
Controlling Redundancy in Referring Expressions

Jette Viethen1, Robert Dale1, Emiel Krahmer2, Mariët Theune3, Pascal Touset3

1Centre for Language Technology
Macquarie University

Sydney, Australia
jviethen@ics.mq.edu.au rdale@ics.mq.edu.au

2Communication & Cognition
University of Tilburg

Tilburg, The Netherlands
e.j.krahmer@uvt.nl

3 Human Media Interaction
University of Twente

Enschede, The Netherlands
m.theune@utwente.nl p.b.touset@student.utwente.nl

Abstract
Krahmer et al.’s (2003) graph-based framework provides an elegant and flexible approach to the generation of referring
expressions. In this paper, we present the first reported study that systematically investigates how to tune the parameters of
the graph-based framework on the basis of a corpus of human-generated descriptions. We focus in particular on replicating
the redundant nature of human referring expressions, whereby properties not strictly necessary for identifying a referent
are nonetheless included in descriptions. We show how statistics derived from the corpus data can be integrated to boost
the framework’s performance over a non-stochastic baseline.

1. Introduction
A key problem explored within the natural language
generation (NLG) literature is the generation of re-
ferring expressions. Over the last two decades, a
number of algorithms have been developed for con-
structing distinguishing descriptions, noun phrases
that uniquely pick out their intended referents from
sets of distractors. Many different aspects of referring
expressions have been investigated by the research in
this field, including, for example, the construction of
the shortest possible descriptions, how to incorporate
relations between objects into referring expressions,
and how to refer to groups of objects or parts of ob-
jects. However, one aspect of human-generated refer-
ring expressions that has not been subjected to much
exploration in NLG research is the phenomenon of re-
dundancy.
Psycholinguistic evidence suggests that humans tend
to overspecify when they describe an object: i.e., they
often include information that is not strictly neces-
sary in order to distinguish the object from others
around it. This phenomenon has been recognised in
the psycholinguistics literature for a long time (see
e.g., Whitehurst and Sonnenschein (1976), Sonnen-

schein (1985), Pechmann (1989)), but has only been a
focus of discussion in the NLG literature more recently
(see e.g., Viethen and Dale (2006)). That it might be
appropriate to incorporate redundancy in the machine
generation of referring expressions was already noted
in the development of Dale and Reiter’s (1995) Incre-
mental Algorithm (IA), which has become something
of a standard approach to producing overspecified re-
ferring expressions. However, the redundancy the IA

allows for has no necessary correlation with the kinds
of redundancy found in human-generated referring ex-
pressions. In particular, the IA does not provide a
mechanism fine-grained enough to directly influence
which properties can occur redundantly.

In this paper we explore how to use the mechanisms
provided by another framework for the generation of
referring expressions, the graph-based framework in-
troduced by Krahmer et al. (2003), in order to fine-
tune the redundancy that occurs in referring expres-
sions. Here, the search for an appropriate referring
expression is cast in terms of a graph representation.
The graph-based framework uses two parameters: a
cost function over the possible constituents of a re-
ferring expression, and the order in which properties

950

are considered for inclusion in a referring expression.
It forms the basis for a number of recent approaches
such as (van der Sluis, 2005; van Deemter and Krah-
mer, 2007; Viethen and Dale, 2007). Interestingly,
despite the popularity of the framework, no signifi-
cant studies have been carried out to determine how
the cost function and property ordering can be used to
achieve the ideal output for a given domain.
We present a corpus-based approach to setting these
two parameters. To this end, we analysed the TUNA

corpus of human-produced referring expressions de-
scribed in Section 4. The approach is centred
around the observation that certain properties are over-
represented in the corpus and are used redundantly
more often than other properties. We show how cost
functions and property orderings can be employed to
gear the graph-based algorithm towards including this
redundant information in a referring expression.
An automatic evaluation of the produced output of the
algorithm was carried out by comparing it to a test
set held back from the TUNA corpus, using the DICE

coefficient of similarity. From the results of this eval-
uation it seems clear that cost functions that allow for
redundancy in the generated descriptions are advanta-
geous and that leveraging the interplay between cost
function and property ordering in the graph-based al-
gorithm further increases human-likeness of the out-
put.
The next section outlines the development of the field
of referring expression generation with regard to the
question of redundancy. Following this in Section 3,
we give an explanation of how the graph-based algo-
rithm works. Section 4 describes the details of the
TUNA corpus relevant to our approach. In Section 5
we discuss the cost functions and property orderings
used; and in Section 6 we report the evaluation re-
sults. Finally, Section 7 summarises the conclusions
from this work and points to some future plans.

2. Redundancy in Referring Expressions
Much work in referring expression generation draws
on notions from the Gricean Maxims of conversa-
tion (Grice, 1975), which lay out a set of rules that
a speaker follows in order to efficiently communicate
with a hearer. Specifically the Maxim of Quantity,
which states that a speaker’s contribution should be
as informative as required, but no more informative
than required, was interpreted in early work strictly
to mean that no redundant properties should be in-
cluded in a referring expression. This resulted in algo-
rithms aiming for descriptions that are as short as pos-
sible containing no redundant information at all (Dale,
1992).

However, in recent decades a lot of work in psycholin-
guistics has brought evidence that speakers do include
redundant information in referring expressions, and
not simply as a result of some processing error which
leads them astray from the Maxim of Quantity. Es-
pecially salient properties such as the type and colour
of a referred–to object are frequently used even when
they are not needed to distinguish the object from
distractors around it (Schriefer and Pechmann, 1988;
Pechmann, 1989; Eikmeyer and Ahlsén, 1996; Belke
and Meyer, 2002). Most recently an off-line study by
Engelhardt et al. (2006) shows that neither speakers
nor listeners have a problem with redundancy in refer-
ring expressions.
Approaches to the automatic generation of referring
expressions based on Dale and Reiter’s (1995) Incre-
mental Algorithm take this evidence on board, rein-
terpreting the Gricean Maxim of Quantity by allow-
ing for some redundancy to occur. They assume in-
cremental processing during language production—
similar to the incremental process of speech produc-
tion put forward by Levelt (1989)—for the subtask of
content selection for referring expressions: properties
are considered for inclusion into the description in a
predefined domain-specific order and can not be re-
moved, even if they turn out to be redundant after more
properties have been included.
In the Incremental Algorithm, the only way to influ-
ence the selection process is via the order in which
the properties are being considered. We chose to use
the graph-based framework for our explorations which
provides cost functions over the properties as a much
more fine-grained mechanism to tune the search for an
adequate referring expression.

3. The Graph-based Framework
Krahmer et al.’s (2003) graph-based framework refor-
mulates the task of selecting attributes for referring ex-
pressions as a graph-theoretical problem. To this end,
the physical scene including the target referent and
objects around it is represented as a labelled directed
graph. The graph representation of such a scene mod-
els each object of the scene as a vertex in the scene
graph. Direct properties such as COLOUR, TYPE or
SIZE are represented as looping edges on the corre-
sponding node. They are labelled with the property
names and the values the object in question has for
these properties. Relations between objects, for ex-
ample BELOW or INSIDE, are modelled as edges be-
tween the corresponding vertices. Figure 1 shows a
sample scene graph containing three objects: a dog,
a dog house and a tree. Each of these objects has a
number of direct properties represented as loops on

951

Figure 1: A sample scene graph.

the respective vertex.
To generate a distinguishing description, the graph-
based algorithm searches for a subgraph of the scene
graph that uniquely refers to the target referent. Start-
ing with the subgraph only containing the vertex
which represents the target referent, it performs a
depth-first search over the edges connected to the sub-
graph found so far. It searches the space exhaustively,
but uses a cost-based heuristic (described below) to
prune the search space. Informally, a subgraph refers
to the target object if and only if it can be ‘placed over’
the domain graph in such a way that the subgraph ver-
tex representing the target object can be ‘placed over’
the vertex of the target in the domain graph, and each
of the labelled edges in the subgraph can be ‘placed
over’ a corresponding edge in the domain graph with
the same label. Furthermore, a subgraph is distin-
guishing if and only if it fits exactly one vertex in the
domain graph. The informal notion of one graph be-
ing ‘placed over’ another corresponds with the well-
known mathematical graph construction called sub-
graph isomorphism. An example for a distinguish-
ing subgraph describing the dog in our sample domain
graph would be [V1, (V1 TYPE:DOG V1), (V1 INSIDE

V2), V2, (V2 TYPE:DOGHOUSE V2)] which could be
realised as “the dog inside the doghouse”. Of course,
“the dog” or “the small dog” would in this case also
suffice as distinguishing descriptions.

3.1. Graphs and Cost Functions

As mentioned above, the graph-based framework uses
a cost function to guide the search through the space of
possible subgraphs. This cost function is defined over
all edge labels and vertices in the domain graph. For
our purpose, it is sufficient to assign costs to the edge
labels, i.e. the different values each property can take.
Because we are not aiming at producing referring ex-

pressions containing relations between objects, each
subgraph is only going to contain the one vertex rep-
resenting the referent object. The cost of a subgraph
is then defined as the sum over all edges contained in
it.
The search algorithm is guaranteed to find the cheap-
est subgraph representing a distinguishing description
for the target referent. To avoid an exhaustive brute-
force search through the entire space of subgraphs, the
cost function is used as a heuristic to prune a search
branch as soon as it becomes as or more expensive
than the cheapest distinguishing subgraph found so
far.
Using a cost function as a means to indicate preference
of certain properties over others enables us to specify
the extent of the preference as well as equal preference
for certain properties or property values. Let’s assume
our target object is a friendly, small, white poodle and
the two cheapest distinguishing descriptions for it are:

1. “The friendly poodle.” [POODLE, FRIENDLY]

2. “The small white one.” [WHITE, SMALL]

If the property costs are c(POODLE) = 1, c(WHITE) =
c(SMALL) = 11, and c(FRIENDLY) = 12, then POO-
DLE is very much preferred over the other properties,
and WHITE and SMALL are equally preferred. For this
cost function, the algorithm will choose description 1
with cost 13 over description 2 with cost 22, although
both properties appearing in description 2, WHITE and
SMALL, are preferred over FRIENDLY which appears
in description 1. If the cost distribution for POODLE,
WHITE, SMALL, and FRIENDLY was 1, 2, 3, and 12 re-
spectively, description 2 with cost 5 would be chosen
over description 1 costing 13, although POODLE in de-
scription 1 is preferred over both WHITE and SMALL

in description 2.
This kind of choice is not possible in approaches that
only use a preference ordering over the properties,
such as the Incremental Algorithm, as there would be
no way to tell whether the preference for POODLE over
WHITE and SMALL outweighs the dispreference for
FRIENDLY over WHITE and SMALL.

3.2. Graphs and Property Orderings
Of course, it is still possible that more than one dis-
tinguishing subgraph with the lowest cost exists in a
particular scene graph with a particular cost function.
In this case the subgraph encountered first will be the
one returned by the algorithm as the description for
the target referent. The order in which subgraphs, i.e.
descriptions, are found is dependent on the order in
which edges, i.e. properties, were considered during

952

the search process. This means the earlier a property
is considered, the more likely it is going to be part of
the referring expression produced when there is more
than one cheapest solution.
Consider again the case of the friendly small white
poodle from Section 3.1 with the same two distin-
guishing descriptions. Let the properties POODLE,
WHITE, SMALL, and FRIENDLY have cost 1, 2, 3 and
4 respectively. In this case both descriptions have the
same cost (5), which means the cost function cannot
help us arbitrate between them. As just mentioned,
in such a case the graph-based algorithm chooses the
description it encounters first. Which description is
encounters first is determined entirely by the order
in which it considered the properties. If it started
building a description with POODLE or FRIENDLY, it
will return description 1 (“The friendly poodle”); if it
started with WHITE or SMALL, it will return descrip-
tion 2 (“The small white one”).
This might seem like a highly hypothetical example
with a very low likelihood of arising. However, as we
will see in Section 5.2, in order to allow some prop-
erties to occur redundantly, we need to assign them
zero cost, which in turn makes solutions with the same
cheapest cost more likely.

4. The TUNA Corpus
The data used for training, development and testing
is a subset of the Aberdeen TUNA corpus, a human-
generated data set designed for the task of selecting
properties for referring expressions (Gatt et al., 2007)
which was used for the 2007 ASGRE Challenge1 (Belz
and Gatt, 2007).
The data set is divided into a Furniture domain and a
People domain, focussing on descriptions of singular
objects; it does not contain any spatial relations be-
tween objects as part of referring expressions. Human
participants in an online data collection experiment
saw on the screen a scene containing either a num-
ber of furniture items, such as shown in Figure 2, or
photographs of people. They were then asked to type a
description for a highlighted item, the target referent.
The training set used in this study contains 239 tri-
als from the Furniture domain and 206 trials from the
People domain. The development and test sets each
consist of 80 Furniture trials and 68 People trials.
Each trial in the corpus consists of an XML rep-
resentation of the attributes of all objects contained
in a scene and the attributes contained in a human-
produced description for the target referent. The tar-

1For more information on the Attribute Selection for
the Generation of Referring Expressions Challenge go to
http://www.csd.abdn.ac.uk/research/evaluation/.

Figure 2: Monochrome picture of a scene from the
Furniture domain of the TUNA Corpus.

<DESCRIPTION NUM=“SINGULAR”>
<DET ID=“396” VALUE=“definite”>The </DET>

<ATTRIBUTE ID=“a1” NAME=“size”
VALUE=“small”> small </ATTRIBUTE>

<ATTRIBUTE ID=“a2” NAME=“colour”
VALUE=“blue”> blue </ATTRIBUTE>

<ATTRIBUTE ID=“a3” NAME=“type”
VALUE=”fan”> fan </ATTRIBUTE>.
</DESCRIPTION>

Figure 3: Example of the XML encoding of a descrip-
tion in the TUNA Corpus.

get referent is marked by a special XML attribute tag.
Several human descriptions exist for each scene–target
pair. Figure 3 shows the XML encoding of a sam-
ple description given for the target object in Figure 2,
marked by a square around it.

Properties that occur in both domains are TYPE, ORI-
ENTATION and X- and Y-DIMENSIONS. Additional
attributes in the Furniture domain are COLOUR and
SIZE, and additional attributes in the People domain
are AGE, ORIENTATION, HAIR COLOUR, and the pres-
ence or absence of HAIR, BEARDS, GLASSES and dif-
ferent CLOTHING items.

5. Approach

We experimented with various cost functions, some
of which were suggested in Krahmer et al. (2003),
and some that we specifically created for this data
set. Since people tend to mention the TYPE of an ob-
ject (typically realized as the head noun) regardless of
whether it is a distinguishing property, we modified
the graph-based algorithm so that type is selected by
default. In the data set, type was mentioned in 98%
and 92% of the descriptions for Furniture and People
respectively.

953

5.1. Frequency Counts of Properties
The graph-based framework gives an excellent oppor-
tunity to use statistical methods in combination with
a rule-based approach to referring expression genera-
tion. Therefore, some of our functions use stochastic
costs based on the frequency of each property value
in the human descriptions from the training set of the
TUNA corpus. This is based on the reasoning that
choosing properties that occur frequently in the train-
ing set should increase the likelihood that the expres-
sions containing these properties match the expres-
sions in the test set.
Based on this rationale, the more frequently the value
occurs in this set, the cheaper it is in the stochastic
cost functions. Property costs in this function were
derived by rounding −log2(P(v)) to the first decimal
and multiplying by 10, where P (v) is the probabil-
ity that property value v (corresponding to an edge in
the scene graph) occurs in a description, given that the
target object actually has this property. The probabil-
ity P (v) is estimated by determining the frequency of
each property value in the training corpus, relative to
the number of target objects that possess this property
value.2

For reasons of space, Table 1 only shows the combined
percentages and average stochastic costs per property
type, rather than the costs for each attribute–value pair.

5.2. Redundancy in the Graph-based Algorithm
To guarantee that the search process of the graph-
based algorithm terminates, the cost function has to
be monotonic increasing: i.e. the addition of a new
property to a description can never decrease the cost
of the description. In general, this monotonicity con-
straint prevents the graph-based algorithm from in-
cluding any properties in a referring expression which
are not necessary for distinguishing the target referent
from the distractor objects around it. As long as each
property has a positive cost, and if description A is a
subset of description B, then description A is always
cheaper than description B. Consequently, if A is al-
ready distinguishing, the algorithm returns A and not
B.
However, the framework does offer a mechanism
which allows us to specify properties that should be
used redundantly: introducing properties with cost 0
allows them to occur in a referring expression even if

2We also computed these values based on the combined
training and development sets. However, the cost functions
based on these re-computed values did not perform signif-
icantly better and in some cases even worse than the ones
based only on the training data.

FURNITURE
Property # in desc P(v) −log2(P (v)) cost
colour 211 0.88 0.18 2
orientation 84 0.35 1.51 15
size 86 0.36 1.47 15
x-Dim 48 0.20 2.32 23
y-Dim 64 0.27 1.90 19

PEOPLE
Property # in desc P(v) −log2(P (v)) cost
age 12 0.06 4.08 41
orientation 4 0.02 5.97 60
hairColour 68 0.33 1.60 16
hasSuit 3 0.01 6.27 63
hasShirt 2 0.01 6.96 70
hasTie 1 0.00 7.97 80
has Beard 88 0.37 1.44 14
hasGlasses 90 0.38 1.41 14
hasHair 33 0.35 1.51 15
x-Dim 60 0.25 1.99 20
y-Dim 63 0.32 1.66 17

Table 1: Average stochastic costs based on property
frequency in the training sets.

they do not contribute to the distinctiveness of the de-
scription. Note that the cost function is not required
to be strictly monotonic; zero costs are therefore al-
lowed. In this case two distinguishing descriptions
that only differ because one of them contains a zero-
cost property will have the same cost. Of course, then
we have the problem of having to decide which of
these two cheapest solutions should be returned. This
means that giving properties zero cost does still not
guarantee that they will actually be included in the fi-
nal output: it could still be the other cheapest solution
without the redundant property that gets produced.
As discussed in Section 3.2 above, the choice between
descriptions with the same cost is determined by the
order in which the algorithm considers properties for
inclusion into a referring expression. For example, we
might want to allow COLOUR to occur redundantly in
our descriptions and therefore give it cost 0. If the tar-
get object can be distinguished from all other objects
by

A) “The front facing desk”, or

B) “The blue front facing desk”,

then (B) will only be returned if COLOUR:BLUE is
considered before ORIENTATION:FRONT.
In order to investigate the effect of the property or-
dering on the performance of the system, we tested

954

each cost function with two different property order-
ings. The first lists all properties in a Random Or-
der and was used as the baseline; the second lists Free
Properties First, but keeps the rest of the properties in
alphabetical order. Free Properties First ensures that
zero-cost properties will be included in the referring
expression produced, even if their appearance is infor-
mationally redundant. Our hypothesis was this prop-
erty ordering would outperform the first.

5.3. The Cost Functions
We devised four cost functions with which we tested
the algorithm:

Simple Costs: In our simplest cost function, all at-
tributes cost 1. Using Simple Costs, the graph-based
algorithm resembles Dale’s (1992) Full Brevity al-
gorithm in that it always favours the shortest distin-
guishing description. This cost function is used as a
baseline for our hypothesis that stochastic costs based
on frequency counts from a human-produced corpus
would outperform such a Full Brevity account

Stochastic Costs: This cost function assigns each
property the frequency-based stochastic cost listed in
the last column of Table 1.

Free-Stochastic: introduces zero costs for the prop-
erties which are highly over-represented and used re-
dundantly more often than other properties in the hu-
man data we analysed. These are COLOUR for the Fur-
niture domain and HASBEARD and HASGLASSES for
the People domain. Table 1 shows that these are also
overall the most used properties. The other properties
are assigned their stochastic costs.

Free-Naı̈ve: This cost function more coarsely trans-
lates the frequency counts from Table 1 into property
costs. It allows us to test to a certain degree how fine-
grained our cost functions need to be. Zero cost is
assigned to the same properties as in Free-Stochastic,
cost 2 to the most rarely used properties (X- and Y-
DIMENSIONS in the Furniture domain and HASSUIT,
HASSHIRT and HASTIE in the People domain), and
cost 1 to all remaining properties.

6. Evaluation
For the evaluation we paired the different cost func-
tions with each of the two property orderings, result-
ing in 8 different conditions to be assessed against the
test sets from each domain held back from the TUNA

corpus. The test set for the Furniture domain con-
tained 80, and that for the People domain 68 items. As
with the development and training sets, the test sets
contain descriptions from several human participants
for each scene–target pair. The system output for each

such pair was compared to each of the human descrip-
tions using the DICE coefficient of similarity and the
results were averaged to obtain an overall score for
each domain.

6.1. The DICE Coefficient
The DICE coefficient of similarity provides an estimate
of the similarity of two sets of attributes. Let A and B
be two such sets of attributes. The DICE score for these
two sets is calculated as the number of attributes both
sets have in common multiplied by 2 and divided by
the sum of the cardinalities of the sets:

DICE(A, B) =
2× |A ∩B|
|A ∪B|

DICE scores vary between 0 for attribute sets that have
nothing in common and 1 for a perfect match between
two sets.

6.2. Results
The DICE scores achieved by the graph-based frame-
work using the cost functions from Section 5.3 and
the two tested property orderings are displayed in Ta-
bles 2 and 3. For each domain we report the mean
DICE score and the perfect recall percentage (PRP),
which is the proportion of DICE scores equal to 1.
DICE and PRP were the official measures used for the
evaluation of attribute selection in the 2007 ASGRE

Challenge.

Furniture People
Cost function Mean PRP Mean PRP

Simple Costs 0.550 2.5 0.606 17.6
Stochastic Costs 0.658 18.8 0.625 17.6
Free-Stochastic 0.701 27.5 0.665 16.2
Free-Naı̈ve 0.757 33.8 0.647 19.1

Table 2: Results for the test sets with the Random Or-
der baseline.

Furniture People
Cost function Mean PRP Mean PRP

Simple Costs 0.597 12.5 0.569 17.7
Stochastic Costs 0.669 21.3 0.625 17.7
Free-Stochastic 0.775 46.3 0.689 25
Free-Naı̈ve 0.796 50 0.639 20.6

Table 3: Results for the test sets with the Free Proper-
ties First ordering.

Overall, the two tables show that results for the Free
Properties First ordering are better than those for the
Random Order. The only exception is the Simple

955

Costs function, which performs better with the Ran-
dom Order in the People domain.
The cost functions based on the frequency counts of
properties from the training set perform consistently
better than the baseline Simple Costs. The only case
where the difference between Simple Costs and the
next lowest scoring Stochastic Costs function is not
very pronounced is with the Random Order in the Peo-
ple domain.
The two cost functions which allow redundancy to
occur by setting the cheapest properties to cost zero,
Free-Stochastic and Free-Naı̈ve, score consistently
higher than the Stochastic Costs function that does not
have any zero-cost properties.
Interestingly, Free-Stochastic seems to be doing better
than Free-Naı̈ve on the People domain for both prop-
erty orderings, while the opposite is true in the Furni-
ture domain.

6.3. Discussion

The general trend of the results from this evaluation
clearly suggests three points:

1. Cost functions based on stochastic values clearly
outperform a simple baseline resembling many
traditional approaches which had the aim of pro-
ducing the shortest possible description. This
demonstrates the validity of the growing trend to-
wards using corpus-based methods in NLG.

2. Cost functions that allow redundancy to occur in
the referring expressions generated by the graph-
based algorithm better match human referring be-
haviour than those that don’t.

3. Leveraging the interplay between cost function
and property ordering to gear the graph-based
framework towards producing more overspec-
ified output further increases human-likeness.
With the Free Properties First ordering our Free-
Naı̈ve cost function matches the DICE score of
the winning peer system from the 2007 ASGRE

Challenge in the Furniture domain and beats it
on PRP.

The fact that the Free-Stochastic cost function outper-
forms Free-Naı̈ve on the People domain for both prop-
erty orderings, while the opposite is true in the Furni-
ture domain, is most likely due to the stochastic costs
in the People domain being spread over a wide range
of values, which means that by simplifying the cost
function a lot of information about the human prefer-
ences for using certain properties is lost.

7. Conclusions and Future Work
The evaluation scheme used in this study tests explic-
itly for human-likeness of the referring expressions
produced. This is based on the assumption that the
more human-like a referring expression is, the more
natural it sounds. However, no claim can be made
that this approach maximises the usefulness of de-
scriptions for a listener in a specific task scenario.
As we strive to mimic the data in a corpus, we can-
not avoid also mimicking any deficiencies it contains.
Furthermore, in using automatic evaluation schemes
it is paramount to keep in mind that the metrics and
corpora used all have advantages and disadvantages
and put emphasis on different aspects of natural lan-
guage generation. We are therefore planning to extend
the evaluation of our system by using other evaluation
metrics and corpora as well as conducting task-based
human evaluation to assess its usefulness as well as
the naturalness.
One drawback of the graph-based framework is its
reliance on static, pre-determined cost functions and
property orderings. This does not allow us to capture
dependencies between the use of properties, such as
the fact that HAIRCOLOUR in the People domain only
gets used if HASHAIR is also included. In order to be
able to model dependencies of this kind, we will need
to implement dynamic cost functions and property or-
derings that make the inclusion of a property more or
less likely depending on which properties have already
been chosen. Despite this limitation of the frame-
work in its current form, we believe that it is the most
promising framework for referring expression genera-
tion available to date.
The results reported in this paper demonstrate that us-
ing corpus statistics for tuning the parameters of the
graph-based framework can boost its performance. To
our knowledge, this is the first approach reported in
the literature to systematically determine and evaluate
settings for both parameters of the graph-based frame-
work. We believe that this research paves the way for a
more controlled approach to the generation of redun-
dant descriptions which better match those produced
by humans.

8. References
Eva Belke and Antje S. Meyer. 2002. Tracking the

time course of multidimensional stimulus discrim-
ination: Analysis of viewing patterns and process-
ing time during same-different decisions. European
Journal of Cognitive Psychology, 14(2):237–266.

Anja Belz and Albert Gatt. 2007. The attribute selec-
tion for GRE challenge: Overview and evaluation
results. In Proceedings of UCNLG+MT: Language

956

Generation and Machine Translation, pages 75–83,
Copenhagen, Denmark.

Robert Dale and Ehud Reiter. 1995. Computational
interpretations of the Gricean maxims in the gen-
eration of referring expressions. Cognitive Science,
19(2):233–263.

Robert Dale. 1992. Generating Referring Expres-
sions: Constructing Descriptions in a Domain
of Objects and Processes. Bradford Books, MIT
Press, Cambridge, MA.

Hans-Jürgen Eikmeyer and Elisabeth Ahlsén. 1996.
The cognitive process of referring to an object: A
comparative study of German and Swedish. In Pro-
ceedings of the 16th Scandinavian Conference on
Linguistics, Turku, Finland.

Paul E. Engelhardt, Karl D. Bailey, and Fernanda Fer-
reira. 2006. Do speakers and listeners observe the
Gricean maxim of quantity? Journal of Memory
and Language, 54:554–573.

Albert Gatt, Ielka van der Sluis, and Kees van
Deemter. 2007. Evaluating algorithms for the gen-
eration of referring expressions using a balanced
corpus. In Proceedings of the 11th European Work-
shop on Natural Language Generation, pages 49–
56, Schloß Dagstuhl, Germany.

H. Paul Grice. 1975. Logic and conversation. In Peter
Cole and Jerry L. Morgan, editors, Syntax and Se-
mantics Volume 3: Speech Acts, pages 43–58. Aca-
demic Press, New York, NY.

Emiel Krahmer, Sebastiaan van Erk, and André Ver-
leg. 2003. Graph-based generation of referring ex-
pressions. Computational Lingustics, 29(1):53–72.

Willem M. J. Levelt. 1989. Speaking: From intention
to articulation. MIT Press, Cambridge, MA.

Thomas Pechmann. 1989. Incremental speech pro-
duction and referential overspecification. Linguis-
tics, 27:89–110.

Herbert J. Schriefer and Thomas Pechmann. 1988.
Incremental production of referential noun phrases
by human speakers. In Michael Zock and Gérard
Sabah, editors, Advances in Natural Language Gen-
eration, volume 1. Pinter, London, UK.

Susan Sonnenschein. 1985. The development of ref-
erential communication skills: Some situations in
which speakers give redundant messages. Journal
of Psycholinguistic Research, 14(5):489–508.

Kees van Deemter and Emiel Krahmer. 2007. Graphs
and Booleans: On the generation of referring ex-
pressions. In Harry C. Bunt and Reinhard Muskens,
editors, Computing Meaning, volume 3, pages 17–
53. Kluwer, Dordrecht, The Netherlands.

Ielka van der Sluis. 2005. Multimodal Reference,

Studies in Automatic Generation of Multimodal Re-
ferring Expressions. Ph.D. thesis, Tilburg Univer-
sity, Tilburg, The Netherlands.

Jette Viethen and Robert Dale. 2006. Algorithms
for generating referring expressions: Do they do
what people do? In Proceedings of the 4th Inter-
national Conference on Natural Language Genera-
tion, pages 63–70, Sydney, Australia, July.

Jette Viethen and Robert Dale. 2007. Capturing ac-
ceptable variation in distinguishing descriptions. In
Proceedings of the 11th European Workshop on
Natural Language Generation, Schloß Dagstuhl,
Germany.

Grover J. Whitehurst and Susan Sonnenschein. 1976.
The development of communication: Attribute vari-
ation leads to contrast failure. Child Development,
47:473–482.

957

