Detecting co-derivative documents in large text collections

Jan Pomikalek, Pavel Rychly

Faculty of Informatics, Masaryk University
Botanicka 68a, 602 00 Brno, Czech Republic
{xpomikal, pary}@fi.muni.cz

Abstract
We have analyzed the SPEX algorithm by Bernstein and Zobel (2004) for detecting co-derivative documents using duplicate n-grams.
Although we totally agree with the claim that not using unique n-grams can greatly increase the efficiency and scalability of the process of
detecting co-derivative documents, we have found serious bottlenecks in the way SPEX finds the duplicate n-grams. While the memory
requirements for computing co-derivative documents can be reduced to up to 1% by only using duplicate n-grams, SPEX needs about
40 times more memory for computing the list of duplicate n-grams itself. Therefore the memory requirements of the whole process are
not reduced enough to make the algorithm practical for very large collections. We propose a solution for this problem using an external
sort with the suffix array in-memory sorting and temporary file compression. The proposed algorithm for computing duplicate n-grams

uses a fixed amount of memory for any input size.

1. Introduction

Large text collections usually contain duplicate and co-
derivative documents®. Identifying duplicates and co-
derivatives is an important task, which enables both the de-
tection of plagiarism and eliminating undesirable duplicate
data from text collections in order to make them more use-
ful for information retrieval tasks, different kinds of pro-
cessing and analysis.

While full-duplicates can be easily detected using sim-
ple fingerprinting methods, detecting near-duplicate and
co-derivative documents is a challenging task. Many re-
searchers tackle the problem with algorithms based on
shared word n-grams — contiguous sequences of (n) words.
The idea is that if two documents share a number of n-
grams of a non-trivial length (say five or more), it is very
unlikely that they have been created independently.

Broder (2000) defined the document similarity formally
with the resemblance measure. Let Sp be a set of all n-
grams in a document D. Then the resemblance (A, B) of
documents A and B is defined as

. |SA ﬂSB|

AB)=—7—

A naive approach to co-derivative documents detection
which computes resemblance for all document pairs in a
collection is infeasible for large collection as the number of
all unique pairs is enormous.

A more efficient approach involves using the inverted index
of n-grams. For each n-gram (or its fingerprint), the list of
documents is remembered in which the n-gram occurs. Us-
ing this structure, for an input document D, it is possible
to efficiently determine which documents in the collection
share at least one n-gram with D and compute their resem-
blances with D. The number of these documents should be
reasonably small if the n (the length of the n-grams) is large
enough. This technique is referred to as full-fingerprinting
if all the n-grams in the collection are used. The problem

Co-derivative documents are pairs of documents which share
a significant amount of text that has been derived from one into
the other, or derived from a third document into both.

is that for large n the number of unique n-grams is propor-
tional to the number of words in the collection and therefore
for large collections the index can easily exceed the normal
capacity of RAM.

In order to reduce the memory requirements of this tech-
nique, different algorithms have been described for select-
ing small n-gram samples from documents, which can be
used for estimating the resemblance — an overview is given
in e.g. (Hoad and Zobel, 2003). Intuitively, if two doc-
uments share a significant number of n-grams then if we
take a sample of each according to the same criteria, such
as the & lowest in an arbitrary ordering of the n-grams, it is
likely that the samples will share a number of n-grams too.
The key question here is which n-grams should be selected
for the sample. Different approaches to this problem exist,
such as selecting random n-grams, taking each k-th n-gram,
using modulo heuristic, etc. N-gram samples can be ef-
fectively used for detecting co-derivative documents which
are close to duplicates since the probability that the sam-
ples will match is high. However, document pairs which
differ somewhat more despite sharing significant pieces of
text can easily be overlooked.

2. SPEX algorithm

Bernstein and Zobel (2004) introduced a lossless algorithm
for n-gram selection called SPEX, which is equivalent to
full-fingerprinting in terms of effectiveness. The key idea
is as follows. The n-grams which occur only once in a
collection are not of any use for detecting duplicates and
therefore they can be safely removed from the index. More
importantly, unique n-grams constitute a major part in text
collections and removing them reduces the size of the index
significantly.

Bernstein and Zobel (2004) analyzed the n-grams of size
eight in the LATimes newswire collection. The analysis
revealed that only 907,981 8-grams out of 67,808,917 were
duplicated, i.e. less then 1.5%. We have observed similar
results on the data collections we used in our experiments.
The question remains how to identify the duplicate n-grams
efficiently. The SPEX is based on a simple idea. If an n-
grams S is unique in the collection, then an (n + 1)-gram

1884

(o Ny [Npm [TP [N [My]
1 191,299 0 278,079 93,751,313 469,378
2 10,130,676 373,298 4,603,645 83,807,882 14,639,102
3 40,876,464 17,291,952 8,061,474 | 53,058,040 36,249,631
4 70,777,744 55,301,874 5,881,395 23,152,706 29,418,739
5 85,278,904 | 80,918,395 2,945,432 8,647,492 13,187,336
6 90,085,317 89,244,690 1,555,553 3,837,025 5,341,612
7 91,442,538 91,309,145 1,080,612 2,475,750 2,769,558
8 91,864,665 91,842,834 917,628 2,049,569 2,020,071
9 92,047,840 92,041,981 844,990 1,862,340 1,768,477

10 92,158,604 92,155,864 800,768 1,747,522 1,648,498

Table 1: SPEX iterations on BNC

which contains S must be unique too. For example, if the
word nascent exists only once in the collection then the bi-
gram nascent effort cannot be duplicated in the same collec-
tion. SPEX builds the lists of duplicate n-grams iteratively,
starting from a list of duplicate unigrams (single words). In
each iteration a number of n-grams which would otherwise
have had to be remembered can be forgotten based on the
results of the previous iteration — we know that they can-
not be duplicated. The authors claim that this keeps the
memory requirements constantly low throughout all the it-
erations. Unfortunately, this is not entirely true as we show
in the next section.

3. SPEX analysis on BNC

In order to get a rough idea of the memory requirements
of the SPEX algorithm on large, real data collections, we
have analyzed its iterations on the British National Corpus
(BNC). BNC is a 100 million words corpus of English texts.
For each iteration n, we computed the following values:

e N'™4 — Number of unique n-grams (this is equal to
the number of unique n-gram types).

e Ndur — Number of duplicate n-grams (each n-gram
being computed as many times as it occurs in the col-
lection).

o T4uP — Number of duplicate n-gram types.

e NP™ — Number of (unique) n-grams which could be
pruned based on the results of the previous iteration.

e M, — Number of n-gram types which had to be re-
membered in this iteration. This includes the dupli-
cate n-grams, the unique n-grams which could not be
pruned and the duplicate (n — 1)-grams from the pre-
vious iteration. Therefore M,, = TP + (N9 —
NPy 4 T,

The results are presented in Table 1. For 8-grams, there
are 917,628 duplicate types out of 93,782,293 in BNC, i.e.
about 1%. Slightly less than the SPEX authors reported
for the LATimes collection, this is probably due to the fact
that BNC contains no duplicate documents. At any rate,
the results confirm the claim that the number of duplicate
n-grams is much lower than the number of unique n-grams

in collections of texts (containing a reasonable amount of
duplicate documents), especially for large n-s.

It can also be seen that the number of n-grams to be re-
membered by the algorithm (AZ,,) decreases as n grows.
This indicates that more iterations could be made without
having to sacrifice additional memory resources. However,
on close inspection, Table 1 reveals that the third iteration
constitutes a serious bottleneck in the whole process. Al-
though the number of duplicate triple types is reasonably
low (8,061,474), the problem here is that not enough unique
triples are pruned. This is obviously due to the fact that
many unique trigrams contain duplicated bigrams. As a re-
sult, 36,249,631 n-grams must be remembered at this stage
of the algorithm. This means that compared to comput-
ing an inverted index directly, for large n-grams such as 8-
grams or 10-grams, using the SPEX algorithm the memory
requirements cannot be reduced to values as low as around
1% but only to about 40 %. Similar results have also been
observed in other data, which we have used in our experi-
ments.

4. Finding duplicate n-grams

The main idea of the SPEX algorithm (using only the dupli-
cate n-grams) is very good and can indeed reduce the size
of the index to as little as 1%. However, computing the
list of duplicate n-grams with SPEX is too expensive. We
herby propose a more efficient algorithm.

The core idea of our algorithm is to use an external sort
method to generate all n-grams together with their counts
directly, in one step. The program splits the input text into
chunks which fit into a fixed amount of memory. For each
chunk, a sorted list of n-grams is generated and saved to a
temporary file on disk. The final phase joins all temporary
files and outputs any n-gram with total count higher than
one. This is a typical external sort method which would re-
quire a huge amount of disk space and a lot of runs (chunks)
to process the whole input text.

We use two novel techniques: suffix array in-memory sort-
ing to decrease the number of chunks and temporary file
compression to decrease the required disk space. Both tech-
niques use word enumeration to work with integer numbers
instead of character strings. A word lexicon of the whole
input text is built during incremental processing of chunks.
The lexicon maps words as character strings into unique ID

1885

Stop-list Input size
size 1 million 10 million 100 million
0| 19797 100.0% | 303681 100.0% | 5916799 100.0%
15 || 14871 75.1% | 225589 74.2% | 4465588 75.4%
30 || 13872 70.0% | 203530 67.0% | 4052601 68.4%
100 || 12449 62.8% | 173888 57.2% | 3482515 58.8%
300 || 10861 54.8% | 146818 48.3% | 2961468 50.0%
600 9585 48.4% | 126372 41.6% | 2581827 43.6%

Table 2: Number of 10-gram duplicate types depending on input size and stop-list size

numbers during the first phase and IDs back to words dur-
ing the final output of duplicate n-grams. Temporary file
compression uses Elias codes (delta and gamma (Witten et
al., 1999)) to store word 1Ds and omitting the longest com-
mon prefix with the previous n-gram. Using this technique,
the size of temporary files containing all 10-grams with its
counts is about three times bigger than the size of the input
text.

Creating a suffix array of tokenized text (sequence of word
IDs) is used to generate sorted list of n-grams for each input
chunk. We use a linear algorithm for suffix sorting (Larsson
and Sadakane, 1999) which requires only 8 bytes per token.
Another 4 bytes per token is used for the original token
sequence to output the list of n-grams. Both techniques
and the final join are very fast, which we show in the next
section.

5. Experimental results

In order to evaluate the scalability of the proposed algo-
rithm, we have used the biggest text collection that we have
available — the BiWeC corpus. BiWeC (Big Web Corpus)
is an ongoing project which aims at creating a collection
of English texts exceeding the size of 20 billion words. In
order to collect such a large amount of data we use a web
crawler. In the first stage of the project we managed to
download 13.86 million web pages. We applied the BTE
algorithm (Finn et al., 2001) to remove HTML markup
and boilerplate from the pages. After filtering out full-
duplicates using MD5 checksums we ended up with 6.73
million of plain text documents. This collection contained
9.29 billion tokens.

We took several BiWeC samples of various sizes and ran
our algorithm on these samples as well as on the full col-
lection. We used a 2.4 GHz machine with 32 GB of RAM,
but no more than 1.5 GB was used by the process even for
the whole collection. The results are reported in the Table
3. It can be seen that the computation time is close to linear
in the size of the input data. The computation is feasible
even for an input of more than 9 billion tokens, though it
takes about 18 hours on a single machine. We estimate the
running time on the full BiWeC data (20 billion tokens) to
be less than 72 hours, which is acceptable for a one-time
computation.

We also experimented with using a stop-list. The stop-list
we used was represented by the most frequent words in the
corpus. We removed stop-list words from each document
before extracting n-grams. This led to reducing the number
of n-grams to work with and consequently improved the

running times of the algorithm. The results from the Table
3 were achieved using a stop-list of the 600 most frequent
words.

Though we do not have any evidence, we believe that not
using stop-list words should not harm the performance of
the deduplication algorithm, assuming the size of the stop-
list is reasonable. Rather, even better performance might be
achieved as the number of n-grams decreases which occur
in two independent documents by chance. It remains to be
seen how many stop-list words can be left out before the
results of the algorithm get worse. This is a subject of our
further research.

Table 2 shows how the number of duplicate n-grams de-
creases with increasing size of the stop-list. The results
reveal that the number of duplicate n-grams can be reduced
to a half by using 600 stop-words. This remains true for
any size of the input.

Input text size in | Running time # of 10-gram
millions of tokens duplicate types
1 1.4s 9585

10 13.6s 126372

100 2m48s 2581827

1000 38m21s 31266338

9292 18h19m 403920712

Table 3: Results of duplicate n-grams detection using ex-
ternal sort

6. Conclusion

The SPEX algorithm builds an inverted index for n-grams
using only those n-grams which occur at least twice across
the whole data collection. This index is as useful for de-
tecting co-derivative documents as the full index is, while
being about 100 times smaller. However, we have showed
that the memory requirements for computing the list of du-
plicate n-grams are about 40 % of the size of the full index.
This makes the algorithm impractical for very large collec-
tions.

We have presented an algorithm which can compute the list
of duplicate n-grams using a fixed amount of memory while
at the same time requiring a reasonable amount of CPU
time. This improvement to the SPEX makes it possible to
build an inverted index for duplicated n-grams and conse-
quently identify co-derivative documents efficiently using
as little as 1 % of the memory required for building a full
inverted index.

1886

We have demonstrated that the proposed algorithm can pro-
cess more than 9 billion tokens within 18.5 hours on a
2.4 GHz machine with less than 2 GB RAM. As the mem-
ory requirements of the algorithm are constant and the time
complexity is close to linear the algorithm should be prac-
tical even for processing much larger amounts of texts.

7. References

Y. Bernstein and J. Zobel. 2004. A scalable system for
identifying co-derivative documents. Proc. String Pro-
cessing and Information Retrieval Symp., pages 55-67.

A.Z. Broder. 2000. Identifying and filtering near-duplicate
documents. Proceedings of the 11th Annual Symposium
on Combinatorial Pattern Matching, pages 1-10.

A. Finn, N. Kushmerick, and B. Smyth. 2001. Fact or fic-
tion: Content classification for digital libraries. In DE-
LOS Workshop: Personalisation and Recommender Sys-
tems in Digital Libraries.

T.C. Hoad and J. Zobel. 2003. Methods for identifying ver-
sioned and plagiarized documents. Journal of the Amer-
ican Society for Information Science and Technology,
54(3):203-215.

N.J. Larsson and K. Sadakane. 1999. Faster suffix sort-
ing. Technical Report LU-CS-TR:99-214, Lund Univer-
sity, Sweden.

I.H. Witten, T.C. Bell, and A. Moffat. 1999. Managing Gi-
gabytes: Compressing and Indexing Documents and Im-
ages.

1887

