
User-centred design of language checking tools

Mart ı́ Quixal, Toni Badia, Francesc Benavent, Jose R. Boullosa, Judith Domingo,
Bernat Grau, Guillem Massó, Oriol Valentı́n

GLiCom, Fundacío Barcelona Media Universitat Pompeu Fabra
c/Ocata, 1, E-08003 Barcelona, Spain

{marti.quixal,toni.badia}@upf.edu

Abstract
This paper presents a methodology for the design and implementation of user-centred language checking applications. The methodology
is based on the separation of three critical aspects in this kind of application:functional purpose (educational or corrective goal), types of
warning messages, and linguistic resources and computational techniques used. We argue that to assure a user-centred design there must
be a clear-cut division between the ‘error’ typology underlying the system and the software architecture. The methodology described has
been used to implement two different user-driven spell, grammar andstyle checkers for Catalan. We discuss that this is an issue often
neglected in commercial applications, and remark the benefits of such a methodology in the scalability of language checking applications.
We evaluate our application in terms of recall, precision and noise, and compare it to the only other existing grammar checker for Catalan,
to our knowledge.

1. Introduction
Traditionally language checking (including error checking)
is divided in two big tasks: isolated-word checking and
word-in-context checking. The former is useful for those
language fragments resulting in non-words (like in spelling
errors,hte vs. the), and the latter is necessary to handle
language fragments resulting in real correct words (like the
spelling errorform vs. from, or the usage error inI work
in/*at the Marketing Department). As for error correction,
until the early 1990’s most research was devoted to the first
task (Kukich, 1992), but from then on research has been
centred on the checking of grammar, style or content er-
rors in context (Vosse, 1992; Schneider and McCoy, 1998;
Gojenola and Oronoz, 2000; L’Haire and A., 2003, to men-
tion but a few). Context-sensitive language checking tech-
niques have also been reflected in the availability of end-
user applications, specially of grammar and spell checkers
–commercial or not. We will centre the presentation on er-
ror checking software, which is the kind of software devel-
oped following the methodology presented.
Industrial spell, grammar and style checkers tend to sep-
arate the detection of isolated-word errors and word-in-
context errors as two different functionalities –a separa-
tion usually imposed by the software architecture. These
functionalities are often described as ‘spell checking’ and
‘grammar (and style) checking’, which often misleads the
user to think that errors detected with the technique needed
for the detection of word-in-context errors are always gram-
mar and style errors. For instance, the Spanish grammar
checker included in MS Word 2003 handles the confusion
between the wordsa (a preposition often translated by to)
andha (the third person singular form of the auxiliary verb
haber) with its context-sensitive error correction module.
When the system detects an instance of this type of error,
it presents it to the user as a grammar error, when in fact it
is an orthographical error (in the strict sense). Though this
might seem an irrelevant issue –and certainly is so if the
question is simply the colour used to highlight the error–,
it is not so irrelevant if the user can activate and deacti-
vate ‘grammar checking’. She believes to be deactivating

the detection of grammar errors, but she is deactivating the
detection of word-in-context errors, including some ortho-
graphical errors.
We present a methodology for the design and implementa-
tion of user-centred error correction tools, which has been
applied for the development of COTiG, described below.
With this methodology we are able to grant real customiza-
tion facilities to corporate or institutional users of error cor-
rection (or controlled-language) software. The application
does not limit the graphical representation (the ‘painting’)
of errors, and it allows for a functionality-based activation
and deactivation of the types of warnings.

2. Designing and implementing a
user-adaptive error correction application

A user-adaptive error correction application must provide
users with the possibility to customize the behaviour of the
software architecture and the graphical interface to the cri-
teria posed by the writing tasks performed. To grant cus-
tomization, a clear-cut division of the three following as-
pects is required: the application’s functional purpose, the
design of an appropriate error typology, and the separation
of linguistic resources and computational algorithms used.
While the latter is most frequently assured by the design
of modular NLP architectures, the separation between error
classification/description and the presentation of errorsto
end-users (based on the functional purpose) is not always
taken into account.
Figure 1 reflects the components of a development method-
ology that would grant the separation of the above men-
tioned aspects. The functional design of the application will
be basically based on the error specifications (what is to be
handled) and user interaction requirements (how is the in-
formation provided by the application presented to the user
and which modes of interaction are provided with). The
error typology determines how will be errors grouped into
classes; the more fine-grained and structured it is, the more
flexible and detailed will be the way in which the infor-
mation can be presented to the end-user. Finally the soft-
ware architecture, which is further detailed in Section 3.,

1985



Figure 1: Specifications and software components for the
design of user-centred language checkers.

which is modular, but in turn independent from the previ-
ous, too. Note that Figure 1 reflects that the list of errors (or
linguistic structures) that will be later presented to the user
is created during a progressive linguistic analysis process.
At any stage, each correction module –represented by the
three arrows grasping at the TokenList– has access to all
the available linguistic information. All modules can assign
any of the existing error codes, which makes error classi-
fication independent from the detection technique. For a
given processing unit (paragraph, sentence, text, etc.), once
all errors have been detected they are presented to the user
according to functional criteria.

2.1. Designing a correction tool from the user’s
functional perspective

A user-centred design presupposes the definition of the
functional goal of the application to be introduced. The
use of an error correction application as a general purpose
spell and grammar checker to be included as a support tool
in standard word processors will significantly differ from
the implementation of a style guide of a company in terms
of functional design, and it will differ even more from an
application to be used as a second language learning assis-
tant.
The methodology we present has been used to implement a
general purpose spell and grammar checker and is currently
being used to implement a corporate style guide for a media
company. The most critical aspects in the functional design
of the underlying language checking architecture are the
following:

Correction modes. A very usual division of correction
modes is between typographical, orthographical, grammat-
ical, and style errors. Imprecise as these labels may be, they
are commonly used and most experienced word-processor
users tend to know what they refer to. These are the general
descriptions used in our proposal and they are reflected in
the error typology, not in the computational techniques (see
Section 3.). The latter is crucial to avoid the deactivationof
errors that must be detected with context-sensitive strate-

gies but do not ‘belong’ to correction modes typically or
mostly detected with context-insensitve techniques. Cus-
tomization of actions with respect to correction modes is
granted by the definition of the error typology and the inde-
pendence of this typology with respect to the error correc-
tion techniques (see Section 2.2.).

Types of actions to perform on linguistic constructions.
A language checking application is usually expected to: a)
validate apparently correct linguistic constructions (implic-
itly corrected with silence on the checker side); b) mark and
give correction proposals to detected errors; and c) warn of
the use of linguistic constructions that should be used cau-
tiously. It is straightforward to solve a) and b), but not c).
In our case the general purpose version of the application
does not allow for customisation of warning messages re-
lated to language use. In contrast the version adapted to the
media company requires flexibility in that some detections
must be marked as ‘errors’ and others as ‘warnings’. We
achieve this by introducing further linguistic information
in the dictionaries and by extending the error typology to
differentiate must-correct errors from should-review words.
Again the customization of the types of actions for each er-
ror typed is granted by the definition of the error typology
together with a file that defines which are the actions to be
performed for each error type or for given groups of error
types (see Section 2.2.).

Regional, formal and technical linguistic varieties.
Users might need to be able to write in different dialects,
registers and domains both in the same text and in dif-
ferent texts. Since activation or deactivation of these lan-
guage variants can be changed during the correction task,
this is taken into account when the lexical resources are
loaded. All the relevant linguistic information included in
the machine-readable dictionary must be carefully included
and managed during the linguistic processing. This will
be specially relevant for the version adapted to the media
company where different communication registers are used
–where different registers require different types of actions
(see previous paragraph).
These three main issues in the functional design of the er-
ror correction tool are defined externally either by a series
of configuration files and the codification of words in the
dictionary according to special actions related to them (see
Section 3. for further details).

2.2. Defining an error typology
The definition of an error typology will be consistent with
the fine-grainedness desired in the feedback. For error-
specific feedback to be generated, and for error types to
be grouped in general classes, a complex and detailed ty-
pology is required. We adapted and extended the error ty-
pology proposed in (Granger, 2003), conceived to describe
second language learner errors, but also useful to describe
native speaker errors.
Granger’s typology, based on a three-level hierarchy, is
used to characterise errors. The domain level, one of eight
possible classes (form, morphology, lexis, grammar, regis-
ter, etc.); the category level, whose classes diverge from
one domain to the other (for instance, in the morphol-
ogy domain we have classes such as derivation-prefixation,

1986



Figure 2: COTiG: a modular user-aware language check-
ing architecture. Parsing modules and detection modules
modify independent computational objects.

derivation-suffixation, inflection-confusion, etc); and fi-
nally the word category, based on a POS tagset.

We added two further description levels, which are in fact
above the domain level. One of them is the error descrip-
tion level (or correction mode) with four possible classes,
namely orthography, typography, grammar or style. The
other one is the kind of transformation that determines the
error: is there something missing, is there some extra word,
or is there a word that should be substituted. The first of
these two description levels helps us to relate error descrip-
tions to correction modes –crucial for a general purpose
error correction tool. The second one can be used to de-
termine the fragment of text that will be underlined for the
user when feedback is produced. This second feature is
currently not exploited in the graphical representation of
errors, though.

3. COTiG: a user-aware architecture for
language checking

COTiG is based on LINLaP, a general purpose NLP archi-
tecture developed for Catalan (Benavent et al., In prepara-
tion), which in turn is inspired in previous work by (Badia
et al., 2001). LINLaP is a morphosyntactic tagger consist-
ing of a tokenizer, a dictionary lookup module, and a sto-
chastic disambiguation module. COTiG introduces three
correction modules that detect different error types based
on the information available at each stage (also inspired in
previous work (Badia et al., 2004)). The right hand-side
part of Figure 2 shows that error detection depends on mod-
ules based in two different techniques that are invoked at
several points in time during the processing. There are the
modules based on isolated-word error detection, whose ac-
tion is independent of the context of appearance of a word.
And there are the modules whose rules are only applied if
a given context is seen.

3.1. Extending the data structure of LINLaP to
handle error lists

For COTiG to be a user-aware language checking architec-
ture, it had to assure independence between the error de-
scription classes and the computational techniques used.
COTiG ensures this by containing two independent data
objects: the Token (TokenList), which has all the word-
related pieces of (linguistic) information produced during
the processing, and the Error (ErrorList) which is incremen-
tally fed along with the linguistic processing. The architec-
ture is inspired in so-called blackboard systems, which ba-
sically implies that all modules have access to all the avail-
able information at any point in time. Analytic modules are
allowed to modify the information in the TokenList, while
corrective modules are only allowed to read it and to feed
the ErrorList.
The Error object includes information on the error span
(starting and ending character/word), the error code as-
signed, the module responsible for the detection, the
rule/strategy responsible for the detection and some other
pieces of information useful for debugging. It also includes
a list of correction proposals which is optionally filled.
Once the correction process is finished a list of unordered
errors is available. At this stage, errors are ordered accord-
ing to the precedence, length and correction mode criteria.

3.1.1. Linguistic resources underlying the
general-purpose correction engine

The general-purpose spell and grammar is checker based on
prescriptive lexical and grammar specifications, in Catalan
established by the Institut d’Estudis Catalans. If a word or
a sequence of words is not accepted by the reference dic-
tionaries or grammar, it will be marked and in most cases a
correction proposal will be generated. It can deal with dif-
ferent dialects both at the dictionary and the error correction
grammar level. Its linguistic resources are a general dictio-
nary, which contains word, lemma, POS-tag and other mor-
phosyntactic information, geolectal information and infor-
mation related to case and word non-letter signs (hyphens,
apostrophes, dots, etc.). It includes also a multi-word dic-
tionary, including sequences constituting a lexical unit and
that in that form have to be written according to the rules.
The error dictionary has a table of erroneous words associ-
ated with its correction proposals commonly used by Cata-
lan native speakers for which a successful correction pro-
posal would not be generated with standard minimum edit
distance (MED) algorithms. Finally, the grammar rules are
context sensitive. Each rule has a description part and an
action part. The description part defines in which contexts
it has to be applied; the action part determines which word
span will be marked to the user, which error code (hence
error message, colour, action type, etc.) will be assigned
to the error and a correction proposal. All these resources
can be modified and updated externally without affecting
the engine’s modules.

3.2. Using the COTiG architecture to implement a
style checker

Originally LINLaP included in its dictionary geolectal and
register information. We currently designed an extension

1987



of the register information to make the system capable of
meeting the needs of the media company, which will use
the tool as a corporate style checker.
In addition to the correction functionalities of the general-
purpose correction engine, the style checker has to deal
with five extra word groups: a) words which are commonly
used and accepted in non-normative standard Catalan; b)
confusable pairs of words, which are acceptable in one
sense but not in others (confusion originates often in Span-
ish false friends or in homophony); c) words that are con-
sidered weird, obsolete or unnecessary by the style guide
of the company; d) words with a restricted use (i.e. in-
formal register as in soup operas, but not in news). The
fifth group, f), is similar to the words in the error dictio-
nary of the general purpose version of the tool –most of
them coincide–, those for which a successful correction
proposal would not be generated with standard MED algo-
rithms. In all cases we mean words or word sequences, so
all these changes affect both isolated-word error correction
and context-sensitive error correction.
The additional functionalities described require flexibility
in terms of type of action (error or warning message), how
is the correction proposal generated (with a list, with MED
algorithms, or hand-crafted in rules), which is the error
code assigned and whether for that group of words the
activation is optional or not. This flexibility was already
granted for rule-based context sensitive error correctionbut
not for isolated-word error correction. Therefore, the ma-
jor change that these new functionalities imply is the sep-
aration of the MED-based spell checking module and the
module for handling ad hoc corrections –group f). This
new module exploits exhaustively information now coded
in the error dictionary (each word group requiring different
behaviour in any of the mentioned aspects is marked ac-
cordingly). In addition, we implemented the possibility to
have two groups of correction proposals for a given word.
This is used in the handling of confusable pairs, for which
the correction proposals states something like “X is correct
if you meant Y, but not if you meant Z”.
Special behaviours for any error type (linguistic character-
istic) are currently defined in configuration files –reflected
as Err. config. in Figure 2– that allow to determine (a)
which error code/message is assigned to particular lists of
words (specially coded in the dictionary or the context-
dependent rules); (b) what kind of correction proposal is
generated; and (c) whether for a particular correction ac-
tion or mode the user is allowed to activate/deactivate it or
not. Though it is not possible for the moment, behaviour in
terms of regional variants could also be externally config-
ured. The current default option is that all regional variants
can be activated/deactivated in an optional non-exclusive
manner, and that at least one must have been selected.

3.3. Adequacy to user needs

The evaluation of the adequacy of an error correction tool
for the purposes of a corporate user is usually a time con-
suming task. To reduce time costs, we developed (and pro-
vide, since the resulting architecture is open source) an au-
tomatic evaluation non-graphical application (CotigEval).
Following a predefined syntax, an annotated corpus can be

used to estimate recall and precision measures of the over-
all detection capacity. In addition, total and partial accuracy
and error rate measures can be produced as to the error lo-
calisation (word span marked), the error classification (pro-
vided the error typology has been adapted or introduced in
the system), and the adequacy of the error proposals made.
CotigEval allows to evaluate in seconds which is the per-
formance of the system for a given evaluation corpus and
would allow to assess how suitable is a given implementa-
tion for a specific purpose. In addition, it was used during
the development of the current version of the general spell
and grammar checker to compare improvements/effects on
overall performance after significant changes in either the
computational modules or the linguistic resources.

4. Evaluation and related software
To our knowledge our general-purpose correction engine
and MaixgramarTM are the only currently maintained ex-
isting spell and grammar checkers for Catalan.1 We per-
formed a manual evaluation of both engines on a small cor-
pus (6 texts, 2300 words) from a variety of genres (newspa-
per articles, blog text, high school and college essays and
informal e-mails). We corrected the texts using both ap-
plications and we evaluated precision and recall, as well as
accuracy in terms of correction proposal.

Engine Precision Recall
COTiG 70% 83%
Maxigramar 56% 78%

Table 1: Precision and recall measures for both COTiG and
Maxigrammar

Precision has been measured as correct hits divided by the
total number of flags. Out of the incorrect flags for each
of the applications, 57% of those flagged by COTiG were
words missing in the dictionary. For Maxigramar these
amounts to 50%, which can be accounted for by the fact
that Maxigramar uses more lexical resources than COTiG,
plus it includes non-prescriptive dictionaries.
As for recall has been measured as correct hits divided by
the number of actual errors in the texts. As for undetected
errors, we cannot say which of them are expected to be
handled by Maxigramar and which not, but for COTiG we
found that 52% of the undetected errors would require some
kind of linguistic analysis (syntactic, semantic) which isnot
currently available for the NLP techinques exploited. For
Maxigramar we calculated these figures in the same basis
as we did for COTiG and this resulted in 47% of all unde-
tected errors.
As for the evaluation of correction proposals, we distin-
guish between 4 categories: correct proposal, proposal gen-
erated but inadequate, proposal not generated, and proposal
not relevant (this last category includes proposals generated
for non-Catalan proper names and foreign words).
Table 2 shows that COTiG generates more correct propos-
als than Maxigramar, while proportionally Maxigramar is

1Both of them are available in the Internet in demo versions:
http://www.maxigramar.com/ and http:/parles.upf.es/corrector.

1988



Engine CP INAD NG NR
COTiG 55.8% 20% 7.4% 16.8%
Maxigramar 46.7% 24% 2.7 % 26.6%

Table 2: Accuracy of correction proposals.
CP stands for correct proposal, INAD for proposal generated but
inadequate, NG for proposal not generated, and NR for proposal
not relevant.

more often able to generate a proposal (failed only in 2.7%
of flags vs. 7.4% for COTiG).
Generally speaking, COTiG performs slightly better than
Maxigramar both in terms of error detection and proposal
generation for the small corpus used. However, it must be
noted that Maxigramar has a much larger coverage in terms
of lexical resources and this might play a role both in the
undetected real errors and in its relative noisiness in terms
of correction proposals.

5. Concluding remarks
We described the design and implementation of a method-
ology for user-centred error correction applications. With
this methodology we assure that the technique and the
level of computational complexity required for the detec-
tion of an error does not affect the way this error is pre-
sented to the end-user in terms of error description or clas-
sification. A general purpose spell and grammar checker
has been built and is freely distributed as open source
(http://parles.upf.es/corrector) and an adaptation of the ar-
chitecture to build the style checker for a media company is
currently under way.
If a register error is detected with an isolated-word error
correction technique, this error is shown whenever the user
activates ‘mark register errors’. But this does not affect
other errors detected with the same technique. Similarly, if
an orthographic error is detected using a context sensitive
technique, also used to detect grammar errors, orthographic
errors will still be detected even if ‘detect grammar errors’
is deactivated.
We presented the results of a manual evaluation based on a
small corpus comparing COTiG’s performance to another
commercial Catalan spell and grammar checker and we
found that COTiG outperforms the latter both in error cor-
rection and adequacy of proposal generation.

6. References
Toni Badia, Gemma Boleda, Eva Bofias, and Martı́ Quixal.

2001. A modular architecture for the processing of free
text. In Proceedings of the Workshop on ’Modular Pro-
gramming applied to Natural Language Processing’ at
EUROLAN 2001.

Toni Badia,Àngel Gil, Mart́ı Quixal, and Oriol Valent́ın.
2004. Nlp-enhanced error checking for catalan unre-
stricted text. InProceedings of Fourth International
Conference on Language Resources and Evaluation, vol-
ume VI, Lisbon, Portugal.

F. Benavent, S. Bott, B. Grau, M. Quixal, and T. Badia.
In preparation. LINLaP: an open-source multiplatform
language independent NLP architecture.

K. Gojenola and M. Oronoz. 2000. Corpus-based syntactic
error detection using syntactic patterns.Proceedings of
the workshop on Student research workshop, pages 24–
29.

Sylviane Granger. 2003. Error-tagged Learner Corpora
and CALL: A Promising Synergy.CALICO, 20:465–
480.

Karen Kukich. 1992. Techniques for automatically cor-
recting words in text.ACM Computing Surveys, 24:377–
439.

S. L’Haire and Vandeventer A. 2003. Error Diagnosis in
the FreeText Project.CALICO, 20:481–495.

D. Schneider and K.F. McCoy. 1998. Recognizing syntac-
tic errors in the writing of second language learners.Pro-
ceedings of the Thirty-Sixth Annual Meeting of the As-
sociation for Computational Linguistics and the Seven-
teenth International Conference on Computational Lin-
guistics, 2:1198–1204.

Theo Vosse. 1992. Detecting and correcting morpho-
syntactic errors in real texts. InProceedings of the
third conference on Applied natural language process-
ing, pages 111–118, Morristown, NJ, USA. Association
for Computational Linguistics.

Acknowledgements
The research work presented here has been partially funded
by the following projects:ArquiText, funded by the Minis-
terio de Educación y Cultura of the Spanish Government
(HUM2004- 05321-C02-02);El Corrector, funded by the
Generalitat de Catalunya (SE/CTTI/51/05); andRevisor
d’estil, funded by the Corporació Catalana de Mitjans Au-
diovisuals.

1989


