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Abstract
Large-scale grammar-based parsing systems nowadays increasingly rely on independently developed, more specializedcomponents for
pre-processing their input. However, different tools makeconflicting assumptions about very basic properties such astokenization. To
make linguistic annotation gathered in pre-processing available to ‘deep’ parsing, a hybrid NLP system needs to establish a coherent
mapping between the two universes. Our basic assumption is that tokens are best described by attribute – value matrices (AVMs) that
may be arbitrarily complex. We propose a powerful resource-sensitive rewrite formalism, ‘chart mapping’, that allowsus to mediate
between the token descriptions delivered by shallow pre-processing components and the input expected by the grammar. We furthermore
propose a novel way of unknown word treatment where all generic lexical entries are instantiated that are licensed by a particular token
AVM. Again, chart mapping is used to give the grammar writer full control as to which items (e.g. native vs. generic lexical items) enter
syntactic parsing. We discuss several further uses of the original idea and report on early experiences with the new machinery.

1. Background—Motivation
Grammar-based parsing in frameworks like CCG (Clark &
Curran, 2004), LFG (Riezler et al., 2002), and HPSG (Mal-
ouf & van Noord, 2004; Oepen, Flickinger, Toutanova, &
Manning, 2004; Miyao, Ninomiya, & Tsujii, 2005) has ma-
tured to a point that allows ‘deep’ linguistic analysis of
large collections of running text. At the same time, such
systems increasingly rely on ‘shallow’ pre-processing of
input—for example to complement lexical gaps based on
part-of-speech (PoS) taggers and named entity (NE) rec-
ognizers (Crysmann et al., 2002, inter alios), or to re-
duce lexical and structural ambiguity by filtering against
analyses suggested by a tagger or statistical parser (Prins
& van Noord, 2001, Frank, Becker, Crysmann, Kiefer, &
Schäfer, 2003, Dalrymple, 2006, inter alios). In a nut-
shell, the main benefits of shallow NLP tools lie in their
broad coverage, robustness, and portability across domains;
the main attraction in deep, grammar-based parsing, on the
other hand, is the increased precision provided by the inclu-
sion of fine-grained linguistic distinctions and semanticsin
such systems.
In our own work on building hybrid parsing systems from
independently developed components (Callmeier, Eisele,
Schäfer, & Siegel, 2004; Waldron, Copestake, Schäfer, &
Kiefer, 2006),1 we have repeatedly stumbled over a chal-
lenge thatprima facie may seem trivial: different tools
make conflicting assumptions about very basic properties,
even at the level of tokenization, i.e. the breaking up of
input text into basic building blocks for subsequent anal-
ysis. Although differences in the assumptions made by
tokenizers have been acknowledged and discussed before

1See ‘http://www.delph-in.net/’ for background on
existing shallow and deep NLP tools and linguistic resources (for
many languages) in the HPSG framework.

(Grefenstette & Tapanainen, 1994; Habert et al., 1998), to
our knowledge no satisfactory solution for the problem of
integrating existing, independently developed shallow pre-
processing components with diverging linguistic assump-
tions into deep parsing has been found so far.

Shallow components for English tend to be influenced
heavily by the linguistic decisions made in the Penn Tree-
bank (PTB; Marcus, Santorini, & Marcinkiewicz, 1993).
The PTB treats most punctuation marks as separate to-
kens and breaks up contracted verb forms, e.g. the string
Don’t you! is tokenized as the four-element sequence
〈do, n’t, you, !〉. Linguistically, however, the implied anal-
ogy to a non-contracted form is, put mildly, mis-leading
(seeing that∗Do not you! is ungrammatical), and it leads
to the stipulation of pseudo-lexemes and false paradigms,
as for example in breaking upwon’t as〈wo, n’t〉. Follow-
ing Flickinger (2000), inter alios, and his broad-coverage
English Resource Grammar (ERG; couched in the HPSG
framework), at least some deep computational grammars
reject the PTB tokenization approach. Besides disagree-
ment about the limited class of contracted negations, these
grammar writers have found that punctuation is best ap-
proached in an analysis akin to affixation, i.e. commas,
parentheses, quote marks, et al. are attached as ‘prefixes’
or ‘suffixes’ (in a technical sense) directly to the word
forms to which they are juxtaposed in standard orthogra-
phy. While we cannot motivate this point of view at any
level of detail here, observe that grammatical constructions
like appositions or non-restrictive relative clauses require
parallel bracketing with commas on either side. However,
where multiple such constructions might in theory call for
multiple punctuation marks—following a final apposition
in a relative clause, say—conceptual punctuation clusters
are nevertheless realized as a single comma only; further-
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Figure 1: Sample input token chart for the stringdon’t.

more a non-comma sentence-final punctuation mark can
satisfy all construction-specific ‘pending’ punctuation re-
quirements. (For discussion of the phenomenon, see (Nun-
berg, 1990) and (Briscoe, 1996).) This phenomenon is
straightforwardly accounted for in an affixation approach
to punctuation, using a hierarchy of punctuation marks and
their candidate functions.2

Where a grammar-based parser is to benefit from shal-
low pre-processing, discrepancies in basic tokenization are
problematic. Lacking a notion of affixation, typical taggers
stand to gain from viewing punctuation marks as separate
tokens, while at the same time a deep parser depends on its
input being tokenized according to the assumptions made in
its grammar. To make linguistic annotation gathered in pre-
processing available to deep parsing, a hybrid NLP system
needs to establish a coherent mapping between the two uni-
verses. Finally, existing grammars like the ERG often in-
clude their own ‘lightweight’ NE module, building on reg-
ular expressions to match various forms of numbers, email
and web addresses, and the like. These devices tend to be
carefully synchronized to subtle grammatical distinctions:
the ordinal inWe’ll meet the 3rd, for example, is ambigu-
ous between a temporal adverbial, a day of the month, and
an elliptical NP object;We’ll meet the 42nd, on the other
hand, only admits the latter reading. Therefore, it is vital
to accurately preserve such functionality when embedding
a deep grammar in a hybrid parsing system.

2. A Candidate Solution
Assume an existing pre-processing pipeline, including sen-
tence segmentation, PoS tagging, and (some) NE recog-
nition. In the following, we will restrict ourselves to the
downstream analysis of one utterance at a time. Upon com-
pletion of pre-processing, the original utterance string has
been tokenized, and each token annotated with candidate
PoS information. Additionally, individual tokens or multi-
token sequences may be flagged as candidate named en-
tities (of varying type and internal structure). Obviously,
at this point already, there can be ambiguity—say in con-
flicting PoS tags for a word form likesleeps—and unless
pre-processing were able to rule out competing hypothe-
ses with great confidence, it can be beneficial to pass at

2Also, not splitting off punctuation marks into separate tokens
can avoid spurious ambiguity, for example when separating non-
directed quote marks or dashes from the preceding or following
token to which they were actually attached.

least part of this ambiguity into the deep parser, leaving it
to the grammar and ultimately statistical parse selection to
further disambiguate. Thus, we assume that the input in-
terface to the deep parser is a lattice of structured objects,
i.e. a chart of attribute – value matrices (AVMs), where
chart vertices correspond to shallow token boundaries. Fig-
ure 1 presents a small sample lattice, with some selected
properties shown on each token. Different pre-processing
pipelines may have proprietary token properties and nam-
ing schemes, but we assume that each token provides its
raw surface form, stand-off pointers into the original input
string, and a unique identifier.3

To mediate between original shallow tokens and a tokeniza-
tion compatible with the deep grammar, and also to se-
lect which pieces of annotation to pass into the parser (or
maybe rename and repackage values as needed), we pro-
pose a powerful mapping formalism. Token rewrite rules
take the general form:

[ CONTEXT : ] INPUT → OUTPUT

The CONTEXT, INPUT, andOUTPUT components are each
(possibly empty) sequences of AVMs. Much like in chart
parsing, in the basic case, a rule fires when allINPUT ele-
ments are successfully unified to a contiguous sequence of
existing chart edges; in this case,OUTPUT is copied into the
chart, at the span ranging from the start vertex of the first
INPUT element to the end vertex of its last element.4

Unlike in chart parsing, however, the rewrite process is
resource-sensitive, in the sense that each rule application
consumes all chart edges that were used to ‘prove’ itsIN-
PUT component. When (re-)combining the token sequence
do+ n’t into a single token, for example, the effect is both
the addition of a new chart entry (a synthesized tokendon’t,
as required by the grammar)andthe deletion from the chart
of the unwanted shallow token edges. TheCONTEXT com-
ponent, on the other hand, can be used to condition the
applicability of rules on successful unification against the
current chart—much likeINPUT—but without actually con-
suming edges used in unification against its elements. Thus,
CONTEXT rewriting rules can be used to add alternative hy-
potheses into the chart, and obviouslyCONTEXT andINPUT

can be freely combined.
Having both the left- and right-hand side of rules operate on
the same token chart enables ‘feeding and bleeding’ among
rules. To give grammarians full control over the rewrite
process, rules are applied strictly sequentially, in the order

3In order to increase interoperability with existing preprocess-
ing tools, it is desirable to use established stand-off annotation for-
mats like SMAF (Waldron et al., 2006), an XML-based exchange
format inspired by MAF (Clément & Villemonte de La Clergerie,
2005), for data exchange and a software architecture such asthe
Heart of Gold(Schäfer, 2006), among many others, for synthesiz-
ing the annotation gained by the various tools. We do not address
this problem with our approach.

4In Sections 4. and 5., we argue that this mode of operation is
actually overly restrictive, i.e. only one of the possible variants in
‘positioning’ constraints among rule elements. We might want to
match non-contiguousINPUT as well as to specify otherOUTPUT

locations. For now, we also do not address the question of how
the position ofCONTEXT items is specified.
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specified by the grammar.5

Although operating on a single chart, thus resembling
unification-based parsing, the non-monotonicity of rewrite
rules consuming edges from the chart provides an elegant
means of suppressing unwanted input elements (incompat-
ible with the deep grammar) from downstream processing.
In Section 4. below, we will suggest another motivation for
non-monotonic rule applications.

3. Some Examples
Conceptually, all three components of rewrite rules are
treated as a single feature structure, such that re-entrancies
can be effected across components; thus, unifyingINPUT

elements to existing chart entries will typically further spec-
ify the OUTPUT AVMs, and provides a means of ‘copying’
information from the left-hand side of the rule to its right-
hand side. We furthermore assume that standard feature
structure unification is augmented with regular expression
operations over strings. Consider the following example:6

[

FORM / (̂.+)$/

TO 1

]

,

[

FORM "n’t"

FROM 1

]

→
[

FORM /\1n’t/
]

This rule reverts the pre-processing ‘damage’ to contracted
negations. The RE group operators ‘(’ and ‘)’ on the IN-
PUT side establish a binding for the actualFORM value of
the first element; on theOUTPUT side, the group match is
then inserted into the synthesizedFORM string by means of
a RE back reference (indicated here by the RE backslash
operator ‘\’).
Another example rule demonstrates lightweight NE recog-
nition, controlled by the deep grammar:

[

FORM / (̂[0-2]?[0-9]:[0-5][0-9])$/
]

→

[

FORM /\1/

CLASS clockTime

]

This rule recognizes a sequence of one or two digits (the
hour), followed by a colon, followed by another two dig-
its (minutes) as a token of classclockTime.7 Note that
this rule does not alter the surfaceFORM value, but rather
marks the NE class as the value of theCLASS attribute
(or another property of choice, defined by the grammar).
Section 4. below demonstrates how lexical lookup and un-
known word handling can take advantage of this informa-
tion. For the purpose of input normalization, subsequent

5Abstractly, our formalism is similar in nature to the approach
used in (semantic) transfer machine translation, see for example
Oepen et al. (2004).

6In the example rules, we restrict the information shown to
what is immediately relevant. For example, unless indicated oth-
erwise, we assume that all rules determineFROM (the stand-off
start pointer),TO (the end pointer),ID, and other values appropri-
ately: where multiple input tokens are synthesized, for example,
theOUTPUTwould bear theFROM of the first, andTO value of the
last left-hand side element. Keeping exact track of original shal-
low tokens, we further assume that all rules determine theOUTPUT

ID value(s) as the union ofID values on all left-hand side elements.
7Note that our sample regular expression does not try to cir-

cumscribe exactly the valid number ranges for hours, i.e. ruling
out numbers greater than24; nor does it foresee the idiosyncratic
English ‘am’ and ‘pm’ time modifiers. More elaborate expres-
sions or, equivalently, a family ofclockTimerules can be con-
structed to overcome these deficiencies.

rewrite rules can inspect the full AVM, including the token
CLASS, and filter accordingly—for example when detecting
‘sandwiched’ punctuation marks.
As a final example, we present a rule with more than one
element on its right-hand side, a simplified version of a
robustness measure in parsing noisily punctuated text. In
email, for example, punctuation marks (and specifically
colons) are often not properly separated from adjacent to-
kens. A rewrite rule like the following normalizes non-
standard colons:

[

FORM /̂ (.+:)([a-zA-Z0-9].*)$/

CLASS alphaPunct

]

→
[

FORM /\1/
]

,
[

FORM /\2/
]

In this case, oneINPUT element is split into two, converting
the ‘sandwiched’ colon in this specific configuration (un-
less part of a previously matched NE that can legitimately
contain colons) into a token boundary.8

These few examples illustrate the kind of mapping required
between the shallow and deep token universes. Embedding
rewrite rules with the grammar allows the grammarian to
make explicit their assumptions about the input interface
to deep parsing. Furthermore, it allows re-use of the de-
scription language and engineering tools used with the ERG
and similar grammars already, and it provides full access to
the grammar-internal type hierarchy during token rewrit-
ing. We envision that some token-level rewrite rules will be
generally applicable, while others may be tied to a specific
pre-processing pipeline. Therefore a configuration mecha-
nism on rules should be provided to the grammarian, so as
to define clusters of active rules in various setups.

4. Lexical Instantiation and Selection
Once token processing is complete, the deep parser looks
up lexical entries (LEs) from its lexicon according to sur-
face forms. To benefit from shallow pre-processing, ex-
isting grammars provide an inventory of underspecified
‘generic’ LEs, for example a simple noun (mass or count)
and an optionally transitive verb. These are typically acti-
vated as a fall-back device, i.e. in case the hand-built, ‘na-
tive’ lexicon provides no LE for an input token. For this
purpose, existing grammars include mappings from, say, a
specific inventory of PoS tags to identifiers of generic LEs.
However, a common type of lexical gaps in deep grammars
is not the complete absence of any information for a token
spelling, but ratherpartial lexical coverage—for example
providing a noun LE forbusbut omitting its verb reading.
PoS taggers are likely to tag the verb form correctly in con-
texts likeWe’ll bus to Paris. Where the grammar lacks a
native verbal LE, it is desirable to trigger unknown word
processing (despite an existing native LE, the noun, which
would lead to parse failure); and even where the grammar
provided both entries, it can be benefical to block the noun

8With multiple right-hand side elements in rewrite rules, the
determination of appropriate surfaceFROM andTO values presents
an interesting challenge, but for space limitations we cannot dis-
cuss this aspect. Likewise, such rules create new internal chart
vertices, adjacent only to theOUTPUT elements themselves; we
assume a generalized chart, a token lattice, where vertex indices
are abstract entities instead of just integers.
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reading prior to full parsing, eliminating unnecessary lexi-
cal ambiguity. Existing unknown word handling—the fall-
back strategy—lacks the flexibility to combine the two sets
of related native and generic LEs, respectively, as needed,
i.e. invoking either intersection, union, or set difference.
We propose a novel approach to lexical look-up, instan-
tiation, and selection. For all input tokens contained
in the chart once token-level normalization is complete
(i.e. rewriting has reached a fix-point), both ‘native’ and
‘generic’ lexical retrieval are invoked in parallel. A gram-
mar simply declares its set of available generic entries and,
in place of existing idiosyncratic grammar-external map-
pings, directly encodes constraints on their use (with re-
spect to information associated to input tokens) as part of
the AVM of each entry. When instantiating a generic entry
e for an input tokeni, the full AVM of i is unified into
e under a pre-defined path, sayTOKEN. Assuming PTB
PoS tags, a generic noun entry can then be specified as
[

TOKEN | TAG NN
]

,9 and a more specialized LE for clock time
named entities as

[

TOKEN |CLASS clockTime
]

.
Unification of token information into native and generic
LEs serves two purposes: (a) only generic entries com-
patible with the actual properties of a specific input token
will succeed, such that no unwarranted LEs are hypothe-
sized; and (b) all token information is made available to
the lexical entry (and hence subsequent processing): AVM
re-entrancies allow the grammar to project into the syntax
whatever properties are deemed appropriate. Furthermore,
grammars are free to deploy the type hierarchy (the core
tool for linguistic generalization in HPSG) to reflect hi-
erarchical relations among input constrains—for example
where a PoS tagger can provide both designated singular
and plural noun tags, as well as an underspecified tag in
cases it cannot resolve (‘NN1’, ‘NN2’, and ‘NN’, respec-
tively, in the so-called CLAWS tag set). In this latter exam-
ple, the plural noun generic LE could be further constrained
in terms of surface properties, e.g.

[

TOKEN | FORM /s$/
]

.
Finally, to selectively block parallel lexical entries, say
where both a native and generic LE of comparable cate-
gory exist, we extend our rewrite machinery to rules where
(a) left-hand side elements can be taken from the same chart
cell and (b) the right-hand side can be empty. For example,
the following rule, applied to the chart after lexical instan-
tiation but prior to parsing, blocks generic noun LEs when-
ever they fall into the same cell as a native nominal entry:

[

native le
SYNSEM nominal

]

:

[

genericle
SYNSEM nominal

]

→

Note that this rule utilizes aCONTEXT condition, so as to
only consume one of its left-hand side elements, and that
we use the symbol ‘:’ to indicate that both elements occupy
the same chart cell.10

9At this point, we assume that token normalization has multi-
plied out the originalPOS sequence of tags (compare to Figure 1).
As part of the same process, low-probability or low-confidence
PoS assignments may have been suppressed.

10This notational convention for specifying positional con-
straints is provisionary. In our current implementation, it is pos-
sible to state that two items are in the same chart cell, that they
are adjacent, or that one item is somewhere to the left or right of
another item. Likewise, output items can be placed in the same

5. Chart Dependencies
Another mechanism that could be treated with chart map-
ping rules is the so-calledchart dependenciesfilter, which
was first described by Kiefer & Krieger (1998) and Kiefer,
Krieger, Carroll, & Malouf (1999). It is based on the ob-
servation that some lexical items depend on the presence
of others in the chart, and that these dependencies are of a
non-local nature.
Particle verbs in German are an example of this kind of
dependency. In the sentenceShe hielt ihn davon ab.(‘she
kept him from doing this.’),hielt is the past form ofhal-
ten(‘to keep’), but the actual verb here isabhaltenand the
particleab has been split off. The entry of the verbal form
without the particle can only contribute to an analysis of
the sentence if a corresponding entry for the particle can be
found somewhere in the chart. Such verbs are very com-
mon and thus, lots of useless entries end up in the chart
and slow down parsing massively if they are not filtered
out. To continue the example, the verbhalten has more
than thirty corresponding particle verbs, e.g.anhalten(‘to
pause’),aufhalten(‘to delay’), zurückhalten(‘to detain’),
and so forth.
At the moment, the information about what is required or
provided by a lexical item can be found under paths in the
AVM that are specified by the grammar. At the end of lex-
ical processing, those paths are looked up for every item
and all provided information as well as the items with re-
quirements are stored. Then, each item with requirements
that are not satisfied is removed from the chart. A require-
ment is fulfilled if the information that has been found is
compatible (unifiable) with the required information.
This can now be implemented with the machinery de-
scribed before, using chart mapping rules similar to the lex-
ical selection approach discussed in Section 4. above. As
the left-hand side elements of our rewrite rules need not be
adjacent, non-local dependencies among chart entries can
be encoded in a straightforward manner. A filtering rule
for verb – particle lexical entries, for example, could sup-
press instantiated lexical entries forabhaltenin case there
is noabparticle entry elsewhere in the chart. However, note
that a rule like this would need to condition on a negative
constraint, theabsenceof a compatible particle from the
chart. Nevertheless, it would be possible to implement this
dependency using our current formalism, by stipulating an
additional feature, say assuming that lexical items that de-
pend on other chart entries are marked

[

COMPLETE −
]

. A
chart mapping rule could then ‘toggle’ this feature value if
and only if the external dependency can be satisfied (e.g. by
theabparticle in our running example). Finally, the syntac-
tic component of the grammar could then block remaining
‘incomplete’ lexical entries from further processing. Albeit
feasible in principle, ‘toggling’ a feature likeCOMPLETE in
chart mapping rules (which are instantiated using unifica-
tion, i.e. monotonically) would imply copying everything
but the specific feature from the input to the output side.11

chart cell instead of inserting them as a consecutive sequence.
11A similar challenge often arises in category-changing lexi-

cal rules in unification-based grammars, where it is common to
arrange the feature geometry of linguistic signs so as to reflect
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An alternate mechanism that we currently investigate is ex-
tending the rewrite formalism with an additional compo-
nent, sayFILTER (essentially a negatedCONTEXT), which
would allow negative conditioning of rules. When present,
a FILTER component would need to be checkedafter other
left-hand side elements, and successful unification ofFIL-
TER against the chart would effectively block application of
the rule in question.
Another problematic aspect of German particle verbs is that
they not only constitute discontinuous lexical items, but
rather discontinuous predicates, that is, the argument struc-
ture of a particle verb is jointly determined by the verb and
the particle, often in a non-compositional way. For exam-
plehalten‘to hold’ is a transitive verb taking an accusative
NP complement, butvorhalten‘to reproach’ takes a dative
NP and a propositional that-clause complement. By con-
trast,fahren‘to drive’ is an intransitive, but so isvorfahren
‘to drive up’. As illustrated by these contrasts, argument
extension is neither directly predictable on the basis of the
verb, nor on the basis of the particle. Thus, the argument
structure of the discontinous predicate must be specified
as a whole on either of its parts. Since particles combine
with verbs quite productively, it is prohibitive to specify
the argument structure of the complex as a lexical prop-
erty of the particle, because this would lead to a prolifer-
ation of particle entries in the lexicon, and ultimately, the
chart. Instead, in the German HPSG grammar GG (Müller
& Kasper, 2000, Crysmann, 2003, Crysmann, 2007), the
specific argument structure is associated with the verb, and
passed down the tree to the clause-final particle. As a re-
sult, the argument structure is locally underspecified dur-
ing bottom-up parsing, which constitutes another source of
inefficiency. On the basis of our new chart mapping tech-
nology, however, this second issue with particle verbs can
easily be resolved by means of unifying the verb’s argument
structure onto the lexical entry of the particle. As a result,
the particle’s argument structure will now be fully specified
before the actual parsing phase, thereby greatly reducing
the search space in parsing proper. Although we have not
yet evaluated the potential efficiency benefits, we expect
them to be considerable, given our observations that discon-
tinuous predicates in German are one of the main culprits
for suboptimal runtime performance.

6. Current State of Play
We have started implementing this approach on top of the
DELPH-IN tool chain, as part of the parser in the PET sys-
tem (Callmeier, 2000). While originally designed as an ex-
perimentation platform for developing and comparing tech-
niques in unification based grammar processing, within the
context of the DELPH-IN collaboration the PET parser has
taken the role of the high-efficiency engine for batch pro-
cessing and deployment of DELPH-IN grammars. The PET
parser is a bottom-up chart parser with support for ambigu-
ity packing and parse ranking. In the context of different
applications, over time a whole range of lattice-based in-
put methods have been implemented for the PET parser,

generalizations over common clusters of information that remain
constant, constrasting with the linguistic properties commonly af-
fected by lexical alternation.

each with its individual advantages and limitations. The im-
plementation of the approach we describe here is intended
to generalize and consolidate the existing input methods at
some point.
Whereas the underlying assumption in traditional chart
parsing (Kay, 1986) is that the input is a linearly ordered
sequence of tokens, chart-mapping rules may output ele-
ments that are not aligned with the original edges in the
input chart. Therefore we use a generalized chart, that is
a directed acyclic graph whose vertices are abstract objects
rather than indexed token boundary positions (commonly
represented as consecutive integers, numbering inter-token
positions).
Chart-mapping rules are applied in two phases during pars-
ing: (a) the token mappingand (b) thelexical filtering
phase. Token mapping takes place directly after reading in
the (usually already tokenized) input. This phase is used to
adjust and augment the input so that it fits the assumptions
made by the grammar, including lightweight NE recogni-
tion as sketched above. When token mapping is finished,
lexical entries are instantiated for each token in the chart.
To this end, the surface form of each token is analyzed
by the (integrated) morphology component—resulting in
pairs, each comprising a candidate lexical stems and a chain
of hypothesized orthographemic rules, relating the actual
form to the stem. Each stem is then looked up in the lexi-
con, and its corresponding lexical entries, if any, are copied
into the chart as new lexical items. Independently, all com-
patible generic lexical entries defined in the grammar are
also instantiated for each token. The parser then enters a
lexical parsing phase, where the lexical items in the chart
are turned into items that are suited for syntactic parsing.At
this point, lexical items might turn out to be incompatible
with orthographemic rules postulated earlier during mor-
phological analysis. In order to filter out unwanted lexical
items, e.g. generic items where native items are available in
the same chart cell and have survived lexical parsing (see
Section 4. above), lexical chart mapping is performed. Fi-
nally, the parser enters the actual syntactic parsing phase.
The core functionality of the proposed chart-mapping ma-
chinery has by now been implemented, and first practical
experiences are already gained (see below). One of the
conclusions so far is that the means to specify the posi-
tional constraints on the matched arguments and the output
items of a rule are too restrictive. We are therefore looking
a more general constraint language on precedence relations
between chart items that also allows us to take advantage of
type inheritance for a better factorization of rule types.
Prior to development of this token chart approach, the ERG
employed a finite-state preprocessor for which the grammar
defined a collection of some 228 token-manipulation rules
to normalize text. These rules fall broadly into two sets:
one for regularizing punctuation and spacing, and the other
for dealing with numeric and alphanumeric entities such as
integers, decimals, fractions, ratios, dates, times, ranges,
phone numbers, measure phrases, temperatures, addresses,
and product name identifiers. To make use of the new token
chart approach, those 228 substitution, deletion, and inser-
tion rules were manually converted to 225 roughly equiva-
lent rules expressed in terms of input, output, and context
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token lists. The two sets of rules were checked for equiva-
lent results by employing each of the two preprocessing en-
gines on several standard treebanked test suites (some 3000
sentences in total), and verifying that the resulting syntac-
tic analyses were identical to the analysis recorded in the
treebank. There were a handful of uninteresting differences
due to slight differences in how the two engines treat a
few special characters which are also operators within reg-
ular expressions, but the token chart engine was otherwise
equivalent in what it presented to the parser on these data
sets where all of the vocabulary was within the scope of the
manually constructed lexicon.
In addition, a small set of additional token chart rules
were defined to constrain the interaction between a part-of-
speech tagger and the unknown-word handling mechanism
used with the ERG in parsing open-domain text. These
rules favor manually-defined lexical entries over those pro-
posed on the basis of PoS tags, and also filter out some
unwanted generic entries in cases where the tagger assigns
multiple likely tags. An example of the latter involves un-
known prenominal modifiers, which the tagger will often
label with tags for both noun and adjective, leading to un-
wanted syntactic ambiguity if a generic lexical entry is in-
troduced for each of the two. The token chart rule here
filters out one of the two, reducing both parsing cost and
ambiguity of the resulting parse forest.
Figure 2 presents preliminary results for comparing end-
to-end parsing performance using the ERG, contrasting the
original system configuration with our augmented setup.
Although conversion of existing (external) preprocessing
rules and fine-tuning of the lexical instantiation and chart
dependencies is not yet complete, already we see an im-
provement in both the number of sentences that succeed in
parsing and the average processing time per input. These
figures reflect a sample of some 15,000 sentences drawn
from technical manuals (of diverse products and manufac-
turers), a domain for which the ERG has only been adapted
recently. Therefore, and due to the substantial diversity of
these texts, the proportion of unknown words and named
entities is comparatively high in this corpus.
For the German Grammar (GG), we also implemented an
unknown-word handling mechanism on the basis of PoS
tags, reproducing the behaviour which was previously hard
encoded in PET. The prior behaviour was not always satis-
factory, though. Due to the syncretism inherent in German
noun inflection, for instance, the set of possible morpho-
syntactic properties for unknown nouns cannot be accu-
rately determined. Hence the morpho-syntactic properties
for unknown nouns had previously been left underspecified,
accepting the potential additional ambiguity during syntac-
tic parsing. Most unknown nouns in German texts, how-
ever, are built along productive word formation patterns.
With the help of token chart rules, we could further refine
the instantiated generic lexical entries for unknown nouns
by mapping the morpho-syntactic properties returned by an
external computational morphology (Petitpierre & Russell,
1994) to the corresponding agreement feature in the lexical
item. The way in which these morphological mappings are
defined illustrates another interesting application of in-cell
mapping rules: in the GG, morphological readings are com-

pactly represented as types, representing ambiguity classes
by means of underspecification, for reasons of parsing effi-
ciency. External morphologies often do not follow the same
representation format, but instead list readings in disjunc-
tive normal form. Our mapping rules therefore map clusters
of disjunctive readings within the same cell to a single com-
pact type-based representation (see the discussion above on
the blocking of generic lexical entries by native ones). An-
other feature of the present chart mapping formalism that
plays a crucial role in the definition of these mappings is the
order-sensitivity of rule application: German nominal mor-
phology recognises ten regular paradigms, involving dif-
ferent patterns of syncretism. Some of the readings stand
in a subset relation, e.g. zero marking in Class 2 (Com-
puter ‘computer’, Nom/Dat/Acc.Sg + Nom/Gen/Acc.Pl) is
a proper superset of the readings for zero marking in Class
1 (Tag ‘day’, Nom/Dat/Acc.Sg) By ordering mapping rules
for supersets before mapping rules for subsets, we elegantly
map the sets of readings onto a unique type identifier, as de-
fined in the grammar.
Because token chart rules are defined as typed feature struc-
tures within the grammar’s own formalism, the grammar
writer can use a hierarchy of rule types to capture shared
properties among subsets of rules. These typed structures
also proved to provide a significant benefit by enabling
more focused error-checking during development of the
rule set.

7. Discussion—Outlook
Albeit not rocket science, the issues we discuss present gen-
uine road blocks in large-scale hybrid parsing today: the
integration of shallow and deep NLP tools in existing hy-
brid pipelines to date cannot accomodate token-level diver-
gencies and a flexible mapping between the two universes
(Callmeier et al., 2004). We propose a comparatively pow-
erful device, unification-based rewriting of AVM charts, to
address this problem, fully integrated with the deep parsing
grammar and its linguistic constraints. First practical expe-
riences show that current pre-processing tools which were
designed for a more narrowed set of problems can easily be
replaced with the new machinery, while sustaining the per-
formance of the parsing system, and allowing the grammar
writers to address a greater range of pre-processing tasks
with the same formalism as for the grammar.
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old system new system delta
Aggregate coverage time coverage time time

% φ (s) % φ (s) %

20< i-length≤ 85 71.4 4.76 67.3 2.86 40.1
10< i-length≤ 20 81.2 0.51 85.6 0.50 2.3
5 < i-length≤ 10 83.4 0.9 87.1 0.10 -17.4
0 < i-length≤ 5 84.7 0.02 87.8 0.04 -74.3

Total 81.0 0.96 83.5 0.67 29.8
(generated by [incr tsdb()] at 31-mar-2008 (10:18 h))

Figure 2: Preliminary contrastive evalution using the ERG.The improved control over the creation of generic lexical entries (based on
pre-processing using a PoS tagger) yields a substantial efficiency gain, albeit (for the time being) at some loss of parses for excessively
long inputs. At the same time, the relative speed-up over theoriginal system increases in sentence length, i.e. the effect is largest where
it matters most.
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