
The Kalashnikov 691 dependency bank

Tomas By

Centro de Lingúıstica da Universidade Nova de Lisboa
Avenida de Berna 26-C, 1069-61 Lisboa, Portugal

tomas.by@fcsh.unl.pt

Abstract
The PARC 700 dependency bank has a number of features that would seem to make it less than optimally suited for its intended purpose,
parser evaluation. However, it is difficult to know precisely what impactthese problems have on the evaluation results, and as a first step
towards making comparison possible, a subset of the same sentences ispresented here, marked up using a different format that avoids
them. In this new representation, the tokens contain exactly the same sequence of characters as the original text, word order is encoded
explicitly, and there is no artificial distinction between full tokens and attribute tokens. There is also a clear division between word
tokens and empty nodes, and the token attributes are stored together with theword, instead of being spread out individually in the file.
A standard programming language syntax is used for the data, so there islittle room for markup errors. Finally, the dependency links
are closer to standard grammatical terms, which presumably makes it easier to understand what they mean and to convert any particular
parser output format to the Kalashnikov 691 representation. The data isprovided both in machine-readable format and as graphical
dependency trees.

All that is complicated is unnecessary;
all that is necessary is simple.

Michail Kalashnikov

1. Introduction
This work complements the criticism in By (2007) of the
PARC 700 dependency bank (King et al., 2003) by offer-
ing a concrete proposal for a better dependency bank for-
mat, with semi-automatically created markup of the same
sentences. Nine of the sentences in the PARC 700 consist
of one single token, and therefore have no syntactic struc-
ture, so they have not been included.1 Although most of the
work of creating this data involved linguistic decisions on
how exactly to represent particular constructions, and pre-
cisely which set of attributes and link labels are needed, the
rationale for these decisions are not explained here. This
would require much more space, and will, hopefully, be
provided in a later publication. Rather, this paper is mainly
concerned with presenting the format in its final2 form, to
make it possible for people to use it.

2. Problems with the PARC 700 format
The PARC 700 is meant to be used for evaluating parsers
using the method suggested in Carroll et al. (1998): con-
verting the parser output to a set of dependency relations
between strings representing the base forms of some of the
words in the sentence, and comparing them with the cor-
rect ones in the dependency bank. Multiple occurrences
of the same word in a sentence are distinguished, in the
PARC 700, by a numerical index. But the order of the
words in the sentence is not indicated, so when matching
against the parser output there is a risk of using the wrong
token. The problem is aggravated by the fact that the words
are lemmatised, so that even if two occurences of a word

1Sentences 151, 170, 171, 190, 217, 228, 256, 334, and 337.
2This means of course only the final form of the 691 sentences

in the dependency bank. If other corpora are marked up using
this format, it will presumably eventually need to be extended, or
modified.

have different surface form they will have the exact same
representation in the dependency bank. About 15% of the
tokens in the PARC 700 are ambiguous in this way (By,
2007, pp. 275–7).
Since the PARC 700 also includes a large amount of at-
tributes of single tokens,a user might be inclined to not just
compare the dependency links but also the attributes, or
try to use this data for some further, semantic, processing.
Very quickly one then runs into the problem of tokenisation.
Less than half of the tokens in the PARC 700 are identical
to a corresponding token in the Penn Treebank, and about
12% of the PTB tokensin the seven hundred sentences do
not occur in the PARC 700 at all (By, 2007, pp. 277–8).
Automatic mapping of the tokens in the PARC 700 and the
PTB is described in By (2007, pp. 268–9), but it is not a
trivial problem.
There is also a certain amount of inconsistency in the PARC
700 treatment of hypenation (By, 2007, p. 273), tokens that
contain spaces (By, 2007, pp. 273–4), comparative con-
structions (By, 2007, pp. 266, 274–5), and the technical
distinction between indexed tokens and ‘attribute tokens’
(By, 2007, p. 263). Finally, the few, but completely unnec-
essary, markup errors (By, 2007, p. 272) could have very
easily been avoided by using an established programming
language syntax instead of a specially made-up format.

name

RTC

det

the

prep

from

num = sg
baseform = assistance

noun

assistance

prep

in

name

$550 million

form = base
baseform = receive

verb

receive

conj

and

punc

,

num = pl
baseform = asset

noun

assets

prep

in

name

$473 million

form = base
baseform = purchase

verb

purchase

adv

also

form = present
baseform = will

verb

will

pers = 3
num = sg

pron

it

su
bj

ec
t

adverbial

dirobj

dirobj

adverbial

prepobj

conjunct

conjunct

dirobj

adverbial

adverbial

prepobj

prepobj

de
te

rm
in

er

Figure 1: Sentence two as a graphical tree

707

Category Class Attributes Possible attribute values
Obligatory Optional

Verb verb baseform (any)
form base, present, past, pres part, past part

Auxiliary verb verb baseform (any)
form base, present, past, pres part, past part
aux be, have, do, modal

Infinitive marker verb baseform to
form base
aux to

Particle prt —
‘ that’ that —
Pronoun pron pers 1, 2, 3

num sg, pl
case common, subject, object, genitive

Determiner det —
Numeral number type cardinal, ordinal
Common noun noun baseform (any)

num sg, pl
case common, genitive

Proper noun name case common, genitive
Adjective adj form base, comparative, superlative
Adverb adv form base, comparative, superlative
Preposition prep —
Conjunction conj —
Punctuation punc —
Interjection intj —

Table 1: All the word classes and their attributes

Label Modifier Direction Head Number
(word class) (word class) of links

modal verb[form=base]1 տ verb[aux=modal] One
perfect verb[form=past part] տ verb[baseform=have] One
progressive verb[form=pres part] տ verb[baseform=be] One
passive verb[form=past part] տ verb[baseform=be] One
do verb տ verb[aux=do] One
infinitive verb տ verb[aux=to] One
that verb տ that One
particle part տ verb[¬aux]2 One
subject pron / noun / name ր verb One
dirobj pron / noun / name տ verb[¬aux] One
indobj pron / noun / name տ verb[¬aux] One
complement adj / prep տ verb[¬aux] Many
prepobj pron / noun / name տ prep One
determiner det ր noun / name Many
premod adj / noun / name / verb ր noun Many
postmod verb / prep տ noun Many
adverbial adv / prep / verb (either) verb Many

aThe node must have this attribute and value.
bThe node cannot have this attribute.

Table 2: Syntactic dependency types (grammatical functions)

708

3. The Kalashnikov 691 format
The main requirements that have guided the design of this
format is that it should be unambiguously formally spec-
ified, and also easy for a human to read and understand.
The first requirement has been met by using Prolog syntax,
specifying the data format in Backus-Naur Form (By, 2007,
pp. 269–71), and also listing all possible attribute names,
attribute values, and dependency links together with their
meanings (tables 1 and 2).
The second requirement is of course more difficult, and the
first step towards satisfying it has been to use traditional,
well established names for the word categories and depen-
dency links. Figure 1 shows an example of how this looks,
in the form of a classic dependency tree (Matthews, 1981,
p. 81). The finite verb is the root of the sentence, except if
sentence is complex (Quirk et al., 1985, p. 719), in which
case the conjunction is the root. The tokens are not modi-
fied, so concatenating them (and adding appropriate whites-
pace) will produce the original sentence string. Instead, all
verbs and nouns have the baseform stored in an attribute.3

Names (and numerical expressions) are one single token.
The word classes are those suggested by Dionysius Thrax
two thousand years ago, and which are still being taught
in grade school, with some minor modifications.4 Table 1
lists all of these, with the obligatory and optional attributes,
together with all possible attribute values, except for the
‘baseform’ attribute which has an unlimited set of possible
values.
The link types used in the Kalashnikov 691 are shown in
table 2, together with the types of the nodes (tokens), and
the link direction and maximal number of links per head
word. There cannot be more than one direct and indirect
object per verb, for instance. In the PARC 700, the set of
link types is less traditional.5 While it is not clear, at least
to the present author, whether either of these approaches is
technically preferable, and, if so, which one it is, it seems
beyond doubt that the standard grammatical terms will be
easier for the average user to understand, and the more so
the less linguistic expertise he has. In addition to the combi-
nations listed in table 2, the ‘conj’ word class is allowed
in any position, and it can only have ‘conjunct’ child
links, as in figure 1.
Figure 2 shows the Prolog format used for the data. The to-
kens are numbered consecutively (but the word order is also
encoded by the list in thesentence/4-clause). Words and
empty nodes are numbered separately, both starting from
zero. Normally, all tokens should be connected and form a

3The attribute ‘baseform’ (table 1).
4Originally there were eight classes: noun, verb, participle, ar-

ticle, pronoun, preposition, adverb, and conjunction (Davidson,
1874, p. 8). Here, participles are considered verbs, and the noun
class has been split into proper nouns, common nouns, and adjec-
tives.Winograd (1983, pp. 51–3), Quirk et al. (1985, pp. 67–8),
and Halliday and Matthiessen (2004, pp. 52, 362) all use similar
classifications.

5For example, there are seven different link types for non-
adverbial verb arguments (obj, obj theta, comp, xcomp,
obl, obl ag, obl compar). The three used in the Kalashnikov
691 (dirobj, indirobj, complement) are the normal gram-
matical terms (Quirk et al., 1985, p. 54).

Clause::= sentence(SentNum,Id,WordNums,NodeNums)
| word(SentNum,WordNum,Word,Attributes)
| node(SentNum,NodeNum,Word,Attributes)
| dependency(SentNum,Dnode,DepRel,Dnodeto)

SentNum::= Number (Identifying the sentence)
WordNum::= Number (Identifying the word)
NodeNum::= Number (Identifying the empty node)
Id ::= Atom (Arbitrary string identifying the sentence)
WordNums::= List of numbers (In the right sentence order)
NodeNums::= List of numbers (In arbitrary order)
Word ::= Atom
Attributes::= List of pairs of atoms
Dnode::= w(WordNum) | n(NodeNum)
DepRel::= Atom (Name of the grammatical relation)

Figure 2: The format of the Prolog representation

tree, but punctuation characters are not included, so those
tokens will be unconnected. There are no cycles in the de-
pendency graphs.
The Kalashnikov 691 dependency bank can be downloaded
from the following web page.

http://www.basun.net/nlp/kalashnikov691/

There are two files: ‘kalashnikov691.pl’ is the machine
readable Prolog data and ‘kalashnikov691.pdf’ con-
tains the graphical ‘trees’ of all the six hundred and ninety
one sentences.

4. Partially automated quality assurance
Since the Kalashnikov 691 dependency bank uses Prolog
syntax it is a simple matter to collect, for example, all
the tokens,6 and find those that contain hyphens or spaces.
As can be verified by the reader at the URL given above,
the automatically generated depdendency trees file includes
an index of all the tokens, indicating the sentences where
they occur. With these facilities, it is reasonably straight-
forward to ensure the consistency of the tokenisation. But
a dependency representation also allows a more powerful
type of automatic verification, namely checking that the
trees are projective (By, 2007, pp. 267–8). While it is
probably not possible to represent all constructions in the
language using fully projective dependency trees (Mel’čuk
and Pertsov, 1987, pp. 184–6); (Mel’čuk, 1988, pp. 36–8),
it seems likely that for most constructions it is, and it also
seems likely that errors in the graph structure will typically
violate projectivity. This means that automatic projectiv-
ity checking is a useful means of controlling the quality
of the data. The tree-drawing tool does this, and the only
non-projective constructions in the Kalashnikov 691 depen-
dency bank are relative clauses (and the unconnected punc-
tuation tokens).

5. Conclusions
The Kalashnikov 691 dependency bank is superior to the
PARC 700 for the following reasons. The tokens contain
exactly the same sequence of characters as the original text.
It is not always the same tokens as in the Penn Treebank,
but the mapping can be done relatively easily by looping

6There are 3795 token types, about 25% of which are names
or numerical expressions.

709

from left to right. There is no need for any disambiguation
(By, 2007, pp. 268–9). Word order is encoded explicitly, so
multiple occurrences of the same word in one sentence are
not ambiguous.7 There is no artificial distinction between
full tokens and attribute tokens, and there is a clear division
between word tokens and empty nodes (By, 2007, p. 265).8

The token attributes are stored together with the word in
Kalashnikov 691. In the PARC 700 files they are spread out
individually, with a format that is quite similar to the depen-
dencies. Since a standard programming language syntax is
used for the data, there is little room for markup errors (By,
2007, p. 272), and because the automatic projectivity ver-
ification would detect dependency link problems such as
misattached modifiers (By, 2007, p. 267), some confidence
might be felt about the quality of the encoding of the syn-
tactic structures. Finally, the set of dependency link types
are closer to normal grammatic terms in the Kalashnikov
691 than in the PARC 700, which ought to make the data
more accessible.

6. References
Tomas By. 2007. Some notes on the PARC 700 depen-

dency bank.Natural Language Engineering, 13(3):261–
282.

John Carroll, Ted Briscoe, and Antonio Sanfilippo. 1998.
Parser evaluation: a survey and a new proposal. InPro-
ceedings of the first International Conference on Lan-
guage Resources and Evaluation.

Thomas Davidson. 1874. The grammar of Dionysios
Thrax. The Journal of Speculative Philosophy.

M.A.K. Halliday and Christian M.I.M. Matthiessen. 2004.
An Introduction to Functional Grammar. Hodder
Arnold, London, third edition.

Richard Hudson. 1990.English Word Grammar. Basil
Blackwell Ltd.

Richard Hudson. 2007.Language Networks. Oxford Uni-
versity Press.

Tracy Holloway King, Richard Crouch, Stefan Riezler,
Mary Dalrymple, and Ronald M. Kaplan. 2003. The
PARC 700 Dependency Bank. InProceedings of the
4th International Workshop on Linguistically Interpreted
Corpora, held at the 10th Conference of the European
Chapter of the Association for Computational Linguis-
tics (EACL’03), Budapest.

P.H. Matthews. 1981. Syntax. Cambridge University
Press.

Igor A. Mel’čuk and Nikolaj V. Pertsov. 1987.Surface
Syntax of English. John Benjamins.

Igor A. Mel’čuk. 1988.Dependency Syntax: Theory and
Practice. State University of New York Press.

R. Quirk, S. Greenbaum, G. Leech, and J. Svartvik. 1985.
A Comprehensive Grammar of the English Language.
Longman, London.

Terry Winograd. 1983.Syntax, volume 1 ofLanguage as a
Cognitive Process. Addison-Wesley.

715% in PARC 700 (By, 2007, pp. 275–7).
8The string ‘pro’ is both a word and an empty node label in

PARC 700 (By, 2007, p. 278).

710

