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Abstract
Manual categorisation of documents is a time-consuming task that has been significantly alleviated with the deploymentof automatic
and machine-aided text categorisation systems. However, the proliferation of multilingual documentation has becomea common phe-
nomenon in many international organisations, while most ofthe current systems has focused on the categorisation of monolingual text. It
has been recently shown that the inherent redundancy in bilingual documents can be effectively exploited by relativelysimple, bilingual
naive Bayes (multinomial) models. In this work, we present arefined version of these models in which this redundancy is explicitly
captured by a combination of a unigram (multinomial) model and the well-known IBM 1 translation model. The proposed model is
evaluated on two bilingual classification tasks and compared to previous work.

1. Introduction
Historically, the manual categorisation of documents has
entailed a time-consuming and arduous task that has been
significantly alleviated with the deployment of automatic
and machine-aided text categorisation systems (Sebastiani,
2002; Hodge, 1998). However, nowadays the proliferation
of multilingual documentation has become a common phe-
nomenon in many international organisations, while most
of the current systems has focused on the categorisation of
monolingual text. Nonetheless there are notable exceptions
in the field of cross-lingual information retrieval (CLIR)
and text categorisation (CLTC) in which bilingual sources
are employed (Grefenstette, 1998; Bel et al., 2003). In this
paper, we present an application that differs from that of
CLIR and CLTC, since we want to classify bilingual pairs
of documents that are translations of each other. We believe
that by doing so, we can fully exploit the word correlation
across languages using a translation model in a more natu-
ral way than CLIR and CLTC do using external translation
resources.
Here we introduce an evolution of the relatively simple
bilingual multinomial models presented in (Civera and
Juan, 2006a; Civera and Juan, 2006b) in order to exploit
the structural information in word correlation in bilingual
texts. To this purpose a novel model inspired in the com-
bination of a unigram (multinomial) model and the well-
known IBM 1 translation model is proposed. The resultant
bilingual classifier was evaluated on the Traveller task and
the BAF corpus, and compared to previous work.

2. Bilingual text classification
Generally speaking, the task of bilingual text classification
consists in assigning unlabelled bilingual pairs of texts to a
set of predefined categories. As stated before, every pair of
texts has the peculiarity of being mutual translations. For-
mally, according to the Bayes decision rule, given a bilin-
gual pair of texts(x, y) we will assign this pair to that cat-
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egoryĉ that maximises the posterior probability:

ĉ = argmax
c

p(c |x, y)

= argmax
c

p(c) p(x, y | c) (1)

wherep(c) is the prior probability of categoryc usually es-
timated as the relative frequency of categoryc in the train-
ing set, andp(x, y | c) is the category-conditional probabil-
ity of (x, y) given that was generated by categoryc. The
modelisation and estimation ofp(x, y | c) is presented in
Sections 3. and 4..

3. The unigram-IBM1 model
The probability of a given pairp(x, y)1 can be decomposed
into a target languageprobability,p(y), and atranslation
probability,p(x | y):

p(x, y) = p(y) p(x | y) (2)

The target language probability can be written in terms of
individual, target-word probabilities as follows:

p(y) =

|y|
∏

i=1

p(yi | y
i−1
1 ) (3)

by assuming that the probability of each target word to oc-
cur does not depend on any previous word,

p(yi | y
i−1
1 ) := p(yi) (4)

we have the unigram language model:

p(y) =

|y|
∏

i=1

p(yi) (5)

For the translation probability, as in conventional statisti-
cal machine translation, we introduce the alignment hid-
den variablea = a1 · · · aj · · · a|x| that connects each source
word to exactly one target wordaj = {0, · · · , i, · · · , |y|},
being0 the position of the NULL word:

p(x | y) =
∑

a∈A(x,y)

p(x, a | y) (6)

1We have simplified the notation by dropping the dependency
onc to avoid repetition and ease the comprehension of the model.
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whereA(x, y) denotes the set of all possible alignments
betweenx andy. Then,

p(x, a | y)=

|x|
∏

j=1

p(xj , aj |x
j−1
1 , a

j−1
1 , y)

=

|x|
∏

j=1

p(aj |x
j−1
1 , a

j−1
1 , y) p(xj |x

j−1
1 , a

j
1, y) (7)

In order to define the well-known IBM model 1 (Brown and
others, 1993), we make the following two assumptions:

p(aj |x
j−1
1 , a

j−1
1 , y) :=

1

|y| + 1
(8)

p(xj |x
j−1
1 , a

j
1, y) := p(xj | yaj

) (9)

where in Eq. (8) the probability of aligning a source posi-
tion to a target position is uniform and, in Eq. (9) the proba-
bility of translating a source word does only depend on the
target word to which is aligned.
Finally the IBM model 1 is:

p(x | y) =
∑

a

|x|
∏

j=1

1

|y| + 1
p(xj | yaj

)

=

|x|
∏

j=1

|y|
∑

aj=0

1

|y| + 1
p(xj | yaj

) (10)

Putting Eqs. (5) and (10) together we define theunigram-
IBM1 model:

p(x, y;Θ) =

|y|
∏

i=1

p(yi)

|x|
∏

j=1

|y|
∑

aj=0

1

|y| + 1
p(xj | yaj

) (11)

whereΘ is its vector of parameters defined as:

Θ =

{

p(v) v ∈ Y
p(u | v) u ∈ X , v ∈ Y

(12)

beingX and Y, source and target vocabularies, respec-
tively. The actual value of this vector of parameters is com-
puted according to the maximum likelihood estimation cri-
terion.
Let (x1, y1), . . . , (xN , yN) be N independent samples
from a unigram-IBM1 model of parametersΘ. The log-
likelihood function ofΘ is

L(Θ) =
∑

n

log p(xn, yn;Θ) (13)

Our goal is to estimate a vector of parametersΘ that max-
imises Eq. (13). This maximisation cannot be performed
directly since Eq. (13) contains missing data, that is, the
alignment variables. Therefore we need to revert to the
Expectation-Maximisation (EM) algorithm in order to es-
timate the vector of parametersΘ.
The EM algorithm consists of two basic steps applied itera-
tively. The E step computes the expected value of the miss-
ing data given the training data and the current parameters
Θ

(k). The M step finds a new vector of parameter values

Θ
(k+1) which maximises the complete version of Eq. (13)

on the basis of the missing data estimated in the E step.
In our case, the E step computes the expected value of the
alignment variablean for each sample(xn, yn) as follows:

a
(k)
nji =

p(xnj | yni)
(k)

|yn|
∑

i′=0

p(xnj | yni′)(k)

(14)

That is, the expectation of wordxnj to be connected toyni

is our current estimation of the probability ofxnj to be a
translation ofyni instead of any other word inyn (including
the NULL word).
In the M step, the computation of a new estimate for the pa-
rameter values is decomposed into a conventional solution
for the unigram language model,

p(v)(k+1) =

∑

n

∑

i:yni=v

1

∑

v′

∑

n

∑

i:yni=v′

1
∀v ∈ Y (15)

and the standard update formula for the IBM Model 1,

p(u|v)(k+1) =

∑

n

∑

j:xnj=u

∑

i:yni=v

a
(k)
nji

∑

u′

∑

n

∑

j:xnj=u′

∑

i:yni=v

a
(k)
nji

∀u ∈ X , v ∈ Y

(16)

Note that Eq. (15) is simply the relative frequency of occur-
rence of wordv in the target texts and, hence, it does not
change over successive iterations of the EM.

4. The unigram-IBM1 mixture model
Eq. (11) is a relatively simple parametric model for distribu-
tions of bilingual pairs of texts. Then, it is a good choice to
describe simple distributions, but it might not be so good to
approximate complex distributions, such as those compris-
ing topically-unrelated groups of bilingual pairs. To deal
with such cases, we will use the idea of mixture modelling
and replace our simple model by a finite mixture.
Let us assume that bilingual pairs come fromT different
topics.Then, the probability function (p.f.) of a given pair
can be appropriately described as afinite mixture:

p(x, y) =

T
∑

t=1

p(t) p(x, y | t) (17)

wheret is the topic variable and, for each topict, p(t) is
its prior or coefficientandp(x, y | t) is its topic-conditional
p.f. It can be seen as a generative model that first selects the
tth topic with probabilityp(t) and then generates(x, y) in
accordance withp(x, y | t).
We can further factorised the termp(x, y | t) in a similar
manner to Section 4., but including the topic variable:

p(x, y | t) = p(y | t) p(x | y, t) (18)

wherep(y | t) andp(x | y, t) are topic-dependent versions
of Eq. (3) and (6).
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We assume that each topic priorp(t) is given by a param-
eterp(t), and that each topic-conditional p.f.p(x, y | t) can
be approximated using a topic-conditional unigram-IBM1
model. Thus, our finite mixture model (17) forp(x, y) is

p(x, y;Θ) =

T
∑

t=1

p(t) p(x, y | t;Θt) (19)

where

p(x, y | t;Θt) =

|y|
∏

i=1

p(yi | t)

|x|
∏

j=1

|y|
∑

ajt=0

1

|y| + 1
p(xj | yajt

, t)

(20)
The global vector of parametersΘ is:

Θ = (p(1), . . . , p(T );Θ1, . . . ,ΘT )t (21)

where each component has its own vector of parameters:

Θt =

{

p(v | t) v ∈ Y
p(u | v, t) u ∈ X , v ∈ Y

(22)

The estimation of the parameters of the model is performed
using the EM algorithm, as we did in Section 3..
In this case, the E-step reduces to compute a topic-
dependent alignment hidden variable:

a
(k)
njit =

p(xnj | yni, t)
(k)

∑

i′ p(xnj | yni′ , t)(k)
(23)

wherea
(k)
njit is the posterior probability of the source posi-

tion j to be aligned to the target positioni in the tth com-
ponent for thenth sample(xn, yn).
In the M step, we obtain a new vector of parameters. The
component priors:

p(t)(k+1) =
1

N

∑

n

z
(k)
nt ∀t (24)

an update equation for the topic-dependent unigram:

p(v | t)(k+1) =

∑

n

z
(k)
nt

∑

i:yni=v

1

∑

v′

∑

n

z
(k)
nt

∑

i:yni=v′

1
∀t, v ∈ Y (25)

and an update equation for the topic-dependent IBM 1:

p(u | v, t)(k+1) =

∑

n

z
(k)
nt

∑

j:xnj=u

∑

i:yni=v

a
(k)
njit

∑

u′

∑

n

z
(k)
nt

∑

j:xnj=u′

∑

i:yni=v

a
(k)
njit

(26)

for all t, u ∈ X andv ∈ Y.

5. Experimental results
The unigram-IBM1 model described in the previous section
was assessed on two tasks: theTraveller dataset and the
BAF corpus. TheTraveller dataset comes from alimited-
domain Spanish-English machine translation application
for human-to-humancommunication situations in the front-
desk of a hotel (Vidal and others, 2000). It was semi-
automatically built from a small “seed” dataset of sentence

pairs collected from traveller-oriented booklets by four per-
sons. Each person had to cater for a (non-disjoint) subset
of subdomains, and thus it can be considered as a differ-
ent (multimodal) class of Spanish-English sentence pairs.
Subdomain overlapping among classes foresees that perfect
classification is not possible, although in our case, low clas-
sification error rates will indicate that our mixture model
has been able to capture the multimodal nature of the data.
Some statistics of this dataset are shown in Table 1.
TheBAF corpus (Simard, 1998) is a compilation of bilin-
gual ”institutional” French-English texts ranging from de-
bates of the Canadian parliament (Hansard), court tran-
scripts and UN reports to scientific, technical and literary
documents. This dataset is composed of 11 documents
that are organised into 4 natural genres (Institutional, Sci-
entific, Technical and Literary) trying to be representative
of the types of text that are available in multilingual ver-
sions. The Institutional and Scientific classes comprises
documents from the original pool of 11 documents, which
were theme-related, but devoted to heterogeneous purposes
or written by different authors. This fact provides the mul-
timodal nature to theBAF corpus that can be adequately
modelled by mixture models. As it can be seen in Table 1,
this corpus is more complex than theTravellerdataset.

Table 1:TravellerandBAF corpora statistics.

Traveller BAF
Sp En Fr En

sentence pairs 8000 18509
average length 9 8 28 23
vocabulary size 679 503 20296 15325
singletons 95 106 8084 5281
running words 86K 80K 522K 441K

Several experiments were carried out to analyse the
unigram-IBM1 classifier in terms of classification error
rate as a function of the number of mixture components
per class (T = 1, 2, 5, 10, 20, 50, 100). The results are
shown in Figure 1, together with those of best monolin-
gual (English-based) and the best unigram-based bilingual
global classifier from (Civera and Juan, 2006b). Each
plotted point is an average over values from30 random
training-test splits, as defined in (Civera and Juan, 2006b);
50%-50% (training-test) inTravellerand 80%-20% inBAF.
From the results in Figure 1, we can see that the unigram-
IBM1 classifier outperforms both classifiers, especially in
the case of theBAF corpus. Therefore, the cross-lingual
word correlation information provided by the IBM1 model
helps to improve the accuracy of its associated classifier.
Table 2 presents a summary of error figures on the Traveller
task and the BAF corpus for different classifiers, including
support vector machines (SVM) and boosting techniques.
On the one hand, SVM were originally thought as binary
classifiers, although there have been a generalisation of the
2-class problem (Crammer and Singer, 2002). In practise
binary classifiers based on the one-against-one approach,
among others, seem to be the most adequate (Hsu and Lin,
2002). This simple yet effective approach consists in defin-
ing as many binary classifiers as possible class pairs, then
each binary classifier votes for a class and finally, we clas-
sify according to the majority voting criteria. In this pa-
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Figure 1: Competing curves: %Error vs. mixture compo-
nents forTravellerandBAF.

Table 2: Competing error figures for different classifiers on
the Traveller task and the BAF corpus.

1gm 1g1gm 1gM1m SV M light BoosTexter
Traveller 1.5 1.4 1.3 1.5 1.2
BAF 4.1 3.0 2.5 9.0 5.8

per, all the SVM experiments were carried out with the
SV M light toolkit (Joachims, 1999) adopting the approach
to the multi-class problem commented above . On the other
hand, the idea behind boosting methods is to find a highly
accurate classification rule by combining many weak hy-
potheses, each of which may be only moderately accurate.
The implementation of the boosting algorithm employed in
this paper is BoosTexter (Schapire and Singer, 2000).
As we can observe in Table 2, the unigram-M1 mixture
model (1gM1m) supersedes the other two unigram mixture
models, monolingual (1gm) and bilingual global (1g1gm),
being statistically significant better in the case of the BAF
corpus, but not being so for the Traveller task. The
unigram-M1 mixture model obtains similar performance to
SVM and boosting methods in the Traveller task, and statis-
tically significantly better in the BAF corpus. These experi-
ments show the benefits of learning word correlation across
languages in bilingual text classification.

6. Conclusions and future work
We have presented a novel model for bilingual text classifi-
cation in which the crosslingual structure is incorporatedby
using the well-known IBM model 1. Doing so, we outper-
form the accuracy of the simple bilingual global classifier
that considers each language separately.

As shown in the results on theTraveller andBAF cor-
pora, the unigram-IBM1 model statistically significantly
surpasses the bilingual unigram classifiers.
Apart from the model presented in this paper, we studied
the performance of a bilingual classifier when upgrading
from IBM model 1 to IBM model 2 in the unigram-IBM1
model. IBM model 2 provides a non-uniform alignment p.f.
between source and target sentence positions refining the
uniform alignment distribution assumed by IBM model 1.
Despite this refinement, the unigram-IBM2 model suffered
from severe data sparseness, and its performance was worse
than that of the unigram-IBM1 model.
As a future work we plan to explore the combination of
smoothn-gram models with IBM model 1 in the powerful
framework of mixture modelling. Moreover, the incorpo-
ration of bilingual classes (Och, 1999) is an interesting ap-
proach to control the model complexity in the presence of
data scarcity problems, specifically the number of param-
eters in modelling topic-dependent statistical dictionaries
by adjusting the number of word classes. Another appeal-
ing issue for future work is the automatic estimation of the
number of components in the mixture using model selec-
tion methods such as, variational EM, BIC or MDL.
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