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Abstract
In biomedical articles, terms with the same surface forms are often used to refer to different entities across a number of model organisms,
in which case determining the species becomes crucial to term identification systems that ground terms to specific database identifiers.
This paper describes a rule-based system that extracts ‘species indicating words’, such as human or murine, which can be used to decide
the species of the nearby entity terms, and a machine-learning species disambiguation system that was developed on manually species-
annotated corpora. Performance of both systems were evaluated on gold-standard datasets, where the machine-learning system yielded

better overall results.

1. Introduction

Information Extraction (IE) technologies such as Named
Entity Recognition (NER), Term Identification (TT) and Re-
lation Extraction (RE) have been shown to help reduce the
laborious work involved in curating the vast amount of
biomedical research papers (Karamanis et al., 2007; Alex et
al., 2008; Wang and Matthews, 2008). In a typical curation
process for protein-protein interactions (PPI), an IE system
would first recognise the protein mentions (i.e., NER) and
then assign unique database identifiers to them (i.e., TI),
and finally input the pairs of identifiers of the interacting
proteins into a database of PPIs. As an intermediate mod-
ule that disambiguates the mentions and normalises them
to database identifiers, TI is essential because strings of
text with the same surface form can often be used to re-
fer to different entities. As noted in our previous work
and elsewhere, determining the correct species for the pro-
tein mentions is one of the most important steps towards
TI (Krauthammer and Nenadic, 2004; Chen et al., 2005;
Krallinger et al., 2007; Wang, 2007).

We found that Plkl can phosphorylate Nek2 in
vitro and interacts with Nek2 in vivo.

For example, searching for the string p/k! in the above sen-
tence in RefSeq! resulted in 98 hits, whereas when a species
(e.g., mouse (Mus musculus) was added to the query, we
were able to narrow down the number of choices to two.
This paper reports on our efforts in building species-
annotated corpora, in which species tags were manually as-
signed to occurrences of several types of biomedical en-
tities, including proteins, genes and mRNAs, and in de-
veloping an automatic species tagger using rule-based and
machine-learning approaches based on this resource.

The paper is organised as follows: Section 2 describes some
of the related work. Section 3 reports on the process of an-
notating the species corpora and on calculating the inter-
annotator-agreement. Section 4 describes a rule-based ap-
proach to detect species words (e.g., mouse), utilising var-
ious specialised lexicons. A number of rule-based and

"http://www.ncbi.nlm.nih.gov/RefSeq/. The
searches were carried out on November 5, 2007.

machine-learning based species tagging systems that utilise
species words as one of the most important type of features
are presented in Section 5. This section also discusses the
experimental results and findings. We finally conclude and
propose future work in Section 6.

2. Related Work

The BioCreAtIvE I & II evaluation workshops (Hirschman
et al., 2005; Hirschman et al., 2007) provided forums and
gold-standard datasets for the community on evaluating
biomedical IE systems such as NER (Yeh et al., 2005;
Wilbur et al., 2007), TI (Hirschman et al., 2004; Mor-
gan and Hirschman, 2007), and RE (Blaschke et al., 2005;
Krallinger et al., 2007). A number of tasks in the recent
BioCreAtIVE II workshop have addressed the importance
of species disambiguation. For example, the protein in-
teraction pairs subtask (IPS) (Krallinger et al., 2007) re-
sembled the work-flow of manual curation of PPIs,?> and
required identification of interacting proteins across many
model organisms. The best result for this task was fairly
low at 28.85% F'1, and a number of participants have re-
ported (e.g., Grover et al., 2007) that species ambiguity
posed one of the biggest challenges. An analysis of the
training dataset of IPS revealed that the interacting proteins
in this corpus belong to over 60 species, and only 56.27%
of them are human.

Also, Chen et al. (2005) collected gene information from
21 organisms and quantified naming ambiguities within
species, cross species, with English words and with med-
ical terms. Their study showed that the intra-species am-
biguity in gene names was negligible at 0.02%, whereas
cross-species ambiguity was high at 14.2%. It suggests
that resolving species ambiguity would be an effective step
towards gene name identification. On the other hand, as
Ananiadou et al. (2004) suggested, existing text processing
resources typically lack information that can support dis-
ambiguation of terms, and such resources do not address
ambiguities related to finer biological classification, such
as species information.

The curation task that we refer to here requires curators to
identify examples of protein-protein interactions in biomedical lit-
erature, which is a laborious task requiring considerable expertise.
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Our previous work (Wang, 2007) reported initial results of
a species disambiguation system and the performance of TI
with the system integrated. The accuracy of species tag-
ging was 56.0% as tested by 10-fold cross validation on the
training data and was 75.0% on the development test data.
This species tagging component also improved the perfor-
mance of a rule-based TI system by 10%. Note that those
experiments were conducted on a different dataset using a
different species ontology from the ones reported in this
paper, and therefore the results are not comparable to those
presented in this paper.

3. Data and Ontology

The species annotated datasets were built as part of a larger
project, the TXM project (Alex et al., 2008), a three-year
project which aims to produce NLP-based tools to aid cu-
ration of biomedical papers. We created two corpora in
slightly different domains, EPPI (enriched PPI) and TE
(Tissue Expression). The EPPI corpus consists of 217 full-
text papers selected from PubMed and PubMed Central and
domain experts annotated all documents for both protein
entities and PPIs, as well as extra (enriched) information
associated with the PPIs and normalisations of the proteins
to publicly available ontologies. The TE corpus consists of
230 full-text papers, in which entities such as protein, tis-
sue, gene and mRNA were marked up and identified, and
a new tissue expression relation was marked up in addition
to protein-protein interactions. We split both corpora into
training (64%), development test (devtest) (16%) and blind
test (20%) datasets. In this paper, we limit our discussion
to species annotation.

Proteins, protein complexes, genes and mRNAs in both
EPPI and TE datasets were annotated with NCBI taxon-
omy IDs? (TaxID) denoting the model organisms that they
belong to. The NCBI taxonomy is a species ontology in a
tree structure, containing 267, 718 nodes, where a node can
represent various levels in a hierarchy of species includ-
ing genus, subgenus and species, etc. In general, a genus
consists of a number of subgenus which comprise of many
species.

For example, Table 1 lists three nodes in different levels of
the hierarchy with regarding to Xenopus.

TaxID | Name Rank
8353 | Xenopus genus

262014 | Xenopus subgenus
8364 | Xenopus tropicalis | species

Table 1: Taxonomy records for Xenopus in the NCBI tax-
onomy. ‘Rank’ refers to the hierarchy level of the node in
the ontology.

During the species annotation, entity mentions were man-
ually assigned with IDs of the corresponding nodes (i.e.,
TaxIDs) in the taxonomy hierarchy. For example, given the
context in the article, an annotator may assign 8364 (Xeno-
pus tropicalis) to an entity mention if she thinks it belongs

*http://www.ncbi.nlm.nih.gov/sites/
entrez?db=Taxonomy

to that species. On the other hand, if she was not sure that
it was an Xenopus tropicalis species, but was certain that it
belonged to the genus of Xenopus, she would assign it with
the genus TaxID instead. Sometimes authors talk about an
entity without referring to any specific genus, subgenus, or
species, in which case the annotator would assign a “gen”
tag to the entity mention, meaning that it is used in a gen-
eral sense. For example, in the following sentence, the term
nNOS is used in a general sense, and therefore this occur-
rence of nNOS should be tagged with “gen”.

The nNOS mRNAs that predominate in neurons
and muscle arise through activation of promot-
ers clustered in genomic regions considerably up-
stream of those that contain the translation initia-
tion codon within exon 2.

In our experiments, however, we skipped all the “gen” cases
so that every entity mention is associated with an NCBI
species ID.

The EPPI and TE datasets have different distributions of
species. The entities in the EPPI data belong to 112 species
with human (9606) the most frequent at 51.98%. For all
other species the number of entities is less than 10% of the
total, which makes for a very long tail in the distribution.
On the other hand, in the TE data, the entities belong to 61
species with mouse (10090) the most frequent at 44.67%.*
Human entities are also fairly frequent and come second at
34.40%. See Table 2 for a more detailed breakdown of the
species distributions in the datasets.

To calculate the inter-annotator-agreement, about 40% of
documents were doubly annotated by different annotators.
The averaged F'1 scores of species annotation on the doubly
annotated EPPI and TE datasets are 86.45% and 95.11%,
respectively, which indicates that human annotators agree
well when assigning species to biomedical entities.

4. Detecting Species Words

Words referring to species, such as human, are important
indicators of the species of the nearby entities. We have
developed a rule-based program that detects such words,
which we refer to as species words in this paper. The heuris-
tic rules were compiled by inspecting various species ontol-
ogy, such as the NCBI taxonomy, and the training portion
of the EPPI dataset. The species words are used as fea-
tures to help the rule-based and the machine-learning based
species identification modules described in Section 5.

4.1. Overview

The species word tagger is a lexical look-up component
which applies to tokenised text and which marks words that
refer to a species. The input tokenised text are in XML for-
mat and attributes denoting the species detected by the pro-
gram are added to the corresponding word elements. For
example, content words such as human, mouse, murine and
D. melanogaster would be processed by the program and
tagged with TaxIDs as attributes. For the most frequent
species, the Latin name is also added as an attribute.

“These figures were obtained from the training splits of the
EPPI and TE datasets.
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] H in EPPI train H in EPPI devtest H in TE train H in TE devtest H

ncbitax ID | inst. (%) ncbitax ID | inst. (%) ncbitax ID | inst. (%) ncbitax ID | inst. (%)

1 9606 20948 (52.0) || 9606 7650 (60.6) || 10090 17688 (44.7) || 9606 2637 (33.3)

2 10090 3916 (9.7) 8364 1466 (11.6) || 9606 13605 (34.4) || 10090 2390 (30.2)

3 4932 3047 (7.7) 4932 872 (6.9) 10116 2413 (6.1) 7227 597 (7.5)

4 8364 2483 (6.2) 7227 694 (5.5) 7227 1208 (3.1) 6239 414 (5.2)

5 10116 1860 (4.6) 10090 550 (4.4) 3702 632 (1.6) 10116 390 (4.9)

6 7227 1452 (3.6) 10360 301 (2.4) 3888 586 (1.5) 4564 338 (4.3)

7 4896 1226 (3.0) 11963 238 (1.9) 5270 518 (1.3) 3527 309 (3.9)

8 6239 386 (1.0) 10116 215 (1.7) 6239 361 (0.9) 11292 188 (2.4)

9 11676 343 (0.9) 4564 195 (1.5) 8364 347 (0.9) 7668 162 (2.0)

10 10376 318 (0.8) 3527 154 (1.2) 8030 344 (0.9) 10335 139 (1.8)

Total || 112 40300 38 12632 61 39591 38 7909

Table 2: Distributions of species in EPPI and TE devtest and train datasets. Only the top 10 species are shown. The ‘ncbitax
IDs’ are species IDs drawn from the NCBI taxonomy and ‘inst.” are the number of instances available for the species in the
corresponding dataset. The row titled “Total’ denotes the total number of species which occurred and the total number of

instances in the corresponding dataset.

PrevWwd PrevWd in Sent PrevWd Spread PrevWd in Sent Spread

P | R | FI P | R | FI P | R | FI P | R | FI
PPI || 81.88 | 1.87 | 3.65 | 60.79 | 5.16 | 9.52 | 63.85 | 14.17 | 23.19 | 39.74 | 50.54 | 44.49
TE || 91.49 | 1.63 | 3.21 | 56.16 | 7.76 | 13.64 | 77.84 | 17.97 | 29.20 | 31.71 | 46.68 | 37.36

Table 3: Results (%) of the rule-based species tagger.

In more detail, the first step in the component deals with
species prefixes. Protein names frequently contain pre-
fixes indicating the species of the protein, e.g. mSos-
1. Rules written in an Ixtransduce grammar’ are used
to identify species prefixes for the frequently occurring
cases of human, mouse, rat, fly and yeast. For exam-
ple, the term mSos-1 would be tagged with attributes
sprefix="mus_musculus" and spid="10090",
where the name of the species is encoded in the sprefix
attribute and the TaxID in the spid attribute. The sec-
ond step in the component does lexical look-up to identify
species words. Note that a species “word” may contain sev-
eral words, for example, “E. coli”.

4.2. Lexicons

The species word tagger uses four lexicons. The lexicon
species.lex contains hand-compiled entries for the twenty or
so most frequent and most important species. The 188 en-
tries cover Latin and English forms for each species and al-
low for pluralisation (e.g. mice) and different tokenisations
(i.e. separated and non-separated fullstops are included so
that the look-up does not rely on a particular tokenisation.)
The lexicon faxonomy.lex is derived from the NCBI taxon-
omy and contains 400, 179 entries. This lexicon provides a
TaxID for less frequent species terms which are not covered
by species.lex. Its entries reflect both scientific names and
common names and contain a rank attribute derived from
the RANK field of the taxonomy (e.g. genus, species, sub-
species etc.). In the course of conversion from taxonomy

5See http://www.ltg.ed.ac.uk/software/
1txml2 for details of the LT- XML 2 tools developed at the LTG
group at Edinburgh University.

to lexicon, certain entries were discarded. For example, en-
tries with excessive punctuation and/or dates were rejected:

o “Pseudomonas tumefaciens” (Smith and Townsend
1907) Duggar 1909

In addition, entries which are homonyms of common En-
glish words were also rejected, e.g. This, bear, sole and
unhelpful entries were removed, e.g. other, unknown, un-
classified.

The lexicon latinother.lex is derived from a list on the
UniProt web site® and contains 32, 764 entries. This lex-
icon is used to identify Latin species names which may not
have been found in the previous lexicon because, for exam-
ple, the NCBI taxonomy does not include short forms of
Latin names. This lexicon contains both full names and
short forms as well as alternative tokenisations, such as
Hyaena hyaena; H. hyaena; H . hyaena.

The final lexicon, extras.lex is a hand-built lexicon contain-
ing 83 entries which provides TaxIDs for words that are not
found in the taxonomy lexicon. It includes species adjec-
tives such as ovine as well as common species words such
as frog and hamster.

5. Assigning Species to Entities

5.1. Rule-based Approach

It is intuitive that a species word that occurs right before an
entity mention (e.g., mouse p53) should be a strong indica-
tor of its species. To assess how well this intuition works,
we developed a rule-based system using the heuristic and
species words detected by the species word tagger. We de-
vised four rule-based systems:

°http ://www.ebi.uniprot.org/index.shtml
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e PrevWd: If the word preceding an entity mention is a
species word, assign the species indicated by that word
to the mention.

o PrevWd in Sent: If a word that occurs to the left of an
entity mention and in the same sentence is a species
word, assign the species indicated by that word to the
mention.

o PrevWd Spread: First carry out rule PrevWd, and then
spread the species to all the entity mentions whose sur-
face forms are identical to the mentions tagged by rule
PrevWd.

o PrevWd in Sent Spread: First carry out rule PrevWd in
Sent, and then spread the species to all the entity men-
tions whose surface forms are identical to the mentions
tagged by rule PrevWd in Sent.

Table 3 shows the evaluation results. As we can see, the
precision of the system ‘PrevWd’ that solely relies on the
previous species word to an entity mention was good but
the recall was very low. The system ‘PrevWd in Sent’ that
looks at the previous species word in the same sentence did
better as measured by F'1, but compared to ‘PrevWd’ its
precision went down. We carried out some error analysis
on the species tags predicted by the rule ‘PrevWd in Sent’
as follows:

o “Expression of CYP2B6, a human relative of
CYP2B10 ...” In this example, CYP2BI0 is in fact
a mouse protein but the rule-based system tagged it
as a human one, indicating that the rule is not always
reliable.

o “The Drosophila methyl-DNA binding protein
MBD?2/3 ...” The occurrence of MBD2/3 was tagged
as Drosophila melanogaster (species, 7227) by the
rule but the annotator’s answer was Drosophila
(genus, 7215). Arguably either answer should be
correct as “Drosophila melanogaster” is a species
under genus “Drosophila”. We used a strict scoring in
our evaluation without collapsing levels of the NCBI
taxonomy hierarchy which made the task even more
difficult.

o “Identification of the I5FRFG domain in HIV-1 Gag
7 This occurrence of Gag was tagged as HIV-I
(11676) by the rule but the gold standard was HIV
(12721). This was actually a mistake in the manual
annotation and the species tagger was correct.

Spreading the species improved the F'1 scores of both sys-
tems but the overall results were still not satisfactory, which
implies that occurrences of entity mentions with the same
surface forms and in the same document do not necessarily
share the same model organism.

5.2. Machine Learning Approach

We also conducted research on machine-learning ap-
proaches to species tagging. First, we paired up a vector of
contextual features with every entity mention in the training

splits of the EPPI and TE data. Then, a number of Maxi-
mum Entropy models’ were trained on such instances. The
contextual features used include:

o leftContext The n word lemmas to the left of the entity
mention, without position (n = 200).%

o rightContext The n word lemmas to the right of the
entity mention, without position (n = 200).

o leftSpeciesIDs The n species IDs, located to the left of
the entity mention and assigned by the species word
tagger described above (n = 5).

o rightSpeciesIDs The n species IDs, located to the right
of the entity mention and assigned by the species word
tagger described above (n = 5).

o leftNouns The n nouns to the left of the entity mention
(with order and n = 2). This feature attempts to cap-
ture cases where a noun preceding a mention indicates
species, e.g., mouse protein p53.

o leftAdjs The n adjectives to the left of the entity men-
tion (with order and n = 2). This feature is intended to
capture cases where an adjective preceding a mention
indicates species, e.g., murine protein p53.

o leftSpeciesWords The n species word forms, identified
by the species word tagger, located to the left of the
entity mention (n = 5).

o rightSpeciesWords The n species word forms, identi-
fied by the species word tagger, located to the right of
the entity mention (n = 5).

o firstLetter The first character of the entity mention it-
self. Sometimes the first letters of entities indicate
their species, e.g., hP53.

o documentSpeciesIDs All species IDs occurring in the
article in question.

o useStopWords If this feature is switched on then fil-
ter out the words that appear in a pre-compiled stop-
word list from the above features. The list consists of
frequent common English words such as prepositions
(e.g., in) and conjunctions, etc.

e useStopPattern If this feature is switched on then filter
out the words consisting only of digits and punctuation
characters.

The 5-fold cross-validation test results are shown in Table 4
and results on devtest datasets in Table 5. We use accuracy
instead of F'1 because the machine-learning based tagger
assigns a species tag to every entity occurrence, and there-
fore precision is equal to recall and to F'1. In addition, in

"This software program was developed by Le Zhang at Ed-
inburgh University. See http://homepages.inf.ed.ac.
uk/s0450736/maxent_toolkit.html

8 Without position’ means that we ignored the position of the
contextual words with respect to the position of the entity in ques-
tion. In other words, the contextual words were treated as a bag of
words.
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fold 1 2 3 4 5 avg.
EPPI || 64.67 | 56.05 | 56.29 | 67.26 | 58.63 || 60.58
TE 80.72 | 77.26 | 64.29 | 62.03 | 70.95 || 71.05

Table 4: Accuracy (%) of the machine-learning based
species tagger tested by 5-fold cross validation on EPPI and
TE training datasets.

BL EPPI TE Combined
Model | Model Model
EPPI || 60.56 | 73.04 | 66.42 71.28
TE 33.28 | 63.91 70.73 68.18

Table 5: Accuracy (%) of the machine-learning based
species tagger tested on EPPI and TE devtest datasets.

all the tests, we excluded general use of species (i.e.,“‘gen”)
and only evaluated those entities that can be assigned to
specific species.

As shown in Table 5, we tested four models on the devtest
portions of EPPI and TE corpora: BL, EPPI Model, TE
Model, and Combined Model. BL is a baseline system,
which tags the entity mentions in the devtest datasets using
the most frequent species occurring in the corresponding
training datasets. For example, human was the most fre-
quent species in the EPPI training data, and therefore all
entity occurrences in the EPPI devtest dataset were tagged
with human. The EPPI Model was obtained by training the
Maxent classifier on the EPPI training data, the TE Model
by training on TE training data, and the Combined Model
was trained on a combined dataset consisting of both the
EPPI and TE training corpora. The Combined Model out-
performed other models on the EPPI devtest dataset while
the TE model yielded the best result for the TE dataset.

5.3. Discussion

The main problem with the machine learning approach
lies in the fact that a trained model is biased toward the
distribution of species that the training dataset possesses.
For example, our model trained on the EPPI training data
achieved 73.04% accuracy as tested on the EPPI devtest
data. However, it only yielded 63.91% when tested on the
TE devtest data. As we split the training and devtest por-
tions after the annotation stage, it is reasonable to assume
that the species distribution in training and devtest datasets
of the same type of data are comparable. This raises the
question of whether a model trained on one dataset can
be ported to other datasets and can still accurately identify
species of the entities.

Looking again at Table 2, which shows that the species dis-
tributions of the PPI and TE corpora are very different. This
table only lists the most frequent 10 species in each cor-
pus. In fact, the distributions have long “tails” where many
species occur only a few times, which makes it nearly im-
possible for the learned model to detect when they occur in
unseen text.

In addition, it can also happen that, a species that has never
occurred in the training dataset occurs in the devtest dataset,
in which case a machine learned model would have no
chance to pick it up. More research into a hybrid system

that makes better use of rules may be able to shed some
light on this problem.

6. Conclusions and Future Work

We adopted the species annotated corpora developed in the
TXM project and investigated various techniques for as-
signing species tags to biomedical entities. We found that
the common heuristic of tagging an entity with the species
indicated by its previous species word was not reliable: as
tested on our EPPI and TE datasets, this heuristic achieved
good precision of 81.88% and 91.49%, but very low recall.
Subsequently, we experimented with a machine-learning
based approach and with a large set of features and with
different parameter settings. Our best results were much
higher than the rule-based system, with F'1 scores over
71%. The problem with the machine-learning based ap-
proach, however, is that distribution of species in the train-
ing data has a big impact on the model trained on it. In other
words, a species tagger trained on a corpus dominated by
human would have little chance of achieving good results
on a test corpus full of zebra fish. Increasing the size and
coverage of the training data is an obvious solution and our
experiment showed that a model trained on a combined set
of data from both the EPPI and the TE domains achieved
very good results on devtest dataset from either domain.

In the future we would like to explore how we can seek help
from specific rules in situations when machine-learning
models would not work. For example, in articles that are
not talking about the common species such as human, fly
and mouse, specific rules making use of species words
might work better for detecting the species of the biomedi-
cal entities.

In addition, we would like to integrate the species tag-
ger into term identification and relation extraction systems,
making them capable of dealing with biomedical entities
across multiple species.
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