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Abstract
This paper describes the creation of a state-of-the-art answer type detection system capable of recognizing more than 200 different
expected answer types with greater than 85% precision and recall. After describing how we constructed a new, multi-tiered answer type
hierarchy from the set of entity types recognized by Language Computer Corporation’s CICEROL ITE named entity recognition system,
we demonstrate how we used this hierarchy to annotate a new corpus of more than 10,000 English factoid questions. We show how
an answer type detection system trained on this corpus can be used to enhance the accuracy of a state-of-the-art question-answering
system (Hickl et al., 2007; Hickl et al., 2006b) by more than 7% overall.

1. Introduction

Work in factoid question-answering (Q/A) has long lever-
aged answer type detection (ATD) systems in order to iden-
tify the semantic class of the entities, words, or phrases
which are most likely to correspond to the exact answer to
a natural language question. For example, given a question
like Who was responsible for coordinating disaster relief
for victims of Hurricane Katrina?, ATD components en-
able Q/A systems to retrieve the sets of candidate answers
which include the INDIVIDUALS and/or ORGANIZATIONS
who provided aid to the victims of the hurricane.

Early work in ATD (Harabagiu et al., 2000; Harabagiu et
al., 2001) leveraged sets of heuristics in order to identify
the expected answer types (EATS) of questions submitted
to a Q/A system. Most modern Q/A systems, however, fol-
low work done by (Li and Roth, 2002) in using machine
learning classifiers in order to select the one (or more) EATS
from a fixed hierarchy of answer types which are most ap-
propriate for a particular question.

While learning-based approaches have dramatically in-
creased the precision of open-domain ATD systems, most
current ATD components have only been tasked with dis-
tinguishing amongst a limited set of EATs. For example,
the most commonly-used answer type hierarchy (ATH), the
University of Illinois (UIUC) answer type hierarchy created
by (Li and Roth, 2002), includes only a total of 50 unique
expected answer types (generally referred to as “fine” an-
swer types), organized into 6 different categories (referred
to as “coarse” answer types). (The entire UIUC ATH is
presented in Table 1.)

While ATD systems based on the the UIUC hierarchy
has been employed by a number of participants in recent
TREC! Question-Answering evaluations, we believe that
the size (and coverage) of current answer type hierarchies
represents a factor which significantly limits both the per-
formance of open-domain factoid question-answering sys-
tems and the number of questions that a Q/A system can
be used to answer. Without coverage for a specific an-
swer type within its ATH, a Q/A system must retrieve —
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Coarse Type
ABBREVIATION

Fine Types
ABBREVIATION, EXPANDEDABBREVIATION
ANIMAL, BoDY, COLOR, CREATIVE,
CURRENCY, DISEASEMEDICINE, EVENT, FOOD,
INSTRUMENT, LANGUAGE, LETTER, OTHER,

ENTITY PLANT, PRODUCT, RELIGION, SPORT,
SUBSTANCE, SYMBOL, TECHNIQUE, TERM,
VEHICLE, WORD
DESCRIPTION DEFINITION, DESCRIPTION, MANNER, REASON
HUMAN GROUP, INDIVIDUAL, TITLE, DESCRIPTION
CITY, COUNTRY, MOUNTAIN, OTHER,
LOCATION STATE
CoDE, COUNT, DATE, DISTANCE,
MONEY, ORDER, OTHER, PERIOD
NUMERIC ONEY, O 'O ' 0D,

PERCENT, SPEED, TEMPERATURE, SIZE,
WEIGHT

Table 1: The UIUC answer type hierarchy.

and extract — answers using other answer types from its
ATH which are conceptually “nearest” to the expected an-
swer type of the question. For example, an ATH without a
unique EAT for ORGANIZATIONS may be forced to search
for answers using similar types such as PERSON or NA-
TIONALITY. In a similar fashion, limited ATHs can also
increase the challenge of extracting exact answers from re-
trieved text passages. For example, while most ATD sys-
tems can identify when a question is seeking a INDIVID-
UAL as its EAT, a more articulated ATD system capable
of distinguish between classes of individuals (e.g. CEO,
BASEBALL-PLAYER, POLITICIAN, RELIGIOUS LEADER)
could greatly reduce the total number of (spurious) candi-
date answers retrieved for the question. Systems without
such an articulated ATH would be required to recognize
valid answers from a much larger list of possible candi-
dates.

In this paper, we address the challenge of creating — and
learning — large hierarchies of answer types for open-
domain question-answering applications. We describe the
creation of a new, state-of-the-art ATD system capable of
recognizing more than 200 different expected answer types
with greater than 85% precision and recall. We first de-
scribe how we created a coherent ATH from the more
than 350 different named entities recognized by Language
Computer Corporation’s (LCC) CICEROLITE named entity
recognition system. We then describe how we used this
large ATH in order to annotate a corpus of more than 10,000
English questions mined from web documents and show
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how the hierarchy we propose can boost the accuracy of
a state-of-the-art question-answering system (Hickl et al.,
2006a) by more than 7% overall.

The rest of this paper is organized in the following way.
Section 2 presents a discussion of previous heuristic- and
classification-based approaches to the problem of ATD for
open-domain Q/A systems. Section 3 describes how we
created a large, multi-tiered ATH from the sets of entity
types recognized by LCC’s CICEROLITE. Section 4 de-
scribes our efforts to use this hierarchy to annotate a large
corpus of questions. Section 5 provides details of our
ATD system. Section 6 details results of evaluations us-
ing our proposed ATH in conjunction with a state-of-the-
art question-answering system, LCC’s FERRET (Hickl et
al., 2006a), and Section 7 presents our conclusions.

2. PreviousWork

Answer type hierarchies were first employed by
(Harabagiu et al., 2000) using a heuristic classifier
based on the WORDNET (Miller, 1995) ontology. (Li
and Roth, 2002) explored the use of machine learning
techniques to answer type detection and (Krishnan et
al., 2005) improved accuracy through the use of their
informer span. Alternatively, (Pinchak and Lin, 2006)
use a probabilistic model with no pre-defined hierarchy
in order to identify the type of information sought by a
factoid question.

We know of no previous work which combines the ability to
scale to large ATHs and provide the benefits of a machine-
learning based system. While the ATH in (Harabagiu et
al., 2000) could easily be scaled to include a potentially
very large number of types (e.g. see (Harabagiu et al.,
2005) for an example of how this could be accomplished
for a top-performing TREC Q/A system), it is constrained
in its aapproach to WORDNET’s hand-built hypernym rela-
tions, which does not coincide with common answer types
in questions. in contrast, the (Li and Roth, 2002) UIUC
ATH is designed especially for questions, but lacks the abil-
ity to extend the depth of the hierarchy when Q/A systems
are capable of handling more detailed answer types. (See
Section 3 for a more detailed discussion of the UIUC hier-
archy.)

In order to create a new ATH capable of addressing the
needs of today’s open-domain factoid Q/A systems, we
wanted to develop an ATH which was capable of scaling
to any given set of named entity types. Our work in this
paper sought to address the following requirements:
Requirement 1. The ability to add “abstract” answer types
that represent some subset of other answer types. These
would correspond to common question ambiguities, such
as the above example of an unknown level of government
or an ambiguity between individuals and groups such as
Who isin charge of the Hurricane Katrina relief effort?.
Requirement 2. The ability to add new answer types as
they arise anywhere in the hierarchy. This is a common
case in an real-world environment where new question-
answering requirements dictate new additions to the hier-
archy.

Requirement 3. The ability to scale the hierarchy to any
size without dramatically increasing the amount of training

data or annotation complexity. The larger a hierarchy scales
to, the less reasonable it is to expect an annotator to have a
total understanding of the ATH.

3. Creatingalarge Answer TypeHierarchy
for Factoid Q/A

In this section, we describe how we created a large, multi-
tiered hierarchy of over 200 expected answer types from
the set of entity types recognized by LCC’s CICEROLITE
named entity recognition system.

We assume that the taxonomy of answer types included in
an answer type hierarchy (ATH) can be represented as a tree
structure of varying depth where branchings mark decision
points between different semantic classes that all share a
hypernym-like relationship with their parent. (A graphical
representation of a portion of the LCC ATH is presented in
Figure 1.)

The UIUC answer type hierarchy (Li and Roth, 2002) (and
corresponding annotated corpus of nearly 6000 questions)
has provided a solid test-bed for researchers to develop and
benchmark a variety of machine learning techniques for an-
swer type detection. While this corpus was designed to
cover many of “common” question types, it only includes
a total of 50 different answer types and does contain some
notable gaps. For example, while the UIUC ATH DATE
can be used in conjunction with many when questions, it
does not provide the granularity necessary to answer more
specific temporal questions, such as What year was Clin-
ton elected to the Senate? or What day of the week was
Lincoln’s birthday in 2002?.

We feel that the time is right for work in ATD to move be-
yond the UIUC ATH and to begin to tackle problems of or-
ganizing and learning answer type hierarchies that encom-
pass several hundreds of diverse expected answer types. We
believe that this effort would be in line with recent work
looking at a similar type of semantic categorization prob-
lem — named entity recognition — in which researchers have
moved from using simple heuristics and classifiers to unsu-
pervised or semi-supervised methods capable of inducing
hundreds (if not thousands) of entity types from large col-
lections of texts.

In our work, we used output from LCC’s own, wide-
coverage named entity recognition system, CICEROLITE in
order to construct a novel ATH which included more than
200 different EATs. (A table listing some of entity types
recognized by CICEROLITE is presented in Table 2.)

Purpose Example(s)
ACE Types/Subtypes PERSON/INDIVIDUAL, FACILITY/AIRPORT,
GPE/COUNTRY, WEAPON/BLUNT
Common TREC Types SPORTS-TEAM, WRITTEN-WORK

DEATH-MANNER, DISEASE, ACRONYM
TIME, MONTH, YEAR-RANGE
MOUNTAIN, OCEAN, LATITUDE

COMPOUND-L OCATION

Tempora Reasoning
Spatial Reasoning

Table 2: Examples from CICEROLITE’s 350+ entity types

3.1. Entity Type Hierarchy vs. Answer Type
Hierarchy

Differences between a hierarchy of extractable named en-
tities (ETH) and the ATH are subtle but important. While
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Figure 1: Sample hierarchy.

named entity types are the classes that may be extracted,
answer types describe the user’s desired class. This distinc-
tion can lead both to different hierarchy structure (such as
the PERSON-ORG example in the previous section) as well
as having nodes in the ATH that need not necessarily map
directly to an entity type. For example, the question How
old is Condoleezza Rice? clearly states the desired answer
type requirement AGE. But the extracted types may addi-
tionally include NUMBER (He turned 22 today.) and DATE
(He was born on 5/5/89.).

Furthermore, answers need not necessarily be drawn from
entities. While some Q/A Systems detect the difference
between “factoid” and “complex” questions (Hickl et al.,
20064), it is often desirable to include both in the ATH such
as the DESCRIPTION coarse type in the UIUC hierarchy.

3.2. Constructing an ATH froman ETH

The following steps demonstrate how one could construct
an answer type hierarchy from a pre-existing entity type
hierarchy.

Step 1: Initialize. Create the initial ATH as a direct clone
of the existing ETH.

Step 2: Consolidate. For every parent node in the hier-
archy, if questions can ambiguously refer to a subset of
the children, then combine that subset under a new node.
This new node now becomes the parent’s child and reduces
the number of disambiguations that need to be resolved at
that one branching point. For example, the ACE entity type
hierarchy has the following children of the implicit “root”
node: FACILITY, GPE, (physical) LOCATION, ORGANI-
ZATION, PERSON, VEHICLE, and WEAPON. Since where
questions could apply to FACILITY, GPE, and LOCATION
answer types, these nodes are moved under an abstract Lo-
CATION node and the ACE type is re-named to PHY SICAL-
LocATioN for clarity.

Step 3: Separate. When a node could belong in more
than one parent nodes, one may create two answer type
nodes that point to the same entity type. A obvious concern
is whether a UNIVERSITY belongs under ORGANIZATION
(Which university was awarded the grant?) or LOCATION
(Where did she decide to go to school?). The solution is
to create both a UNIVERSITYORG and UNIVERSITYLOC
type. The creators of the ACE hierarchy faced a similar
dilemma of where to place COUNTRY, CITY, etc., that had

traditionally been considered LOCATIONS but could also
be used as an ORGANIZATION. Their solution of adding
an extra type as a sibling made classification of extracted
entities easier, but it does not work well for a hierarchical
disambiguation in a deep hierarchy as the sub-trees of both
candidate parents would have to be duplicated.

Step 4: Repeat. Return to both Step 2 and 3 until they no

longer apply.

4. Annotating the Question Corpus

In this section, we describe how we used the large ATH in-
troduced in Section 3 in order to annotate a corpus drawn
from more than 10,000 questions compiled from (1) ex-
isting annotated question corpora (Li and Roth, 2002), (2)
collections of questions mined from the web, and (3) ques-
tions submitted to LCC’s FERRET question-answering sys-
tem (Hickl et al., 2006a). (A breakdown of the number
of questions obtained from each of these three strategies is
provided in Table 3.)

Question Set # Questions
UIUC Train & Test 5,952
Web Crawl 3,485
FERRET log 563

Table 3: Distribution of 10,000 annotated questions by
originating data set.

4.1.

We used a custom graphical user interface (GUI) in order
to facilitate annotation of questions with their EATs. Our
system presented annotators with individual questions and
allowed to select from amongst a set of answer types (pro-
vided via a drop-down list).> Annotators were tasked with
annotating 1000 questions per session and were allowed to
work at their own pace (without a time limit) during an an-
notation session. Each set of 1000 questions were anno-
tated by a team of 2 annotators; the percentage of inter-
annotator agreement (as measured by the total number of
questions that each pair of annotators associated with the
same EAT) was measured after each round of annotation.

Methodology

2A copy of our annotation GUI can be obtained by contacting
the authors.
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The two major and competing concerns with annotating a
large number of answer are the accuracy of the annotations
(as measured in inter-annotator agreement) and the time
spent annotating. We experimented with three different an-
notation methodologies as part of this work. Under the first
methodology (Methodology 1), annotators were asked to
assign the “finest” answer type appropriate for each ques-
tion. While we anticipated that this process would involve
the fewest iterations, it was expected that annotators would
have difficulty accurately annotating the answer types due
to the size of the hierarchy. In contrast, with Methodology
2, annotators performed annotation using a two-pass ap-
proach designed to minimize the total number of disagree-
ments between annotators. Under the first pass, annotators
associated each question with one of 11 “coarse” EATS; in
a second pass, they then were asked to select which of the
“fine” EATS associated with each “coarse” type was most
appropriate for the question. With Methodology 3, anno-
tators followed a similar strategy as with Methodology 2:
under this approach, however, they were asked to anno-
tate each level of the hierarchy at a time, assigning either
a child node of the last assigned answer type or a STOP op-
tion if further classification over-specifies the expected an-
swer type. (A summary table of these three methodologies
is presented in Table 4.)

Methodology 1. A traditional one-pass annotation where the annotator
assigned the fi nal answer type, followed by an inter-annotator agreement session.

Methodology 2. A two-pass annotation where the annotator fi rst assigned a
“coarse” answer type (see Table 5), followed by an inter-annotator agreement
session. For the second pass, the annotator assigned the fi nal answer type,
followed by afi nal inter-annotator agreement session.

Methodology 3. A multi-pass annotation where a pass was made for each
decision point in the hierarchy, with only the immediate children aswell asa
STOP option available to the annotator. Each session was followed by an
inter-annotator agreement session.

Table 4: Methodologies used for annotating answer types.

UIUC Coarse Type Methodology 2 Coarse Type(s)
ABBREVIATION ABBREVIATION
ENTITY OTHER-ENTITY, OTHER-VALUE, WORK
DESCRIPTION COMPLEX
HUMAN HUMAN, TITLE
L OCATION LOCATION, CONTACT-INFO
NUMERIC NUMERIC, TEMPORAL

Table 5: Coarse types used in Methodology 2.

4.2. Inter-Annotator Agreement

Our initial expectation was that Methodology 1 would be
less successful as it would require the annotators to have
knowledge of the entire hierarchy, while Methodology 3
would result in the least disagreement, but would take far
more time, reducing the amount of data that could be anno-
tated. Methodology 2 was introduced as a compromise be-
tween the two — allowing for a single inter-annotator agree-
ment session in the very middle in order to resolve any ma-
jor differences, to determine if the finer answer types would
be easy to annotate once the coarse type is agreed upon.

The actual inter-annotator agreements for all three trials are
shown in Table 6. These results fulfill our expectations.
Methodology 1 proved very difficult for annotators, as they
failed to agree for a majority of questions. Methodology

3 had consistently high agreements, while Methodology 2
agreed with expectation of falling somewhere in between.

Methodology 1 | Methodology 2 | Methodology 3

85.3%

0
86.2% 84.7%

47.4% 91.5%

59.4% 97.0%

99.8%

Table 6: Inter-annotator agreement from all three trials.
Each row represents a single pass through the question set.

Comparing inter-annotator agreement between experiments
that use a different number of passes and a different num-
ber of possible classes is difficult. Therefore, we also cal-
culated the percentage of questions that had disagreement
through any pass of the data. In other words, if in any
pass (up to five for Methodology 3) a particular question
had some disagreement between the analysts, then it would
count against what we call “question agreement”.

Table 7 shows the question agreement for all three passes.
Methodology 3 had a much higher overall question agree-
ment than both Methodology 1 and 2. This suggests that
Methodology 3 makes a larger percentage of questions eas-
ier to annotate. Since the first pass in Methodology 3 has
the same candidate answer types as the first pass in Method-
ology 2, the second pass for Methodology 2 (going from
coarse class to final class) must still prove difficult for an-
notators.

Percentage
Methodology 1 47.4%
Methodology 2 53.2%
Methodology 3 70.0%

Table 7: Percentage of unique questions without any dis-
agreement through all annotation passes.

5. Answer Type Detection

In this section, we show that current classification-based
approaches to ATD can be extended to the task of learn-
ing large answer type hierarchies, such as the ones we have
introduced in this paper. We compare the performance of
two different classification-based approaches to ATD — one
based on a relatively “flat” ATH and one based on the more
articulated “deeper” ATH we have introduced — on an anno-
tated corpus of 10,000 questions assembled for this work.

5.1. Answer Type Classification

While Section 4 showed that a deep hierarchy can improve
inter-annotator agreement, we believe that a well-organized
ATH can also improve a system’s ability to classify a ques-
tion’s expected answer type. We utilized two methods to
experiment with how a hierarchical classifier compares to
a baseline flat classifier. Initial results support our hypoth-
esis that a hierarchical approach can improve classification
accuracy and that, even with over 200 answer types, such
a classifier is comparable to state-of-the-art techniques on
smaller hierarchies.
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Flat classifiers can provide a useful baseline because of
their simplicity and lack of error propagation. However, as
the number of outcomes increase, a flat classifier often has
difficulty separating among different outcomes, especially
when the distribution of types is unevenly distributed as in
answer type detection.

A hierarchical classification-based approach to ATD can be
thought of as having either a machine or heuristic classifier
for every node in the hierarchy that has at least one child.
Each classifier may choose from among the child nodes and
the parent node (essentially the equivalent of the sTOP op-
tion from Section 4). The classification process starts from
the root node in the hierarchy, gets an initial classification
from the root node’s children, then proceeds to the corre-
sponding node to re-classify based on its children. This
process proceeds until a leaf node is reached or the classi-
fier outcome is the sTopP option. A summary of both exper-
iments may be found in Table 8.

Experiment 1: Flat Classification. A completely bt structure (i.e., all
known (annotated) outcomes were considered by the classifi er) to make asingle
machine-learning based classifi cation of the fi nal answer type.
Experiment 2: Hierarchical Classification. A hierarchical structure (i.e.,
only the children of the current type are considered as outcomes) to make a
classifi cation at every branching point in the hierarchy. 3 classifi ersare
machine-learning based while the remainder are heuristic classifi ers.

Table 8: Experiments used for classifying answer types.

In a departure from previous machine-learning based ap-
proaches (Li and Roth, 2002; Krishnan et al., 2005),
we used a maximum entropy classifier to learn our ATH.
Our classification process currently uses three machine-
learned classifiers. The first resolves all questions into one
of 11 “coarse” types that are similar to the UIUC coarse
types in Table 1. If the first classifier’s outcome is Hu-
MAN, then a machine classifier resolves between INDIVID-
UAL, HUMAN-GROUP, ORGANIZATION, and HUMAN (hot
enough information). If the first classifier’s outcome is Lo-
CATION, then a machine classifier is used to resolve be-
tween PHYSICAL-LOCATION, GPE, FACILITY, and LO-
CATION (again, when not enough information is present to
make a decision). At every other decision point in the hier-
archy, a heuristic classifier uses features extracted from the
question to make a decision.

Both experiments were trained on 8,000 and tested on 2,000
of the questions from the annotated set of questions from
Section 4. We used the question set annotated with Method-
ology 3 as we felt the inter-annotator agreement results sug-
gest this question set offers the highest quality data.
Performance on the classification experiments is given in
Table 9. Confirming our expectations, the hierarchical ap-
proach out-performed the flat classification by almost 7%.

Classifi cation Type | Accuracy
Flat 79.8%
Hierarchical 86.7%

Table 9: Performance of Answer Type Detection Strategies.

We see two main benefits to hierarchical classification that
could account for such a score increase.

First, using a multi-pass machine classification approach
has the additional benefit of allowing for different feature

sets to be used. For example, resources such as WORD-
NET (Miller, 1995) may be used to aid in the classification
of geo-political entities (GPE) (e.g., knowing that a ham-
let should map to the answer type CiTY). Only a simple
“is a hypernym of location” feature is necessary in order
to decide if a hamlet type from among a coarse set such
as {LOCATION, TEMPORAL, PERSON-ORG, NUMERIC}.
But a more complicated hypernymy feature is necessary to
differentiate a hamlet from other GPEs such as STATE and
COUNTRY. By splitting out the classification into multiple
layers, the higher-level classification tasks will be benefited
through the use of simpler features.

Second, an additional benefit to classification is the hier-
archy’s property that the final answer type does not need
to be a leaf node. For the easier or less important classifi-
cations, this allows a simple manual heuristic to make the
classification. For example, if a question is currently clas-
sified as an ATHLETE question, whose possible children
are BASEBALL-PLAYER, FOOTBALL-PLAYER, SOCCER-
PLAYER, and SWIMMER, the question’s classification may
be left at ATHLETE if the heuristic does not fire. This might
mean that a question such as Who is famous for swimming
the English Channel? will not be classified into its finest
possible type, but it could very well be determined that
writing a machine classification system for the ATHLETE
sub-types is not feasible. Furthermore, it has been our ex-
perience that for the finest entity types, a heuristic approach
is beneficial, as it overcomes the classifier’s natural bias due
to a sparse amount of training data.

5.2. Impact on Question-Answering

In this section, we show that access to a large ATH can sig-
nificantly enhance the performance of an end-to-end factoid
question-answering system.

Choosing the top answer from a large set of candidate has
proven to be a difficult task in question-answering. Several
methods exist that could theoretically solve this problem,
such as theorem provers and textual entailment systems, but
these solutions suffers significantly from both precision and
recall issues. A far more viable and less limiting option is to
significantly reduce the number of candidate answers. By
using a deep answer type hierarchy with an equally detailed
set of entity types, the set of candidate answers may be re-
duced by several factors, which will improve the results of
even a basic ranking technique.

We have incorporated the results of our wide-coverage
answer type detection system into the factoid question-
answering pipeline implemented in LCC’s FERRET
question-answering system.

First evaluated in the 2005 TREC Question-Answering
Evaluations (Harabagiu et al., 2005), FERRET leverages a
wide range of lexico-semantic annotations (including out-
put from LCC’s (1) syntactic and (2) semantic dependency
parsers, (3) LCC’s CICEROLITE named entity recognition
system and (4) PINPOINT temporal and spatial normaliza-
tion systems) in order to retrieve and extract exact answers
to both factoid and complex questions submitted by users.
Table 10 details the improvement of using the flat set of 11
coarse answer types found in Table 5 against using LCC’s
full expected answer type hierarchy of more than 200 types.
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# of Types | Final Score
11 31.28%
350 38.64%

Table 10: Initial end-to-end Top 1 score of the FERRET Q/A
system on 188 TREC 2007 Questions.

Further expansion of the ATH should yield higher end-to-
end scores. Question-Answering systems, however, are
limited by far more than the number of answer types it is
able to classify. Errors in question annotation, document
retrieval, named entity recognition, and answer ranking all
put an upper bound on the effectiveness of a theoretically
infinitely sized ATH. Additionally, there are many different
strategies for Q/A, many that require no answer type. The
results in Table 10 use a baseline entity-based answer ex-
traction framework. Combining the results of this strategy
with others can produce a much more accurate answers.
However, 200 answer types is by no means the limit of
useful answer types and it is reasonable that significant
performance gains are quite possible. Furthermore, both
ATHs discussed in this paper are designed for TREC ques-
tions. The set of TREC questions and their correspond-
ing expected answer types by no means represents a true
open-domain set. Indeed, the ability to adapt the hierarchy
described in Section 3 to include alternate domains such
as biological and aeronautical questions means there is no
functional limit on the number of answer types.

6. Conclusions

This paper described the creation of a new answer type de-
tection system capable of recognizing more than 200 dif-
ferent expected answer types with greater 85% precision.
In a departure from previous work in answer type detection
(Krishnan et al., 2005; Li and Roth, 2002), we have demon-
strated how a large, multi-tiered answer type hierarchy can
be created which incorporates many of the entity types in-
cluded in LCC’s wide coverage named entity recognition
system, CICEROLITE; this hierarchy was then used in or-
der to create a new corpus of more than 10,000 questions
which could be used to train an ATD system. We showed
that the hierarchy we have developed can enhance a state-
of-the-art question-answering system (Hickl et al., 2006a)
by more than 7% overall.
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