
Saxon: An Extensible Multimedia Annotator

Mark A. Greenwood, Jośe Iria, Fabio Ciravegna

Department of Computer Science
University of Sheffield
Sheffield, S1 4DP, UK

{m.greenwood, j.iria, f.ciravegna}@dcs.shef.ac.uk

Abstract
This paper introduces Saxon, a rule based document annotator that is capable of processing and annotating several document formats
and media, both within and across documents. Furthermore, Saxon is readily extensible to support other input formats due to both it’s
flexible rule formalism and the modular plugin architectureof the Runes framework upon which it is built. In this paper weintroduce the
Saxon rule formalism through examples aimed at highlighting it’s power and flexibility.

1. Introduction

The application of natural language processing (NLP) to
real-world data and tasks is complex, and has become sig-
nificantly more so since web and multimedia data became
commonplace. Novel, more complex tasks have emerged
that: 1) work on different kinds of text (e.g. web peo-
ple disambiguation (Artiles et al., 2007), sentiment anal-
ysis (Strapparava and Mihalcea, 2007)), 2) require taking
into account not only linguistic features but also the un-
derlying structure of the data (see, for instance, Minkov
et al. (2006) and Zhu et al. (2007)), and 3) require han-
dling large volumes (Popov et al., 2004a) and heterogene-
ity (Arasu and Garcia-Molina, 2003) of documents coming
from third party controlled sources.

One of the issues encountered, as the amount of available
data increases, is the choice of algorithms to extract use-
ful information. Very large datasets exclude the possibil-
ity of exhaustive annotation. This has led to a rise in the
number of unsupervised and semi-supervised methods be-
ing reported in the literature. Other related work includes
numerous methods that employ manually developed rules
to a wide range of natural language processing problems.
Such methods, hereafter referred to as rule based meth-
ods, rely on experts of the problem domain for the manual
elicitation of declarative rules that are capable of capturing
patterns in the textual data and to take some action on the
matched text fragments. Despite the costs associated with
manually creating and maintaining these rules, such meth-
ods still constitute the best or, sometimes, only viable so-
lution in many applications, where they replace or comple-
ment other methods, most notably machine learning-based
methods that are capable of learning from examples marked
in the text by non-expert users. Recent examples of applica-
tion domains where systems that employ rule based meth-
ods have been used include market monitoring and tech-
nology watch (Maynard et al., 2005), semantic annotation
of documents (Reeve and Han, 2005; Popov et al., 2004b),
query answering (Buitelaar et al., 2006) and biomedical text
mining (Hirschman et al., 2005).

The application of rule based systems to new application
domains presents, generally, two main challenges: making
sure the rules are expressive enough to capture the patterns
of interest in the text, and coping with new document for-

mats and media. These two aspects are intimately related,
as the expressiveness power of rules depends not only on
the grammar defined to enable their declarative specifica-
tion, but also on the information which the system is ca-
pable of accessing from the underlying textual data. For
instance, in order to capture text fragments that are marked
asitalic in a OpenDocument file, both grammar and access
mechanism must support such style elements. A more com-
plex example would concern rules that work across media,
e.g. capturing text fragments surrounding images depicting
cars in the corpus.
As application domains become more and more demand-
ing, recent interest has moved to handling documents con-
taining different formats and media types, e.g. plain text,
HTML, and OpenDocument. Unfortunately, the majority
of the current systems are not able to represent or make
use of the information in these different format and media
types. To address this issue we have designed and devel-
oped Saxon, an extensible rule based system built upon the
Runes framework. Saxon combines the following key fea-
tures:

• handles multimedia data (via the underlying frame-
work);

• matches patterns across documents and media;

• features an expressive rule formalism;

• it is readily extensible to support new input formats
and media.

Due to its expressive rule formalism, Saxon can be used to
perform several tasks including automated document pro-
cessing (conversion, segmentation, etc.) and classification
tasks such as text categorization and entity and relation ex-
traction. Conversely, due to its multimedia handling and
extensibility features, Saxon can be easily ported to new
application domains.
The rest of this paper describes the underlying Runes
framework and Saxon’s data representation capabilities and
rule formalism. It also provides examples which explain
how both Runes and Saxon work and their practical appli-
cations.

611

2. The Runes Framework
In this section we present an open-source framework, called
Runes1 (previous work on this framework was presented
by Iria and Ciravegna (2006)), which handles, on behalf
of the designer/implementer, several important aspects re-
lated to the representation of language resources: it auto-
mates the selection of an optimal underlying data structure
for holding the data at any time during processing; it pro-
vides support for expressive data models up to the level of
hypergraphs; it enhances portability by featuring a plugin
framework and encouraging developers to think in terms of
small modular processing units; it integrates data by pro-
viding unique identifiers to stored data and merging those
that are identical; it orchestrates execution of external tools
by running a dependencies resolution algorithm that deter-
mines which should run and in which order; and it supports
processing several data formats and media thanks to the nu-
merous plugins that accompany the framework.
The rest of this section describes the frameworks data rep-
resentation formalism and plugin execution strategy.

2.1. Representation Formalism

From a mathematical standpoint, the data representation ex-
pressiveness offered by Runes is that of a hypergraph. From
a framework perspective, this is achieved via the concepts
of stoneandrunestone.

Definition 1. A pluggable data structureS, or simply
stone, is a 3-tuple(D, i, c). D ⊆ N1 × . . . × Nk is a set
of datainstances, wherek is thearity of the instance. The
injective functionsi : D → N andc : D → T associate
anunique identifierand acontent objectto an instance, re-
spectively. In caseT ≡ R, the content may be interpreted
as a (real-valued)weight. A 1-ary instance constitutes a
nodein the hypergraph. Ak-ary instance,k ≥ 2, takesk
unique identifiers from1 ≤ m ≤ k stones, thereby forming
an edge in the hypergraph.

Definition 2. A common data representation, or simply
runestone, is a mapl 7→ S, wherel ∈ L is a semantic
type label.

In NLP applications, a typical runestone consists of data
structures for the semantic typesdocument, sentence,
token, part of speech, sentence in document and
token has part of speech, amongst others. A
part of speech stone Spos is typically a set of 1-ary
instances (nodes), which contain string content values such
as ‘NNP’ and ‘DT’ and are uniquely identified by mapping
those strings to integers. Atoken has part of speech
stone is typically a set of 2-ary instances (edges) whose
first component is the identifier of an instanced1 ∈ Stoken,
and the second component the identifier of an instance
d2 ∈ Spos.
Note that the framework’s ability to integrate data is given
by functioni and the fact thatD is a set. For example, all
insertions of a node with content ‘NNP’ intoSpos map to
one single node, and generate the same identifier for use by
other stones.

1http://sourceforge.net/projects/runes

2.2. Plugin Execution Strategy

From an architectural standpoint, Runes implements the
blackboard architectural pattern (Buschmann et al., 1996).
Processing is done by pluggable modules, which communi-
cate and integrate data via a runestone. In Runes, pluggable
processing modulesr1..n read and write from a common
data structureb, composed of structures holding data for
semantic typess1..m. Modules whose input and output lie
in b (e.g.,r2) are automatically created by the framework by
analysing the requirements imposed by the inputs and out-
puts that lie outsideb (e.g., input ofr1 and output ofr3). In
NLP applications, this means the application designer does
not have to manage the intermediate steps of the pipeline.

Definition 3. A pluggable processing moduleR, or simply
rune, is a 3-tuple(I,N ,P). I denotes a set of instruc-
tions that modify the runestone. The set ofrequired labels
N ⊆ L indicates which stones need to be available to the
rune prior to execution. The set ofprovided labelsP ⊆ L
indicates which stones will be created or modified by the
rune when executed.

For example, a rune wrapping an existing part-
of-speech tagger would require, prior to execu-
tion, the presence in the runestone of an edge be-
tween each document node and its first token node,
and of edges to gather adjacent tokens, that is,
Npos = {token, document has first token, next token}.
The same rune would attach part of speech
tags to each token, that is, Ppos =

{part of speech, token has part of speech}.
The framework encourages a modular design of the col-
lection of runes for portability and reuse. The processing
model aims at several runes to be composed for execution,
such that a rune’s required set is fulfilled by one or more
other runes’ provided sets. WhenPi ⊆ Nj , we say runej
depends on runei. Orchestration concerns are hidden away
from the user by automatically resolving such dependen-
cies.
The dependencies resolution algorithm in Figure 1 finds a
minimal set of runes that can be composed to execute a
given processing task, defined in terms of its sets of re-
quired and provided semantic type labels. Having found
this minimal set, an execution schedule can be determined
and a data model can be inferred. The schedule groups
runes into execution stages, where runes in the same stage
have no dependencies amongst them and may thus be run
in parallel. The data modelM ⊆ L specifies which stones
will be created and modified during processing (one per la-
bel in M). That is, when running a scheduled runer, in-
stances of a semantic type with labell such thatl /∈ M∩Pr

are filtered out.
By handling all aspects of orchestration (which runes to run
when, and which data model to subscribe to), Runes frees
the application designer to think about the data process-
ing task solely in terms of input and output type labels. In
NLP applications, this means the intermediate steps of the
pipeline do not have to be managed. For example, to col-
lect all part-of-speech tags present in a corpus, the designer
would specify as input the provided setP = {doc url}

and as output the required setN = {part of speech},

612

resolve(N , P , R, S)
1. M ← N \ P

2. if M = ∅ then record solutionS
3. else foreachr ∈ R

4. if Nr ⊆M then
5. resolve(N ∪Nr, P ∪ Pr, R \ {r}, S ∪ {r})
6. rank solutions by|S|

Figure 1: The dependencies resolution algorithm. Given re-
quired (N) and provided (P) sets semantic type labels, the al-
gorithm recursively selects runes from a rune setR, seeking
to drive the number of missing labelsM down to zero. Each
of the solutions found is a runes setS satisfying the condition
N ∪ (

⋃
Nr) = P ∪ (

⋃
Pr), r ∈ S.

from which the framework would infer a data model
such asM = {document, doc url, doc has first token,
next token, token has part of speech, part of speech} by
automatically composing five runes2:

• Su=(Iu, ∅, {doc url}), whereIu inserts user-specified
urls into the runestone;

• Sf =(If , {doc url}, {document, doc has url,
doc content, doc has content}), where If fetches
document content from the urls and creates a
document node that binds url and content;

• St=(It, {doc content, doc has content}, {token,
string, token has string, doc has first token,
next token}), where It tokenises the document
contents and generates a token sequence structure
with attached token strings;

• Sp=(Ip, {next token, doc has first token,
token has string, string}, {part of speech,
token has pos}), where Ip attaches part-of-speech
tags to tokens;

• Sg=(Ig, {part of speech}, ∅), whereIg collects part-
of-speech tags from the runestone into a user-specified
collection.

3. Handling Diverse Formats and Media
Saxon, builds on the framework introduced in the previ-
ous section, relying on the common data representation as
a way efficiently integrate information coming from het-
erogeneous sources in an extensible and flexible way. This
means that documents in the currently supported (plain text,
HTML and OpenDocument) formats are integrated into one
single representation of their original contents, which, cru-
cially, allows for an uniform mechanism to access them.
Saxon’s rule formalism then builds upon this access mech-
anism to recognize complex patterns in the data, decoupling
pattern recognition from data specific issues.
Throughout the rest of this paper we will use the simple ex-
ample sentence “Dr John Smith wrote a paper.” to illustrate

2Note that for sake of brevity we only show a subset, relevant
to the example, of the required and provided sets.

the behaviour of Saxon. We do not need to specify the for-
mat of the document from which the sentence was taken as
the Runes framework will abstract away from the original
format to a common representation. Figure 2 shows a sec-
tion of the hypergraph constructed by Runes to represent
the example sentence. In this representation, each token is
represented by a separate node in the graph, each of which
are linked to the previous and following tokens and the sen-
tence in which it appears. As well as representing the struc-
ture, the content of the document is represented (at both the
sentence and token level) as well as the part-of-speech tags
for each token. The edge labels are not shown in the dia-
gram but they include (for the purpose of further discus-
sion) the self explanatorynext token, previous token,
token has string andtoken has part of speech. This
is an intuitive representation of text that will be used in the
examples throughout the remainder of this paper.

4. Rule Formalism
Saxon rules are capable of capturing patterns in multimedia
data and to take some action on the matched media frag-
ments. The former is typically called the left-hand side of
the rule (LHS), whereas the later is known as the right-hand
side (RHS). Saxon rules are very expressive because the
LHS is based on the idea of graph walks and because the
expressiveness of the RHS is only limited by the expres-
siveness of the Java language. This will be explained in
what follows by way of the example rule in Figures 4 and
5, a rule designed to recognise the names of people which
is typically part of any named entity recogniser.

4.1. Left-Hand Side Formalism

The LHS of each rule determines which portions of the doc-
ument representation are selected and passed to the RHS.
The LHS is a regular expression over edge types in the doc-
ument representation, allowing for named edge traversal to
collect nodes in the graph, and also for ‘feature’ checking at
each node. Feature checking involves checking for the pres-
ence of edge types and content nodes that are not part of the
actual path selected by the rule. This allows, for instance,
for a rule to specify that an edge is only traversed if it leads
to a node representing a token with a ‘NNP’ part-of-speech
(POS) label. Of course nothing limits feature checking to a
single feature or to directly connected nodes. For example,
given the text representation of Figure 2 we could easily
define a rule including a constraint that an edge is only tra-
versed if it leads to a token whose POS label is ‘NNP’ and
that the token is in a sentence which starts with the token
‘The’. In other words, the complexity of the LHS of a rule
is limited only be the complexity of the data encoded in the
hypergraph over which the rule will operate.
The example rule in Figure 4 uses many of the capabili-
ties of Saxon to develop a rule to find the names of people
within documents. The two main sections of the LHS of
the rule are illustrated in Figure 3.
The first part of the rule matches just those tokens which
represent a given string. In this instance, tokens whose
string matches the regular expressionMr|Dr|Mrs|Miss
will be selected. This illustrates that nodes can be selected
via the content using regular expressions prefixed by˜ . To

613

Figure 2: Example graph representation of the sentence ‘Dr John Smith wrote a paper.’.

1. (next token {token has string {˜Mr|Dr|Mrs|Miss }})

2. (next token {token has part of speech {=NNP}})+

Figure 3: Breakdown of LHS from Example Rule

Rule:Person
(

(next_token{token_has_string{˜Mr|Dr|Mrs|Miss}})
(next_token{token_has_part_of_speech{=NNP}})+

)

Figure 4: Basic Saxon rule for recognising the names of people.

Rule:Person
(

(next_token{token_has_string{˜Mr|Dr|Mrs|Miss}})
(next_token{token_has_part_of_speech{=NNP}})+

)
=>
{

try {
java.net.URI edge = builder.getModel().getTypeFrom("to ken_string");
int type = builder.getModel().getIndexOf(edge);
for (Path path : paths) {

for (RepresentationNode node : path.getNodes()) {
System.out.print(node.follow(type)+" ");

}
System.out.println();

addSaxonNode(builder,"Person",path);
}

}
catch (Exception e) {

e.printStackTrace()
}

}

Figure 5: Saxon rule for recognising the names of people including a Java based RHS.

614

select based on string equality instead of using a regular
expression thẽ is simply replaced by a=.
The use of= instead of̃ can be seen in the second part
of the rule. The second part of the rule traverses the graph
while the POS tag of the token being represented is ‘NNP’
(i.e. the token is a proper noun). As in any other regular
expression based language the+ means that the preceding
section must match at least once for the rule as a whole to
match.
These two sections are then used sequentially to build the
complete LHS seen in the example rule in Figure 4. In
essence the rule selects those subgraphs that represents sec-
tions of a document in which a known title token is fol-
lowed by one or more proper nouns – a common rule in
named entity recognisers for finding the names of people.

4.2. Right-Hand Side Formalism
One of the main strengths of Saxon is the flexible nature of
the RHS of each rule, which is executed when the LHS
matches against the document representation. There are
currently three different possible forms that the RHS can
take:

Left Blank If a rule does not specify a RHS (as in Fig-
ure 4) then, a standard annotation (i.e. new nodes are
added to the underlying graph) is added to the docu-
ment representation. The annotation records the rule
name as the annotation type. For example, when the
rule in Figure 4 matches an annotation of type Person
is stored against the matching subgraph.

Simple Entity Type To change the default annotation
type, the RHS can specify an alternative using the
form [Type] .

Unrestricted Java Code The most flexible type of RHS
allows for unrestricted Java code to be specified within
the rule. This allows for any required actions to be
performed upon a rule matching the document repre-
sentation. A number of utility methods are available
to help in RHS rule development, full details of which
can be found in the Saxon documentation3.

Figure 5 shows an expanded version of the rule in Figure
4. This expanded rule contains a RHS of unrestricted Java
code. This allows the rule to do more than add a simple
annotation to the document representation. In this exam-
ple rule, each section of the document representation which
is matched by the rule is annotated with aPerson anno-
tation, and the text of the nodes is output for debugging
purposes.

5. Saxon Applications
Saxon has been employed as part of a hybrid IE system
for the extraction of semantic meaning from descriptions of
photos (Carvalho et al., 2008). Fifteen generic rules were
developed to identify people, locations and objects men-
tioned in the descriptions. Extraction using these rules re-
sulted in entities with precision ranging between 70% and
90% and recall between 60% and 76%.

3Saxon and full documentation can be downloaded from
http://nlp.shef.ac.uk/wig/tools/saxon/ .

Saxon is also being used within the X-Media project4 to
perform entity and relation extraction from a variety of doc-
ument formats and structures, making full use of the Runes
framework to abstract away the need to be concerned with
the orginal document formalism.

6. Discussion

In this paper we have introduced a rule based document an-
notator called Saxon. Saxon builds upon the open-source
Runes framework for document representation. This re-
liance on Runes allows Saxon to dispense with handling
the intricacies of reading from different document formats
and leaves rule developers free to concentrate on the task
they are trying to perform.

Acknowledgements

This work was funded by the X-Media project (www.

x-media-project.org) sponsored by the European Com-
mission as part of the Information Society Technologies
(IST) programme under EC grant number IST-FP6-026978.

7. References
Arvind Arasu and Hector Garcia-Molina. 2003. Extracting

structured data from web pages. InSIGMOD ’03: Pro-
ceedings of the 2003 ACM SIGMOD international con-
ference on Management of data, pages 337–348, New
York, NY, USA. ACM.

Javier Artiles, Julio Gonzalo, and Satoshi Sekine. 2007.
The SemEval 2007 WePS Evaluation: Establishing a
Benchmark for the Web People Search Task. InProceed-
ings of 4th International Workshop on Semantic Evalua-
tions (SemEval’07), Prague, Czech Republic, June.

Paul Buitelaar, Philipp Cimiano, Stefania Racioppa, and
Melanie Siegel. 2006. Ontology-based information ex-
traction with soba. InInternational Conference on Lan-
guage Resources and Evaluation (LREC), Genoa, Italy,
5.

Frank Buschmann, Regine Meunier, Hans Rohnert, Peter
Sommerlad, and Michael Stal. 1996.Pattern-Oriented
Software Architecture: A System of Patterns, volume 1.
John Wiley & Sons, Inc., New York, NY, USA.

Rodrigo Carvalho, Sam Chapman, and Fabio Ciravegna.
2008. Extracting Semantic Meaning from Photographic
Annotations using a Hybrid Approach. InProceedings
of the 1st International Workshop on Metadata Mining
for Image Understanding (MMIU’08), Portugal.

L. Hirschman, A. Yeh, C. Blaschke, and A. Valencia. 2005.
Overview of biocreative: critical assessment of infor-
mation extraction for biology.BMC Bioinformatics, 6
Suppl 1.

Jose Iria and Fabio Ciravegna. 2006. A methodology
and tool for representing language resources for infor-
mation extraction. InProceedings of the 5th Interna-
tional Conference on Language Resources and Evalua-
tion (LREC’06), Genoa, Italy, May.

4http://www.x-media-project.org

615

D. Maynard, M. Yankova, A. Kourakis, and A. Kokossis.
2005. Ontology-based information extraction for mar-
ket monitoring and technology watch. InESWC Work-
shop on End User Apects of the Semantic Web, Herak-
lion, Crete.

Einat Minkov, William W. Cohen, and Andrew Y. Ng.
2006. Contextual search and name disambiguation in
email using graphs. In29th Annual International ACM
SIGIR Conference, Seattle, August.

Borislav Popov, Atanas Kiryakov, Damyan Ognyanoff,
Dimitar Manov, and Angel Kirilov. 2004a. Kim - a se-
mantic platform for information extraction and retrieval.
Natural Language Engineering, 10(3-4):375–392.

Borislav Popov, Atanas Kiryakov, Damyan Ognyanoff,
Dimitar Manov, and Angel Kirilov. 2004b. Kim a se-
mantic platform for information extraction and retrieval.
Natural Language Engineering, 10(3-4):375–392.

Lawrence Reeve and Hyoil Han. 2005. Survey of seman-
tic annotation platforms. InSAC ’05: Proceedings of
the 2005 ACM symposium on Applied computing, pages
1634–1638, New York, NY, USA. ACM Press.

Carlo Strapparava and Rada Mihalcea. 2007. Semeval-
2007 task 14: Affective text. InProceedings of 4th
International Workshop on Semantic Evaluations (Se-
mEval’07), Prague, Czech Republic, June.

Xiaojin Zhu, Andrew Goldberg, Jurgen Van Gael, and
David Andrzejewski. 2007. Improving diversity in rank-
ing using absorbing random walks. InHuman Language
Technologies: The Annual Conference of the North
American Chapter of the Association for Computational
Linguistics (NAACL-HLT).

616

