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Abstract
We present recent work in the area of Cross-Domain Dialogue Act (DA) tagging. We have previously reported on the use of a simple
dialogue act classifier based on purely intra-utterance features — principally involving word n-gram cue phrases automatically generated
from a training corpus. Such a classifier performs surprisingly well, rivalling scores obtained using far more sophisticated language
modelling techniques. In this paper, we apply these automatically extracted cues to a new annotated corpus, to determine the portability

and generality of the cues we learn.

1. Introduction

We present our current work in the area of Dialogue Act
classification - finding a single label that corresponds to the
intention of the user when performing an utterance. For ex-
ample, the utterance “Hello” is a form of greeting, whereas
the utterance “What’s your name?” is a type of question.

A number of researchers (Hirschberg and Litman, 1993;
Grosz and Sidner, 1986) speak of cue phrases in utterances
that can serve as useful indicators of discourse structure.
We have investigated the use of cue phrases to predict di-
alogue acts (functional tags which represents the commu-
nicative intentions behind each user utterance) (Webb et
al., 2005a). We developed an approach, in common with
the work of Samuel et al. (1999), where word n-grams that
might serve as potentially useful cue phrases are automati-
cally detected in a corpus. The novelty in our method is the
calculation and use of the predictivity of a particular word
or phrase, where this measure can be exploited directly in
a simple model of dialogue act classification. We have pre-
viously reported the results of experiments evaluating this
approach on the SWITCHBOARD corpus and our results ri-
val the best reported over that data (Stolcke et al., 2000),
although our method adopts a significantly less complex al-
gorithm.

An interesting feature of our approach is that a by-product
is a ranked list of cue phrases derived from the source cor-
pus. Visual inspection of these cues reveals that, as one
might expect, there is a high degree of correlation between
phrases such as “can you” and the Dialogue Act <yes/no
question>, “where is” and “who is” with the Dialogue
Act <wh-question> and “right” or “ok” with Dialogue
Act <agree/accept>. These cues appear to be of a general
nature, unrelated to the source domain or application, and
despite being automatically acquired from one domain spe-
cific corpus should be applicable to new corpora. It is this
hypothesis we wish to test.

This paper presents our work on dialogue act classifica-
tion using cues automatically extracted from a corpus from
one domain, and applying these cues as a classifier over a

used for this task can be seen in Section 3. We briefly de-
scribe our approach to DA classification in Section 4. Our
experiments evaluating the cue-based dialogue act classi-
fier tagging new, out-of-domain data are given in Section
5. Finally we end with some discussion and an outline of
intended further work.

2. Related Work

Dialogue Acts (DAs) (Bunt, 1994), also known as speech
acts or dialogue moves (Power, 1979), represent the func-
tional performance of a speaker’s utterance. Searle (1969)
is probably most often associated with speech acts, building
on prior work on illocutionary acts by Austin (1962), as a
fundamental concept of linguistic pragmatics, analysing for
example what it means to give a greeting such as “Hello
there”, ask a question like . “How is your mother?” or
make a request such as “Can you move your foot?”. While
speech acts provide a useful characterisation of one kind
of pragmatic force, more recent work, closely linked to the
development of spoken language dialogue systems, has fo-
cused on the some of the more conversational roles such
acts can perform, and their use in the automatic interpre-
tation of user utterances in spoken language dialogue sys-
tems (cf. (Hardy et al., 2005; Pellom et al., 2001; Peckham,
1991)).

There are two broad categories of computational model
used to interpret these acts. The first, including the work
of Cohen and Perrault (1979) and the TRAINS dialogue
system (Allen et al., 1995), relies on processing belief log-
ics, centring on the impact each utterance has on the hearer
- what the hearer believes the speaker intended to commu-
nicate. These models can be very accurate, particularly at
processing indirect cues - utterances whose surface form
indicates one act, but in actuality represent another act al-
together. Indirect speech acts are commonly used to re-
ject proposals and to make requests. For example a speaker
asks, "Would you like to meet me for coffee?” and another
replies, "I have class.” The second speaker used an indirect
speech act to reject the proposal - the literal meaning of "/
have class” does not entail any sort of rejection, although

new corpus from a different domain. The material is pre-1 969, meaning is clear. However, models based on this level

sented as follows: Previous work with dialogue act mod-
elling is outlined in Section 2. An overview of the corpora

of interpretation are often complex, and require significant
world-knowledge to create.



Dialogue Act % of corpus Dialogue Act % of corpus
statement-non-opinion 36% action-directive 0.4%
acknowledge 19% collaborative completion 0.4%
statement-opinion 13% repeat-phrase 0.3%
agreeaccept 5% open-question 0.3%
abandoned 5% rhetorical-questions 0.2%
appreciation 2% hold before answer 0.2%
yes-no-question 2% reject 0.2%
non-verbal 2% negative non-no answers 0.1%
yes answers 1% signal-non-understanding 0.1%
conventional-closing 1% other answers 0.1%
uninterpretable 1% conventional-opening 0.1%
wh-question 1% or-clause 0.1%
no answers 1% dispreferred answers 0.1%
response acknowledgement 1% 3rd-party-talk 0.1%
hedge 1% offers, options commits 0.1%
declarative yes-no-question 1% self-talk 0.1%
other 1% downplayer 0.1%
backchannel in question form 1% maybeaccept-par < 0.1%
quotation 0.5% tag-question < 0.1%
summarisereformulate 0.5% declarative wh-question < 0.1%
affirmative non-yes answers 0.4% apology < 0.1%

Figure 1: SWITCHBOARD dialogue acts

The second model type is cue-based, and centres on the
notion of repeated, predictive cues - subsections of lan-
guage which are strong indicators of specific DAs. In this
second category, much of the work is cast as a probabilis-
tic classification task, solved by training approaches on la-
belled examples of speech acts. In recent years, a range of
state-of-the-art machine learning algorithms have been ap-
plied to the leading annotated corpora for this task, includ-
ing Memory-Based Learning(Fernndez et al., 2004), Graph
models (Ji and Bilmes, 2006) and Support Vector Machines
(Liu, 2006), with little significant performance difference
between these models.

As an example of these probabilistic methods, Reithinger
and Klesen (1997) applied a HMM approach to the DA se-
quences of the VERBMOBIL corpus, which provides only a
rather limited amount of training data, and report a tagging
accuracy of 74.7%. Stolcke et al. (2000) apply a somewhat
more complicated HMM method to the SWITCHBOARD cor-
pus, one that exploits both the order of words within utter-
ances and the order of dialogue acts over utterances. They
use a single split of the data for their experiments, with
198k utterances for training and 4k utterances for testing,
achieving a DA tagging accuracy of 71.0% on word tran-
scripts. These performance differences, with a higher tag-
ging accuracy score for the VERBMOBIL corpus despite sig-
nificantly less training data, can be seen to reflect the dif-
ferential difficulty of tagging for the two corpora, although
comparison across corpora can be difficult, given different
dialogue act taxonomies and overall vocabulary sizes.

Another learning approach applied to dialogue act mod-

adjacent utterances. They achieved an average score of
75.12% tagging accuracy over the VERBMOBIL corpus. A
significant aspect of this work, of particular relevance to
our work, is the automatic identification of word sequences
that might serve as useful dialogue act cues (Samuel et al.,
1999). A number of statistical criteria are applied to iden-
tify potentially useful word n-grams that are then supplied
to the transformation-based learning method as ‘features’.
What has not been explored is the portability or generality
of the models that are acquired using these methods.

3. Experimental Corpora

Our work as described here applies to two corpora - the DA-
tagged portion of the SWITCHBOARD corpus (Jurafsky et
al., 1998), and the AMITIES GE corpus (Hardy et al., 2002;
Hardy et al., 2003), created as part of the AMITIES Euro-
pean S5th Framework program project (Hardy et al., 2005).
A summary of the two corpora can be seen in Figure 2.

3.1. Switchboard

The annotated portion of the SWITCHBOARD corpus com-
prises 1155 annotated conversations between two human
participants, where the dialogues are of an unstructured,
non-directed character. Participants do not know each
other, and are provided only with a set of topics which they
may wish to discuss. The SWITCHBOARD corpus is anno-
tated using an elaboration of the DAMSL tag set. In 1998 the
Discourse Resource Initiative finalised a task-independent
set of DAs, called DAMSL (Dialogue Act Markup in Several
Layers), for use across different domains. DAMSL has been

elling by Samuel et al. (1998) use transformation-based! 97 @sed to mark-up several dialogue corpora, such as TRAINS

learning over a number of utterance features, including ut-
terance length, speaker turn and the dialogue act tags of

(Core and Allen, 1997), and the SWITCHBOARD corpus
(Jurafsky et al., 1998). DAMSL draws both on the need



o Utterance Dialogue Word Distinct Dialogue
Corpus Availability count count count words type
SWITCHBOARD public 223606 1155 1431725 21715 Conversational
AMITIES GE restricted 30206 1000 228165 7841 Task-oriented

Figure 2: Summary data for the dialogue corpora

to provide a reliable corpus to derive cue models, and the
philisophical underpinnings from earlier work. For exam-
ple, DAMSL includes a series of forward-looking functions,
such as <influence-on-addressee>, similar to Searle’s di-
rectives, and <influence-on-speaker>, which represents
the commissives.

The annotation over the SWITCHBOARD corpus involves 50
major classes, together with a number of diacritic marks,
which combine to generate 220 distinct labels. Jurafsky et
al. (1998) propose a clustering of these 220 tags into 42
larger classes, listed in Figure 1, and it is this clustered set
that was used both in our experiments and those of Stolcke
et al. (2000). In measuring the agreement between annota-
tors in labelling this data, Jurafsky et al. (1998) report an
average pair-wise kappa of .80 (Carletta, 1996). An excerpt
of dialogue from the SWITCHBOARD corpus can be seen in
Figure 3.

3.2. AMITIES

The AMITIES project (Hardy et al., 2005) collected 1000
English human-human dialogues from European GE call
centres. These calls are of an information seeking or trans-
actional type, in which customers interact with their finan-
cial accounts by phone to check balances, make payments
and report lost credit cards. The resulting data has been
sanitised, to replace identifying features such as names,
addresses and account numbers with generic information
("John Doe”, 71 The Street”) and the corpus is anno-
tated with DAs using XDML, combining a variant of DAMSL
(Hardy et al., 2002) with domain specific semantic informa-
tion such as account numbers and credit card details (Hardy
et al., 2003).

The most frequent tag in the AMITIES corpus is Influence-
on-listener=“Information-request”, which occurs 20% of
the time. For this corpus, the average pair-wise kappa score
of .59 was significantly lower than the SWITCHBOARD cor-
pus. For the major categories (questions, answers), average
pair-wise kappa scores were around .70, indicating a higher
degree of consistency between annotators for these major
classes. Again, according to the work of Carletta (1996),
a minimum kappa score of 0.67 is required to draw tenta-
tive conclusions. An excerpt of dialogue from the AMITIES
corpus can be seen in Figure 5.

4. DA Classification

In this section we describe our approach to DA classifica-
tion, based solely on intra-utterance features. A key aspect
of the approach is the selection of the word n-grams to use
as cue phrases. Samuel et al. (1999) investigate a series

not consider. As we shall see, predictivity scores are used
not only in selecting cue phrases, but also directly as part
of the classification method.

4.1. Cue Phrase Selection

For our experiments, the word n-grams used as cue phrases
during classification are computed from the training data.
All word n-grams of length 14 within the data are consid-
ered as candidates. The phrases chosen as cue phrases are
selected principally using a criterion of predictivity, which
is the extent to which the presence of a certain n-gram in
an utterance is predictive of it having a certain dialogue act
category. For an n-gram n and dialogue act d, this corre-
sponds to the conditional probability: P(d|n), a value that
can be straightforwardly computed. Specifically, we com-
pute all n-grams in the training data of length 1-4, counting
their occurrences in the utterances of each DA category and
in total, from which the above conditional probability for
each n-gram and dialogue act can be computed. For each n-
gram, we are interested in its maximal predictivity, i.e. the
highest predictivity value found for it with any DA category.
This set of n-grams is then reduced by applying thresholds
of predictivity and occurrence, i.e. eliminating any n-gram
whose maximal predictivity is below some minimum re-
quirement, or whose maximal number of occurrences with
any category falls below a threshold value. This thresh-
olding achieves two benefits. The size of the stored model
is reduced, but most importantly it removes some low fre-
quency, high predictivity n-grams that skew classification
performance. The n-grams that remain are used as cue
phrases. The threshold values that are used in all exper-
iments were arrived at empirically, using a validation set
to automatically set the threshold levels independently of
the test data, as described in Webb et al. (2005b). Ideally,
such thresholding finds the balance between removing cue
phrases, and optimal performance.

4.2. Using Cue Phrases in Classification

To classify an utterance, we identify all the word n-grams it
contains, and determine which of these has the highest pre-
dictivity of some dialogue act category (i.e. is performing
as some cue). If multiple cue phrases share the same max-
imal predictivity, but predict different categories, we select
the DA for the phrase which has the higher number of occur-
rences. If the combination of predicitivity and occurrence
count is insufficient to determine a single DA, then a ran-
dom choice is made amongst the remaining candidate DAs.
If no cue phrases are present, then a default tag is assigned,
corresponding to the most frequent tag within the training

of different statistical criteria for use in automatically se- 97 orpus.

lecting cue phrases. We use a criterion of predictivity, de-
scribed below, which is one that Samuel et al. (1999) do

In prior work we performed five different experiments us-
ing a variety of simple methods for pre-processing the data



ten years ago from now?</Turn>

together</Turn>

<Turn Id="uttl" Speaker="A" DA-Type="Hold-before-answer"> uh,let’s see</Turn>
<Turn Id="utt2" Speaker="A" DA-Type="Abandoned"> How about ten years ago,</Turn>
<Turn Id="utt3" Speaker="A" DA-Type="Open-question"> what do you think was different
<Turn Id="utt4" Speaker="B" DA-Type="Statement-opinion"> Well I would say as far as
social changes go I think families were more together.</Turn>

<Turn Id="uttb5" Speaker="B" DA-Type="Statement-opinion"> They did more things

<Turn Id="utt6" Speaker="A" DA-Type="Acknowledge"> Uh-huh</Turn>

Figure 3: Excerpt of dialogue from the SWITCHBOARD corpus

Speaker A: DA="statement-non-opinion":

but I also believe that the earth is a kind of a self-regulating system

Figure 4: Example SWITCHBOARD utterance incorrectly labelled

(Webb et al., 2005a). Our best reported figures on the
202k utterance SWITCHBOARD corpus are a cross-validated
score of 69.09%, with a single high score of 71.29%, which
compares well with the (non-cross-validated) 71% reported
in Stolcke et al. (2000). During these experiments we
observed that some dialogue act categories seemed to be
most easily confused - where utterances of one category
are consistently incorrectly tagged as being of a second
category - a view confirmed in a subsequent error anal-
ysis (Webb et al., 2005c). For the most part, these er-
rors fall into two categories - poor annotation of the data,
where two categories have been inconsistently assigned (as
with <statement-opinion> vs. <statement-non-opinion>,
a common example of which can be seen in Figure 4),
and those DA’s that have consistently similar lexicalization,
such as <agree/accept> and <backchannel>, which are
both often realised with “yeah” or “ok”. For the first kind
there is little mechanically than can be done (collapsing the
two categories together results in an immediate 10% point
increase in tagging accuracy, which approaches the upper
bound of performance as indicated in the inter-annotator
agreement scores), and for the latter, this is a problem
that this intra-utterace technique cannot resolve. We also
presented information that shows that adding a sequence
model of DA progressions - an n-gram model of DAs - re-
sults in no increase in performance (Webb et al., 2005a).
This is surprising considering that Stolcke et al. (2000) re-
port their best figures when combining a HMM model of the
words inside utterances with a tri-gram model of the Dia-
logue Act sequence, as in the work of Reithinger and Kle-
sen (1997). Adding the sequence model to the HMM lan-
guage model adds around 20% points to the final accuracy
score over the SWITCHBOARD data. On the basis of this
result, we hypothesise that our cues are highly predictive of

5. Cross-Domain Classification

The central purpose of this paper is to examine the use of
automatically extracted cues to tag data other than the cor-
pus from which they are derived. The hypothesis we wish
to test is that these cues are sufficiently general to work
as a classification device on a corpus from a different do-
main, even containing interactions of a different conversa-
tional style. Specifically, SWITCHBOARD is an open do-
main spoken human-human conversational corpus and we
have shown state-of-the-art tagging performance over this
data using the cue-based model. We now wish to see how
well these same cues perform over the AMITIES GE cor-
pus of spoken rask-based dialogues. The dialogues in the
AMITIES GE corpus are far more goal directed, and con-
tain domain specific cues that are not found in the general
conversational SWITCHBOARD corpus.

The ability to apply cues extracted from one corpus to new
data is an interesting challenge. It could confirm work
which indicates the prominence of such word cues in lan-
guage (Hirschberg and Litman, 1993). The fact that such
cues can be general across domains and applications is of
obvious interest. A tag mechanism that can operate across
domains presents a range of benefits - for example it can be
used to annotate or partially annotate new data collections,
or such generic mark-up of dialogue function might pro-
vide the basis for discovering higher level dialogue struc-
ture, such as clarification or error-correction.

5.1. DA Mapping

This classification would be simplified if both corpora were
annotated with identical DA taxonomies. In actuality, the
SWITCHBOARD corpus and the AMITIES GE corpus are
both annotated with variants of the DAMSL DA annotation
scheme. In the SWITCHBOARD corpus, the hierarchical na-

dialogue structure, and that much dialogue processing can1972 . o¢ the DAMSL schema has been flattened and clustered,

take place at a very shallow level.

to produce 42 major classes. In the AMITIES GE corpus, the
dialogue level schema has been left largely untouched from



<Turn Id="2.2" Speaker="Operator"
how can i help</Turn>

<Turn Id="3.1" Speaker="Customer"

<Turn Id="3.2" Speaker="Customer"

Response—-to="T3.2">right okay</Turn>
<Turn Id="4.2" Speaker="Operator"

for me please</Turn>

<Turn Id="2.1" Speaker="Operator" Info-level="Communication-mgt"
Conventional="Opening">good morning customer services sam speaking</Turn>

Info-level="Task" Forward-function="Offer">
Info-level="Communication-mgt"
Conventional="Opening">erm good morning</Turn>

Info-level="Task"
Forward-function="Explanation">erm I was away for about two months and i came back

and my card i don’t know whether i have lost it or it is stolen</Turn>

<Turn Id="4.1" Speaker="Operator" Understanding="Backchannel"

Info-level="Task"
Influence-on-listener="Info-request-explicit">can you confirm your name

Figure 5: Excerpt of dialogue from the AMITIES GE corpus

the DAMSL original. In terms of the hierarchy, we are for-
tunate in that most cases, levels can be inferred from one
another - that is, if we can identify the salient part of the
annotation, that informs the other parts of the annotation.
However, in order then to be able to compare automatic
classification performance across the two corpora, a map-
ping needs to be created between the 42-class schema of
SWITCHBOARD and the DAMSL-like XDML schema of the
AMITIES GE corpus.

In their work, Jurafsky et al. (1998) include such a mapping
between SWITCHBOARD and DAMSL that covers approx-
imately 80% of the labels in the SWITCHBOARD corpus.
We have adapted this slightly to cover minor differences
between the XDML used in the AMITIES GE corpus and the
original DAMSL, although this leaves us with two issues that
we need to address.

First there are differences in granularity on both sides. Im-
portantly, in many instances we may identify the most
salient role of the utterance, but miss modification infor-
mation which may make little interpretative difference.
For example, mark-up in the AMITIES GE corpus makes
the distinction between <Forward-function="Assert”> and
<Forward-function="Reassert”’>, whereas mark-up in the
SWITCHBOARD corpus ignores such a distinction, and
accepts only that these are both of type <Forward-
function="Assert”> - although the SWITCHBOARD corpus
captures the difference between assertions that are opin-
ions, and those that are not. The original DAMSL does
not capture this distinction. To address this mismatch we
create a set of super classes by relating the annotations of
SWITCHBOARD-DAMSL and the AMITIES GE-XDML cor-
pora at the most salient level, according to the mapping
contained in Jurafsky et al. (1998). Whilst the majority

ping in both directions.

Secondly, there are a number of AMITIES GE tags that we
know a-priori we have little or no chance to recognise. For
example, the AMITIES GE corpus is meticulously annotated
to include that certain utterances are perceived as answers
to prior utterances (such as the fifth utterance in Figure 5.
Our approach to DA tagging is purely intra-utterance, tak-
ing no account of the wider discourse structure, so will
not recognise these distinctions. Although such a model
of discourse structure should be trivial, based for example
on an adjacency pair approach, we have shown that the in-
clusion of such a model makes no impact on classification
performance, although this will be evaluated further in fu-
ture work.

These issues require that we create two evaluation crite-
ria for our subsequent experiments - strict and lenient.
With strict evaluation, we are required to match all of the
AMITIES GE corpus annotation - despite knowing in ad-
vance that this is not possible for a range of utterances. We
use our strict evaluation criteria to establish a lower bound
of performance for our classifier. Our lenient approach is
used as a back-off model, where we require that we cor-
rectly identify the most critical part of the multi-part anno-
tation - those that are identified as the most salient.

We’ll use the dialogue excerpt shown in Figure 5 as an ex-
ample of how these two scoring mechanisms work. The
first utterance is marked as <Info-level="Communication-
mgt” Conventional="Opening”>. This has a one-
to-one correlation with the SWITCHBOARD-DAMSL tag
<conventional-opening>. In the case of this example,
and all instances in the AMITIES GE corpus, utterances are
of <Info-level="Task”>, unless they are from a small set
of exceptions, including openings, closings or backchan-

of tags have a one-to-one correlation, there are elements1 97?16:15, that are annotated as <Info-level="“Communication-

of both the Forward-Looking Function (see Figure 6) and
Backward-Looking Function (Figure 7) that require map-

mgt”>. Once an utterance is tagged as one of these excep-
tions, we know to change the Info-level accordingly. There



Forward — function = “Assert”

Forward — function = “Reassert”
Forward — function = “Explanation”
Forward — function = “Rexplanation”
Forward — function = “Expression”

Forward — function = “Assert” {

statement — non — opinion
statement — opinion

Figure 6: Partial Forward-Looking Function mapping table (XDML } SUPERCLASS { SWITCHBOARD-DAMSL)

Influence — on — listener = “Info — request — explicit’

Influence — on — listener = “Info — request — implicit”
Influence — on — listener = “Conf — request — implicit”
Influence — on — listener = “Conf — request — explicit”

yes — no — question
wh — questions

open — questions

or — clause
declarative — question
tag — question

Influence — on — listener =
“Information — request”

Figure 7: Partial Backward-Looking Function mapping table (XDML } SUPERCLASS { SWITCHBOARD-DAMSL)

is no difference between our strict and lenient evaluation
models for the interpretation of this utterance. The same
is true for the second, third and fifth utterance annotations,
all of which have direct correlation with SWITCHBOARD-
DAMSL annotations. However, the fifth utterance includes a
<Response-to="“T3.2”"> annotation, that we will not iden-
tify using our intra-utterance model. This utterance will be
judged correct using the lenient model, and incorrect using
the strict metric.

The fourth utterance is marked as <Forward-
function="Explanation”>.  Using the Forward-function
map shown in Figure 6, we see that this maps to the
super class <Forward-function="Assert”>, that in turn
maps to the SWITCHBOARD-DAMSL tags <statement-non-
opinion> and <statement-opinion>.

When the cue-phrase classifier is trained over the SWITCH-
BOARD corpus and applied to the AMITIES GE corpus, this
means that any utterance that is identified by the pres-
ence of a cue phrase as either <statement-non-opinion> or
< statement-opinion> will in fact be tagged as <Forward-
function="Assert”>. Whilst this annotation captures the
salient behaviour of the utterance, it is not an exact match
to the original AMITIES GE corpus annotation. Correspond-
ingly, when scoring, the lenient model will score this as
correct, whereas the exact model will not.

The same is true with the sixth utterance, annotated in this
case as <Influence-on-listener="Info-request-explicit”>.
A classifier trained over the SWITCHBOARD corpus would
identify this (through the mapping see in Figure 7)
as <Influence-on-listener="Information-request”>, which
would be scored as correct using the lenient measure, and
incorrect using the exact.

5.2. Experiments

We first establish our baseline tagging performance. To that
end, we take the classification algorithm outlined earlier in

used for training, and a separate 4,000 utterances are used
for testing.

Secondly, we repeat this experiment, substituting the
AMITIES GE corpus for the SWITCHBOARD corpus in both
steps - training and testing. This should give us an upper
bound of performance of this particular classification algo-
rithm over this data. In this experiment, we used 10% of the
corpus for testing - giving us a total of 27,000 utterances for
training and 3,000 utterances for testing.

On a related note, part of the work conducted in Webb et al.
(2005a) studied the impact of different size training mod-
els when classifying SWITCHBOARD data, using models of
4k, 50k and 202k utterances. Whilst substantial improve-
ment was seen when moving from 4k utterances to 50k ut-
terances, the subsequent increase to 202k utterances had a
negligible increase in classification accuracy over the 50k
model.

Finally, we attempt cross-domain classification: First, we
train our classifier using SWITCHBOARD data, and test us-
ing AMITIES GE data. Then we apply the classification in
reverse - we train on AMITIES GE data, and test on the
SWITCHBOARD corpus, using all available data in both
cases. For the last experiment, we also study the effect
of limiting the training data on cross-domain classification,
by reducing the SWITCHBOARD data to match that of the
AMITIES GE training set - that is, to use only 27,000 ut-
terances of the SWITCHBOARD corpus as training data to
extract cues, which are then applied both to itself (for ref-
erence), and to the AMITIES GE corpus.

For all experiments where AMITIES GE data is used as a test
corpus, both strict and lenient scoring will be used. Strict
scoring sets a lower bound for this exercise, and should be
greater than chance, which corresponds to the distribution
of the most frequent DA tag in each corpus.

5.3. Results

Section 4, and apply it to the SWITCHBOARD corpus forl 974 e results of our experiments are summarised in Figure

both training and testing, replicating the work reported in
Webb et al. (2005a). In this case, 198,000 utterances are

5. The first experiment, using SWITCHBOARD data for
both training and testing, achieves a cross-validated score



Training Training Testing Test Common | Lenient Strict
corpus utterances corpus utterances tag (%) score score
SWITCHBOARD 198,000 SWITCHBOARD 4,000 36% n/a 69%
AMITIES GE 27,000 AMITIES GE 3,000 20% 70.8% 65.9%
SWITCHBOARD 198,000 AMITIES GE 30,000 20% 55.7% 39.8%
AMITIES GE 27,000 SWITCHBOARD 198,000 36% 48.3% 40%
SWITCHBOARD 27,000 AMITIES GE 3,000 20% 53.2% 38%
SWITCHBOARD 27,000 SWITCHBOARD 3,000 36% n/a 60%

Figure 8: Experimental Results

of 69.6%, where the most frequent tag in SWITCHBOARD,
<statement-non-opinion>>, occurs 36% of the time. This is
a confirmation of the work reported in Webb et al. (2005a),
and again demonstrates that this simple model works ex-
ceptionally well for this task.

For the second experiment, where we apply this same al-
gorithm to the AMITIES GE corpus for both training and
testing, we report both lenient and strict scoring. For strict
scoring, where we are required to match all the elements
of the AMITIES GE XDML tag, we score 65.9% accuracy.
For lenient, where we must match only the most salient
features, we score 70.8% accuracy. Whilst there is no di-
rect comparison to other work on this corpus, Hardy et al.
(2005) show partial results for DA classification on this task,
looking only at a few major classes, and achieve a score of
86%. However, this includes only the 5 most frequent DA
categories, and considers utterances shorter than a certain
number of words.

For the cross-domain classification, there are two experi-
mental variants. Initially, we train using all of the SWITCH-
BOARD data, and test over the complete AMITIES GE cor-
pus, and we recorded a strict evaluation score of 39.8% tag-
ging accuracy. Using the lenient score, we achieve around
55.7% accuracy. This can be considered a very good result,
given the lower bound score of 20% - that is the count of
the most frequent tag.

Then, applying the same experiment in reverse, we train
with the AMITIES corpus, and test over the SWITCHBOARD
data. Using the strict evaluation metric, we achieve a score
of 40.0%, and a lenient score of 48.3%. This compares to
a baseline of 36%, so is not a drastic improvement over our
lower bound. Some inspection of the data informed us that
the AMITIES GE data did not include many <backchannel>
utterances, so subsequently most of these instances in the
SWITCHBOARD corpus were missed by our classifier. By
changing the default tag to be <backchannel>, rather than
the most frequent tag for the training corpus, we achieve a
performance gain to 47.7% with strict scoring, and 56.0%
with the lenient metric.

In the final experiment, using a size adjusted variant of this
cross-domain classification experiment, we score 53.2%
with the lenient metric, and 38% with strict, indicating that
the reduction is size of the training data has little effect on
classification accuracy. Interestingly, in comparison to ear-
lier work, we report a slightly lower value of 60% clas-

sification accuracy over the SWITCHBOARD corpus, when'9

training with the reduced set. However, this score can be
misleading. Given the size of the original corpus, we are

able to perform 7 individual 10-fold cross validation ex-
periments, and we report the average across all 7 of these.
Across the 10-fold cross validation experiments, there is a
significant variance of results - between an average low of
53.8% and an average high of 67.4%, with a single run high
score of 72.5% (compare this to the best single run score re-
ported in Stolcke et al. (2000) of 71%). This figure alone
seems to suggest that it is less the size of training data than
the composition that is important, but we discuss this fur-
ther in the following section.

6. Discussion, Future Work

We have shown that the cues extracted from the SWITCH-
BOARD corpus can be used to classify utterances in a new
domain, that of the AMITIES GE corpus. We achieve almost
80% of the upper baseline performance over the AMITIES
GE corpus, when judged using our lenient scoring mecha-
nism - scoring 55.7% using the cross-domain cues, com-
pared to the 70.8% when using in-domain cues. When us-
ing the strict measure we still achieve around 60% of the
upper bound performance, both results being a substan-
tial improvement over the baseline measure of 20%, cor-
responding to the most frequent tag. This is a significant
result, which confirms the idea that cues can be sufficiently
general across domains to be used in classification.

However, whilst the experiment using SWITCHBOARD cor-
pus derived cues to classify AMITIES GE data works well,
the same is not true in reverse. There are two possible ex-
planations for this result. It could be related to the size of
data available for training, although our experiments in this
area seem to suggest otherwise. We believe that the com-
position of the training data is a more crucial element. The
fact that SWITCHBOARD corpus data is not domain specific,
and, although the DA distribution in this corpus is skewed, it
contains enough data for the major classes to be effective on
new data. Although the AMITIES GE contains a lot of ques-
tions and statements, there is very little of the other signif-
icant categories, such as <backchannels>, a key DA in the
SWITCHBOARD corpus and conversational speech in gen-
eral. Correspondingly, the cues derived from the AMITIES
GE data perform well on a selection of utterances in the
SWITCHBOARD corpus, but very poorly on others.

We want to perform an in-depth error analysis to see if
the errors we obtain in classification accuracy are consis-
tent. We can also compare our list of automatically de-

"Aved cues phrases, particularly those that overlap between

the two corpora, to those reported in prior literature. It
might be interesting to see if more complex models, derived



using state-of-the art machine learning approaches, could
demonstrate similar portability - i.e is it the simplicity of
our model that allows for the observed robust portability?
Finally, we wish to combine SWITCHBOARD and AMITIES
corpora in the cue learning phase, to see how this effects
classification, and apply the results to a range of other cor-
pora, including the VERBMOBIL corpus (Reithinger and
Klesen, 1997), and the ICSI-MRDA corpus (Shriberg et al.,
2004).
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