

into strings of words (Guo 1997).

Even though we may think that tokenization is not very

important, it can be a step that influences the final

results of a more complex task. For example McNamee

and Mayfield (2004) show that the results for an

information retrieval system based on N-gram

tokenization for several European languages is

influenced by the length of the N-grams. They also

show that an average N-gram word tokenization

representation outperforms a space-based word

tokenization representation because raw words work

relatively worse with morphologically complex

languages.

High-level tasks (e.g., machine translation, named

entity recognition) can influence the way tokenization is

done. Grefenstette and Tapanainen (1994) explain how

the Brown corpus is tokenized differently from the

Susanne corpus, both being English corpora but

designed for different tasks.

The method that is proposed in this article differs than

the traditional methods by its supervised learning

approach and by the fact that it can solve the non-

alphanumeric character attachment (e.g. hyphen in

hyphenated words), a problem for languages like

Romanian and French, languages that tend to have a

large number of compound expressions.

For Bio-Informatics texts, tokenization is an important

step that can influence the results for tasks like

information extraction, gene discovery, gene

interaction, etc. Drug names, gene names, are most of

the time compound expressions that can contain eater

spaces eater hyphens eater a different non-alphanumeric

character that defines the multiword expression (e.g. G-

protein-coupled Receptor Kinase, Glycogen SYnthase).

A system that can automatically learn and apply

tokenization rules for all non-alphanumeric characters

can play an important role for high-level tasks

performed on medical domain texts.

2 Related Work

The traditional approach to perform the tokenization

task uses hand-crafted rules with regular expressions

and/or finite state automata (NLTK (Loper and Bird

2002)). MtSeg, a system developed by P. di Cristo
1
 is a

rule-based tokenization system that can be tuned for

various languages. The system was enhanced with the

corresponding resources for several Western European

languages including Romanian by Tufis et al. (1998). A

second approach for tokenization is based on sequence

labeling algorithms such as Hidden Markov Models

(HMMs). In Gil et al. (2002) tokenization and part-of-

speech tagging are done in one step using an HMM

algorithm.

This paper addresses the tokenization task as a stand-

alone problem and not performing it in combination

with other tasks. The method proposed in this article

does not use human expertise or any type of

dictionaries, the only source of information required is a

pre-tokenized corpus; the language knowledge is

hypothesized to be encoded in a training corpus. A

comparison of the proposed trainable method with a

traditional hand crafted rule-based system, BaLIE
2
, is

performed.

1 http://aune.lpl.univ-aix.fr/projects/multext/MtSeg/
2 http://balie.sourceforge.net/

581

3 Problems in Tokenization

Ambiguity: An ambiguity occurs for every unit of text

that can play multiple syntactic roles within a sentence

or within different languages. For example in the

Romanian and French big numbers (e.g. thousands,

millions, etc.) contain dot as a mark, while for English

comma is used.

Round-up: The round up problem appears when multi–

word expressions need to be recognized as single

tokens. Having lists of compound words can help but

sometimes they are not available for all languages.

Moreover, languages are under a continuous process of

change new words and new expressions are added to a

language all the time

Hyphenation: Hyphenation is problematic when it

serves the purpose of end-of-line hyphen and most

importantly for languages that allow multi-word

expressions to be created with the hyphen. (e.g vowel

elision ─ “ont-ils”, in French and “dintr-un”, in

Romanian). The hyphen attachment is an important

problem in the Romanian language.

4 Trainable Tokenizer

This article proposes a supervised learning approach for

the tokenization task. The method requires a training

corpus where lexical units (tokens) are identified.

Usually part-of-speech tagged corpora are well suited

for this task since they already have the lexical units

divided.

The method presented in this article is evaluated on a

Romanian and English corpus, Orwell’s novel 1984,

from the MulText
3
 project. Romanian was chosen as a

language of study because is not a very resourceful

language and also because the tokenization task differs

in the way it is done in English.

4.1 Instances and Features

To create a training corpus to be used by the ML

algorithm, both the raw text version (textual, readable

version) and the pre-tokenized versions (one token per

line) of the novel are used.

The method uses two types of textual units to create the

training corpus:

1. Sequence of alphanumeric characters. The

sequences represent consecutive alphanumeric

characters from the raw text. A sequence of alphabetic

characters is considered as an atomic unit since it is

highly intuitive that for segmented languages there is

not a split inside such a sequence in order to create

different tokens.

2. Non-alphanumeric characters. This unit

contains a single character. It can be either a

punctuation character or another special character that

is not alphanumeric, but not a space. Consecutive non-

3 http://nl.ijs.si/ME/V3/doc/

alphanumeric characters are not merged in a unit since

they are often part of different tokens.

3. Besides type 1 and type 2 text units, space is also

identified as a special character. The space is not

considered a non-alphanumeric unit of type 2 since it

has the property of being a good token divider but it is

never considered a token by itself.

An instance is created on each transition between

textual unit of type 1 or 2 and for each space in the raw

text. Our goal is to learn to classify transitions as a Split

or a Not-Split decision.

The features used are:

IsASpace (boolean): true if the character that creates

the current transition is a space, false if not.

PrecedingSegment (nominal): the string values of

the preceding text unit (type 1 or type 2) of the

character that creates the transition.

 FollowingSegment (nominal): the string value of the

following unit of text (type 1 or type 2) of the character

that creates the transition.

 Class: (Split or Not-Split). The class of a given

instance can be Split ─ the current transition (the

character that creates the transition) is a token

delimitation, a token ends and another token start, Not-

Split ─ the current transition is not delimitating two

tokens.

Figure 1: Sample instances created on each transition

for a Romanian text.

The tokenized corpus contains the following tokens:

{“stia”, “ca”, “,”, “intr-un fel”, “sau”, “altul”, “,”}

Each segment becomes an instance:

Instance i1: true, stia, ca, Split

Instance i2: false, ca, ',', Split

Instance i3: true, ',', intr, Split

Instance i4: false, intr, -, Not-Split(etc.)

If we look at Instance i4, we can see that this text

representation and the fact that we consider every non-

alphanumeric character as a transition can capture the

hyphen attachment that is needed to be solved for a

correct tokenization.

4.2 Datasets

The referenced Romanian pre-tokenized novel that is

used in the experiments has 117,866 tokens. About

5.5% percent of the tokens are compound (multi-word

expressions that contain space or hyphen). From 3,478

hyphen appearances in the corpus 1,788 times it was

part of a multi-word expression and 1,301 times it was

attached to a token. 126,185 instances are created

582

(117,865 with the class Split and 8,321 with the class

Not-Split).

The English version of the novel contains 113,400

tokens with 116,308 instances created. 1% of the total

numbers are compound tokens. The Split class contains

113,399 instances and the Not-Split class 2,909. The

class imbalance for the English version of the novel is

more than double as for the Romanian data set. This is

explained by the fact that the Romanian language

contains more locutions and hyphenated words than

English. This observation supports the fact that specific

rules need to be applied for each language.

The class imbalance for our data set is 1:14 for the

Romanian version and 1:38 for the English version. No

rebalance was done because the natural distribution

found in the corpus was meant to be preserved. Even

though the imbalance is high, the results show that the

method is able to significantly outperform a baseline

that will always predict the majority class, in this case

the Split class.

5 Evaluation and Results

The evaluation was done using a 10-fold cross-

validation technique for both versions of the novel.

ZeroR classifier was chosen to be used as a baseline

(always predicts the majority class, the Split class).

Naïve Bayes and AdaBoost are additional classification

algorithms used from the Weka
4
 Tool.

Classifier Accuracy_RO Accuracy_ENG

ZeroR (Baseline) 93.40% 97.40%

AdaBoost 93.49% 99.57%

Naïve Bayes 95.50% 99.70%

Table 1. Accuray results obtained with the trainable

tokenizer.

Some experiments using simple tokenization rules were

also performed. For this experiments CTS ─ number of

correctly recognized tokens divided by the total number

of tokens in the pre-tokenized corpus is reported.

Splitting Characters CTS

RO

CTS

ENG

Space 67.6% 75.8%

" ",,".","!",",",":",";","?","/","(",")" 94.4% 98.2%

All non-alpha/numeric 94.3% 98.4%

Balie
5
 System 94.4% 99.1%

Table 2. Results for simple tokenization rules.

4 http://www.cs.waikato.ac.nz/ml/weka/
5 http://balie.sourceforge.net

5.1 Discussion of Results

For both Romanian and English corpus the

improvements that were obtained are 0.95 statistically

significant on the t-test even when using highly

imbalanced data sets. For the Romanian language the

majority of errors were done for the Not-Split class on

multi-word expressions, compound adverbs and

conjunctions. Examples of errors that were made by the

method on the Not-Split class are presented in Figure 2.

Figure 2. Errors on the Not-Split class for Romanian.

Text1: din moment ce inceputul continea

Instance i1: true, din,moment, Not-Split

Text2: Pe de-o parte

Instance i2: false, -, o, Not-Split

For the English version they were done on the Split

class on punctuation marks (e.g. “.”, “?”) and some

made on apostrophe. Some examples of the errors on

the split class are presented in the following figure:

Figure 3. Errors on the Split class for English.

Instance i1: true,”.”, Charrington, Split

Instance i2: false, conspirator, ? , Split

Instance i3: false, artist, "'", Split

The obtained results show that for both corpora a

trainable tokenization is significantly better than a

hand-crafted rule-based tokenization. From Machine

Learning (ML) point of view, the tokenization task is

associated here with a classification task. The possible

classes used in the classification task are Split and Not-

Split and are used by the method to determine if a non-

alphanumeric character is or not a token delimitation.

The system also outperformed several hand-crafted rule

based systems and was also shown to be able to

determine non-alphanumeric token attachment, a

problem that was not especially addressed before.

Although tokenization is thought to be an easy task this

work is motivated by the need to adapt tokenization to

languages and sometimes to tasks.

6 Conclusions and Future Work

Although tokenization is thought to be an easy task this

work is motivated by the need to adapt tokenization to

languages and sometimes even to tasks.

The evaluation step, for the method proposed in this

paper was done on corpora from two different

languages: Romanian and English. The system

outperformed several hand-crafted rule based systems

and statistically outperformed a base-line system.

Besides the encouraging results, the method also

showed to be able to determine non-alphanumeric token

attachment, a problem that was not especially addressed

before.

583

Appling the method to other languages, choosing

different data representations ─ looking at more context

features and using syntactic/semantic relations features

are just few of the main ideas that are part of the future

work plans.

7 Acknowledgements

The work presented in this paper was done while I was

also affiliated to the IIT Group of the National Research

Council of Canada.

I would like to thank David Nadeau from the IIT

Group, National Research Council of Canada for all the

help and without whom this work would not have been

possible.

8 Translations

dintr-un / dintre = from / among;

nici un = none;

stia ca, intr-un fel sau altul = he

knew that in a way or another;

din moment ce inceputul continea =

because the beginning contained;

9 References

Grefenstette, G. and Tapanainen, P. (1994) What is a

Word, what is a Sentence? Problems of Tokenization.

International Conference on Computational

Lexicography, Budapest, 79-87.

 Gil, J. G., Alonso, M. A. and Ferro, M. V. (2002) A

Common Solution for Tokenization and Part-of-

Speech Tagging. Proceedings of the 5th International

Conference on Text, Speech and Dialogue.

Guo J. (1997) Critical Tokenization and its Properties,

Computational Linguistic, 23(4), pp.569-596.

Loper, E. and Bird, S. (2002) NLTK: The Natural

Language Toolkit. ACL Workshop on Effective Tools

and Methodologies for Teaching Natural Language

Processing and Computational Linguistics. New

Jersey, US.

McNamee, P., and Mayfield J. Character N-gram

Tokenization for European Language Retrieval.

Information Retrieval, 7(1-2):73-97, 2004.

Tufis, D., Ide, N. Erjavec, T (1998) Standardized

Specifications, Development and Assessment of

Large Morpho-Lexical Resources for Six Central and

Eastern European Languages. In Proceedings of

LREC, Granada, Spain, pp. 233-240.

584

