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Abstract
Multilingual Automatic Speech Recognition (ASR) systems are of great interest in multilingual environments. We studied the case of the
Comunitat Valenciana where the two official languages are Spanish and Valencian. These two languages share most of their phonemes,
and their syntax and vocabulary are also quite similar since they have influenced each other for many years. We constructed a system,
and trained its acoustic models with a small corpus of Spanish and Valencian, which has produced poor results due to the lack of data.
Adaptation techniques can be used to adapt acoustic models that are trained with a large corpus of a language inr order to obtain acoustic
models for a phonetically similar language. This process is known as language adaptation. The Maximum Likelihood Linear Regression
(MLLR) technique has commonly been used in speaker adaptation; however we have used MLLR in language adaptation. We compared
several MLLR variants (mean square, diagonal matrix and full matrix) for language adaptation in order to choose the best alternative for

our system.

1. Introduction

Multilingual Automatic Speech Recognition (ASR) sys-
tems are of great interest in multilingual environments (Ue-
bler, 2001). In a multilingual environment, where each po-
tential user has a different native language, a Multilingual
Automatic Speech Recognition System must deal with dif-
ferent languages and with the inappropriate pronunciation
of a language by non-native speakers. Multilingual envi-
ronments are common in contexts where there are different
languages due to politics, tourism, inmigration, and so on.
To build an ASR system, language and acoustic models
must be trained. Language models are both task-dependent
and language-dependent. For this reason, a multilingual
ASR system must include several language models (one
for each language that the system must deal with). Acous-
tic models are also language-dependent because each lan-
guage defines its own phonemes differently from other lan-
guages. In multilingual environments, the influence of the
speaker’s mother tongue can produce an inappropriate pro-
nunciation of the other languages that are present in these
environments. This fact adds a new source of variabil-
ity and makes accurate speech recognition difficult. An-
other important problem is that languages are usually in-
fluenced by other languages. In addition, the articulation
of the same phoneme in different languages may differ in
each language. All these facts demonstrate the difficulty of
building multilingual speech recognition systems.

We studied the Comunitat Valenciana, a multilingual envi-
ronment that has two official languages: Spanish and Va-
lencian. Spanish and Valencian have similar phonetic fea-
tures. They both have a similar set of phonemes, and most
acoustic models could be shared by both languages. In this
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multilingual environment, it is useful to have a multilingual
ASR system. In a previous work, we constructed an ASR
for this environment (Lujan et al, 2007).

Valencian is a dialect of Catalan that is spoken in the Co-
munitat Valenciana. The Valencian dialect has special pho-
netic features with respect to standard Catalan. This is due
to its dialectal variance and the great influence that Span-
ish has had on it. This influence has been much greater on
Valencian than on other Catalan dialects. According to (Vi-
lajoana and Pons, 2001), the total number of people who
speak Catalan is 7,200,000, and the number of people who
understand it is over 9,800,000. The Valencian dialect is
spoken by 27% of all Catalan speakers. The great influence
of the Spanish language on the Valencian dialect has mod-
ified Valencian phonetics in the average speaker. We con-
structed an ASR system for this environment even though
the training corpora were quite small. However, it is well-
know that a large corpus is necessary to build a good ASR
and to obtain reliable acoustic models.

One way to obtain better acoustic models would be to use
adaptation techniques to adapt acoustic models of a phonet-
ically similar language (Schultz and Waibel, 2001). These
models are usually trained with a large acoustic corpus. The
resulting adapted models are commonly better than those
trained with a small corpus of the real language.

The Maximum Likelihood Linear Regression (MLLR)
(Leggetter and Woodland, 1995) technique has been com-
monly used in speaker adaptation. However, in a few works
it has also been applied to language adaptation (Zhao and
O’Shaughnessy, 2007). We used MLLR in language adap-
tation to adapt acoustic models. We tried to obtain acoustic
models in Spanish and Valencian from only Spanish acous-
tic models. These original models were trained with large
amounts of training data in Spanish because it was easy to
find large Spanish corpora. Unfortunately, we did not have
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a large Valencian corpus available. However, since Valen-
cian is phonetically very similar to Spanish, we were able to
use the small amount of the original training material avail-
able in Valencian to adapt the Spanish acoustic models.
Our objective is to compare the different MLLR variants
in order to choose the best alternative for this pair of lan-
guages.

This work is organized as follows. In Section 2., we de-
scribe the MLLR adaptation technique. In Section 3., we
describe the corpus that was used for the experiments. In
Section 4., we explain the design of the language models
and the acoustic models. In Section 5., we detail the differ-
ent experiments carried out. In Section 6., we present our
conclusions and future work.

2. The MLLR adaptation technique

The aim of speaker adaptation techniques is to obtain a
speaker-dependent recognition system by using a combi-
nation of general speech knowledge from well-trained hid-
den Markov models and speaker-specific information from
a new speaker’s data. Speaker adaptation is applied to a
speech recognition system in order to obtain a speaker-
dependent system with a better performance than the origi-
nal system for a specific speaker.

MLLR is a technique to adapt a set of speaker-independent
acoustic models to a speaker by using small amounts of
adaptation material. This technique can also be used in lan-
guage adaptation by using adaptation material in the lan-
guage being adapted to.

The MLLR approach requires an initial independent contin-
uous density HMM system. MLLR takes some adaptation
data from a speaker to adapt the acoustic models. MLLR
updates the model mean parameters to maximize the likeli-
hood of the adaptation data. The means are updated using a
transformation matrix, which is estimated from the adapta-
tion data. We applied the formulation presented in (Legget-
ter and Woodland, 1995) to language adaptation: we take
some adaptation data from a language to adapt the acoustic
models using MLLR in the same way as in speaker adapta-
tion.

The theory is based on the concept of regression classes. A
regression class is a set of mixture components that share
the same transformation matrix, which is estimated from
the adaptation data. When all the models are in the same
regression class, we have a global regression class. How-
ever, any set of regression classes can be manually or au-
tomatically defined over the gaussians of the HMM. There
is no method to analytically determine the optimal num-
ber and composition of regression classes (Leggetter and
Woodland, 1995).

To perform the adaptation of the means, we computed a
transformation matrix W for each regression class. This
matrix is applied to the extended mean vector of all the mix-
tures pertaining to the regression class to obtain an adapted
mean vector. Given a state ¢ in a HMM, for the ¢th gaussian
of the output distribution, we denote its mean vector as fiq;.

The adapted mean vector ﬁqi is obtained by:

-, —

//’Zqi = qul

where ﬁqi is the adapted mean and 517; is the extended mean
vector defined as:
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where n is the number of features, Lig; is the original mean
vector and w is an offset term.
If we have a set of adaptation data denoted by the sequence
of acoustic feature vectors X = T1To.. 07, Tt S RP,t =

., T', we can estimate the adaptation matrix W using the
maximum likelihood approach as:

W= mgxpg()z)
w

where @ defines the parameters of the adapted model.

To compute the transformation matrix, we can use several
variants: without the same covariances of the distributions
(with a full or a diagonal matrix) or with the same co-
variances of the distributions. Details on the estimation of
these variants can be consulted in (Leggetter and Wood-
land, 1995). The following formulation assumes only one
adaptation sample, but it can be easily extended for n adap-
tation samples.

2.1. Full matrix

Given a state ¢ in a HMM, for the ¢th gaussian of the out-
put distribution, we denote its mean vector as fiq; and its

covariance matrix as ;.
To compute a full matrix, it is necessary to compute an aux-

iliary tridimensional matrix G. In this case, W must be cal-
culated by rows because G is a tridimensional matrix. We

calculate the row k of W as:

where

~4i(t) is defined as the posteriori probability of occupying

state ¢ at time ¢ given that the observation sequence X is
generated by the ith gaussian.
The row £ of G is defined as:

Z »(qZ)J(qz

where
= frﬂf;z
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2.2. Diagonal matrix

and

To compute a W transformation matrix, we define a diago-
nal matrix:
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For non-zero elements of this matrix, we rewrote the matrix
to a transformation vector w0 as:

w11
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We defined a matrix D;Z- made up of the elements of the
extended mean vector {,; as:
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Then, @ can be calculated as:

e [zzzwqia»ﬁ;iim

t q i

-1

[Z Z Z(qu (t))ﬁtl]li;ql qu}

2.3. Mean Square

We can consider that all covariances of the distributions are
the same. We can follow the Viterbi approximation, where
each speech frame is assigned to exactly one distribution.
Therefore, the adaptation matrix can be computed by:

-1
W= (Z w) (Z ﬁqiﬁ;i>
t t

The sequence of /i ; is usually defined by a Viterbi align-
ment of the samples.

3. Corpus

To perform the experiments, we employed a corpus about
an Information System task in Spanish and Valencian. The
corpus was acquired from the telephone line. The corpus
is made up of approximately 4 hours of recording (2 hours
for each language). It contains a set of 120 utterances (60
for each language) for each of the 20 speakers. An example
sentence can be found in Figure 1.

Half of the speakers (10) were native Spanish speakers and
the other half (10) were native Valencian speakers. All the
speakers were university students and recorded sentences
in the two languages. Table 1 summarizes the statistics of
the corpus. The distribution of men and women was equal.

Spanish

e Por favor, quiero saber el e-mail de Francisco
Casacuberta, adids.

e Hola, cudl es el horario de consultas de Enrique
Vidal?, muchas gracias.

Valencian

e Per favor, vull saber 1’e-mail de Francisco
Casacuberta, adeu.

e Hola, quin és I’horari de consultes d’Enrique Vi-
dal, moltes gracies.

English

e Please, I want to know Francisco Casacuberta’s
e-mail. Goodbye.

e Hello, what are Enrique Vidal’s office hours?
Thank you very much.

Figure 1: A selected sentence of the corpus. The English
translation is provided for a better understanding of the ex-
ample.

Spanish | Valencian
Sentences 240 240
Training | Running words 2887 2692
Length 1h33m | 1h29m
Vocabulary 131 131
Sentences 60 60
Test Running words 705 681
Length 23m 21m

Table 1: Corpus statistics.

The complete description of the corpus can be found in (Al-
abau and Martinez, 2006).

There were no out-of-vocabulary (OOV) words in the Span-
ish test corpus, and only 2 OOV words were observed in the
Valencian test corpus.

Due to the small size of the speech corpus (both in signal
and vocabulary), we can expect low-perplexity language
models but badly estimated acoustic models.

4. Language and acoustic modeling
4.1. Language models

Language models define what type of sentences are allowed
by a system. Therefore, our language models must accept
all the sentences of the training corpus.

In our case, all the sentences of the corpus have a common
structure: greeting, question, information, title, person, and
farewell. Some examples of sentences are shown in Fig-
ure 1. A sentence is not required to have all the fields. In
accordance with this idea, we constructed an automaton us-
ing blocks as the language model.
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We developed two separate language models: an automa-
ton was built for each language using the acceptor automa-
ton (in the corresponding language) of each block. The au-
tomaton was made by joining the acceptor automata in a
series. For every two consecutive automata, we merged the
final states of the first acceptor automaton with the initial
states of the second one. Figure 2 shows an example of the
serialization process.

Figure 2: Illustration of the serialization process.

We computed the perplexity of these language models with
the following results: Spanish 5.98 and Valencian 6.46.
Note that the perplexity of the models is very low. This is
in accordance with the size of the speech corpus, which is
also small.

4.2. Acoustic models

Each acoustic model is associated to a phoneme (i.e.,
monophones) in order to make a comparison of the fea-
tures of an acoustic sequence with the acoustic models. The
acoustic models were hidden Markov models (HMM) that
were trained using the HTK toolkit (Young et al., 2004).
The HMMs followed a three-state, left-to-right topology
without skips. We tested models with 32 Gaussians per
state. Each gaussian modeled a 33-component feature vec-
tor (10 cepstrals coefficients plus energy with the first and
second derivatives).

To obtain reliable acoustic models, they must be trained
with huge amounts of training data. It was easy to find large
Spanish corpora, but we did not have a large Valencian cor-
pus available for this study. However, since Valencian is
phonetically very similar to Spanish, we were able to use
the small amount of training material available in Valen-
cian to adapt acoustic models that were trained from a large
Spanish corpus. We used the Senglar corpus as the initial
training corpus. This corpus has been successfully used in
other tasks (Casacuberta et al., 2004). The recording con-
ditions for the Senglar corpus were different from those of
our corpus. For this reason, we obtained adapted acoustic
models from the Senglar acoustic models for both Spanish
and Valencian so that they could be used in our task.
Adapted acoustic models were obtained with the MLLR
technique by estimating a global adaptation matrix for each
language (i.e., only one regression class). We used our

training corpus as adaptation material to obtain the adapted
acoustic models. This technique has been used before to
obtain acoustic models for multilingual speech recognition.
The quantity of signal that we used to adapt the models
was similar to the quantity of signal used in previous works
(Schultz and Waibel, 2001) and (Zhao and O’Shaughnessy,
2007).

5. Experiments and Results

To analyze the results, we used the Word Error Rate (WER)
as the evaluation measure. This measure computes the edit
distance between a reference sentence and the recognized
sentence.

To perform the experiments, we used two language mod-
els: a Spanish language model and a Valencian language
model. We used adapted acoustic models for Spanish and
Valencian. These acoustic models were adapted with the
adaptation data in Spanish and Valencian from the acoustic
models trained with the Senglar corpus (Casacuberta et al.,
2004).

The adaptation data was small, so we adapted the acosutic
models with only one regression class and, therefore, we
only computed one transformation matrix.

We implemented the three variants of MLLR presented
above: full matrix, diagonal matrix and mean square.

Full matrix and diagonal matrix were calculated with one
iteration of Expectation-Maximization because more itera-
tions provided worse results. In general, when the initial
models provide good Gaussian frame alignments, only a
single iterarion of EM is required to estimate the transfor-
mation matrix (Woodland, 2001).

To obtain baseline results, we performed experiments for
Spanish and Valencian with the Senglar acoustic models
without adaptation. The Senglar Valencian models were
built by cloning the most similar Spanish model for each
Valencian phoneme.

’ \ Spanish \ Valencian ‘

Baseline 11.0% 16.5%
Full Matrix 6.4% 11.5%
Diagonal Matrix | 7.6% 11.7%
Mean Square 5.6% 10.4%

Table 2: Results of experiments. (The best results are in
boldface)

Table 2 shows the best results of experiments. In the same
conditions, another standard MLLR tool (HTK) provided
similar results for the full matrix case (6.0% in Spanish,
11.0% in Valencian) (Young et al., 2004). As the results
show, in this case, it is best to use Mean Square because the
WER improved 5 points in Spanish (from 11.0% to 5.6%)
and 6 points in Valencian (from 16.5% to 10.4%). Mean
Square obtains the best results because the difference be-
tween the Senglar acoustic models and the adaptation data
is large enough to make the different covariances a source
of errors when computing the state occupancy (74, (t)). The
difference between a full matrix and a diagonal matrix is
small, but with a full matrix the results are better than with
a diagonal matrix.
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6. Conclusions and Future Work

We have implemented three variants of MLLR for language
adaptation in order to choose the best alternative for our
system, which deals with two languages: Spanish and Va-
lencian. Our proposal is to employ language adaptation in
these languages. We used acoustic models (trained with a
large corpus in Spanish) and our training corpus as adapta-
tion material to obtain the adapted acoustic models. The re-
sults show that, in this case it is better to use Mean Square.
The results with language adaptation are better than without
language adaptation. In conclusion, we think that MLLR is
a good option for language adaptation.

Nevertheless, these conclusions should be confirmed with a
larger corpus and a more realistic task. In future work, we
plan to adapt our acoustic models with more appropriate
initial acoustic models, i.e., a set of Spanish acoustic mod-
els that is closer to our conditions. It would be interesting
to obtain the adapted Valencian acoustic models from a set
of standard Catalan acoustic models (Moreno et al., 20006).
Moreover, we plan to test different quantities of regression
classes and other adaptation techniques such as MAP (Gau-
vain and Lee, 1992).
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