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Abstract
Recent years have seen increasing attention in temporal processing of texts as well as a lot of standardization effort of temporal informa-
tion in natural language. A central part of this information lies in the temporal relations between events described in a text, when their
precise times or dates are not known. Reliable human annotation of such information is difficult, and automatic comparisons must follow
procedures beyond mere precision-recall of local pieces of information, since a coherent picture can only be considered at a global level.
We address the problem of evaluation metrics of such information, aiming at fair comparisons between systems, by proposing some
measures taking into account the globality of a text.

1. Introduction
Recent years have seen increasing attention in temporal
processing of texts (see Mani et al. (2005), or the dedi-
cated track at SemEval 2007 (Verhagen et al., 2007)), justi-
fying the need for some standardization effort (Pustejovsky
et al., 2005). Temporal information is an essential piece
of knowledge for many applications like summarisation,
question-answering or information extraction (Hagège and
Tannier, 2008). Automatic temporal annotation is generally
two-fold:

� Events and temporal adjuncts are extracted from the
text. Several definitions of what an event is can be
given, but most of the state-of-the-art systems consider
mainly events introduced by finite verb phrases, and
sometimes by certain noun or adjectival phrases;

� Ideally, a time-stamp is assigned to each event when
possible, or a temporal ordering between them is
computed. This is done using linguistic and extra-
linguistic information such as temporal markers, verb
tenses and aspects but also lexical and pragmatic
knowledge.

This second task is fairly hard since temporal information
is not local, but spread out in a coherent manner through-
out the text. There are many equivalent ways to express
the same ordering of events. As a consequence, consen-
sual human annotation is difficult, and automatic evalua-
tion must follow procedures beyond mere precision-recall
of local pieces of information (Setzer et al., 2006).
We address the problem of evaluation metrics of such in-
formation, aiming at fair comparisons between systems, re-
gardless of certain bias that are artificially introduced in
current practices. We first address the issues of temporal
annotation and problems that must be solved (Section 2.)
and then describe a few original metrics and their behaviour

on a corpus of temporally annotated texts (Sections 2.2.
and 3.).

2. Temporal Processing and Evaluation
It is difficult to reach a good agreement between human an-
notators on event ordering, for two reasons (Setzer et al.,
2006): First, human subjects can express relations between
events in different, yet equivalent, ways. For instance, they
can say that an event e1 happens during another one e2, and
that e2 happens before e3, leaving implicit that e1 is be-
fore e3 too, while another might list explicitly all relations.
This makes it hard to reach an exhaustive list of temporal
relations, and harder to verify such relations.
The second problem is that some relations can be described
in more or less precise ways (for instance “e1 is before e2”
is more precise but consistent with “e1 is before e2 or e1
overlaps e2”), making necessary the handling of partial rel-
evance if only a subset or a inclusive set of relations have
been found in another annotation.
We have addressed this latter issue in (Muller and Tannier,
2004). Taking disjunctions into account was also part of the
evaluation of a temporal task at SemEval 2007 (Verhagen
et al., 2007).
The first issue implies the definition of a referent to which
each annotation should be compared, and this is the focus of
this paper. What is usually done (see among others (Setzer
et al., 2006)) is to use inference rules capturing the formal
links between relations, such as Allen’s algebra on relations
(Allen, 1983), and compute a temporal closure on the graph
of temporal relations on events.
Temporal closure is a reasoning mechanism that consists
in composing known pairs of temporal relations in order to
obtain new relations (e.g.: if A is before B and B contains C
then A is before C1). These new relations do not really bring

1A table of all composition rules can be found for example
in (Allen, 1983) or (Rodrı́guez et al., 2004).
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new intrinsic constraints, but allow to produce new explicit
information. The temporal closure generally leads to im-
complete information, i.e. disjunctives relations2. There-
fore, 2n different relations can hold between two nodes.
Only closures are compared, with potentially n2 relations
if there are n events in a text. Using inference rules cap-
turing the formal links between relations, such as Allen’s
algebra (Allen, 1983), and computing a temporal closure,
is now widely accepted as necessary (Setzer et al., 2006).

2.1. Importance of relations
However, in a temporal graph, all relations do not have
all the same importance, since some are crucial while oth-
ers can be deduced from the others, but not the other way
around. Metrics used so far in temporal evaluation do not
deal with this aspect; the final values of recall and precision
(or equivalent) on a graph are just an average of measures
for each relation. To see why this is a problem, consider
the very simple graph examples of Figure 1, in which the
first graph K is the gold standard. S1 contains only two
relations against six in K. But it seems unfair to consider a
recall score of 2

6 , since adding only one relation (B before
C) would be enough to infer all others. An intuitive recall
would be around 2

3 . This is very similar to the problem of
measure agreement on coreference chains, as in the MUC
campaigns (Vilain et al., 1995). In coreference chains, only
an equivalence relation is used, so a good measure can be
made by restricting the evaluations to minimal spanning
trees of annotations. Things are more complex in the tem-
poral case, however.
Back to the example, in S2, the relation “B before D” is
found. This relation exists but is “minor” in K (i.e. use-
less, because it can be deduced by the transitivity of <
from B < C and C < D); But in S2, it is not the case,
and this relation must then be rewarded. However, even if
the amount of temporal information brought by S2 and S3
seem equivalent (two “major” relations and one “minor”),
S3 should get a higher score. Indeed, the amount of miss-
ing relations (to come to the full graph) is much lower in
S3 (only “C before D” is missing) than in S2.
Note that the issues described here concern only the recall
measure, since they are related to the importance of missing
information. Precision or precision-like measure would not
be affected.

2.2. Measuring information in a text
In order to estimate a good way of measuring temporal in-
formation in a text, one has first to decide if one focuses on
simple relations that can be extracted directly (e.g. event e1
is before event e2) and then precision and recall on triplets
of the form (event,event,relation) is enough; or all that can
be inferred from the text and which is relevant to the tem-
poral structure of a text, and then we have to deal with more
complex information such as disjunctions.
Then there is the question of the information provided by a
text from a global point of view. When inference is used on
a representation, a lot of information is potentially added.

2For example, with Allen relations, if A includes B and B is
before C, then A includes or overlaps or meets or overlaps or is
finished by C.

K A B C D< < <<< <S1 A B C D< <
S2 A B C D< <

<S3 A B C D< <<
Figure 1: Examples of temporal graphs and relations

A fundamental problem is that when there are n entities ex-
tracted (events or dates), there can be up to n�(n�1)=2 re-
lations between them (provided also that we do not make a
difference between r(x; y) and r�1(y; x)). If we just count
the total number of relations found, as is usually done, the
importance of a text is not a linear function of its “size” (in
terms of events introduced, which is generally proportional
to its size in word tokens), but a square function of the num-
ber of events (because the number of relations can be up to
n � (n� 1)=2).
For the aforementioned co-reference task of MUC-6 (Vi-
lain et al., 1995), there was a similar problem to estimate
recall. The scoring proposed estimated the minimal num-
ber of missing links necessary to complete a co-reference
chain in order to make it match the human annotation, with
respect to the minimal number of links necessary to gen-
erate the whole annotation (a minimal spanning tree). We
want to design something similar for temporal annotation.
The metric that we propose here will be similar in spirit,
although temporal graphs are more complex since relations
between events can have different values, and a change on
an edge propagates constraints possibly through the entire
graph.
The choice of the measure applied at the relation level is
independent. In other words, it can be used with strict or
relaxed recall, or any measure existing to compare two tem-
poral relations.
We will call a “minimal graph” a maximal graph from
which no relation can be removed without losing any tem-
poral information after temporal closure. In Figure 1, min-
imal graphs are composed with bold (not dotted) relations.
Unfortunately, a unique minimal graph does not exist in
the general case, and in particular for Allen relations.
Rodrı́guez et al. (2004) propose a way to find all minimal
graphs for a given temporal graph. The algorithm suggested
by (Rodrı́guez et al., 2004) first finds the core relations by
intersecting all derivations3, and then computes all possible
remaining combinations in order to find those composing a

3For example, for the relationRA;B betweenA andB, deriva-
tions are RA;C � RC;B , RA;D � RD;B , etc. If the intersection of
all these derived relations equals RA;B , it means that RA;B is
not a core relation, since it can be obtained by composing some
other ones. Otherwise, the relation is a core one, since removing
it always leads to a loss of information. This operation is com-
putationally feasible. The way this kernel is obtained ensures its
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minimal graph.
This latter procedure is computationally heavy,
and Rodrı́guez et al. (2004) do not detail much their
empirical investigations. To solve these problems we
decided for now to focus on a “kernel”, the set of core
relations, i.e. the relations found in every minimal graph.
These are easier to find and form a unique set: they are the
relations whose removal yields an incomplete graph after
closure (with respect to the original key).
The evaluation procedure is the following:

� We close both key and candidate graphs, respectively
called K and G.

� We look how many core relations from K have been
found in G. This is value rc, or kernel recall.

� We check how many core relations from G are also in
K. These may not be crucial in the key but are essen-
tial in the candidate graph, and make up for unfound
core information (if rc is one, this set is empty and
hence the measure is vacuous). This is kernel preci-
sion.

Since core relations does not contain all information pro-
vided by closed graphs, this measure is only an approxima-
tion of what should be assessed. However, it gives a good
idea of how important the relations are in a same graph.
More importantly, we expect these measures to grow more
linearly with the number of events in a text.

2.3. Defining general measures
We try here to unify the possible measures of temporal an-
notation on a text. An annotation is a set of constraints on
a set of entities, a graph of binary constraints with labels
on edges. Let H be the human annotation, with a set Eh of
(temporal) entities and Ah a set of constraints. A constraint
is a triplet with two events and a relation.
H = (Eh = fe1; e2; :::g; Ah = f(e4; e6; before); :::g)
Let S = (Es; As) be the similar annotation by a system to
evaluate.
Let E = Es [ Eh the set of all events extracted, either by
the first or the second annotation.
On a saturated graph we do not include edges with no in-
formation on them (no information means any relation can
hold between the two events).
Let g be a measure of comparison between two relations.
We can define a generic measure on two representations of
a text as depending on two filters and a measuring function,
measure(H;S; f1; f2; g) as

X

a2f1(Ah)[f2(As)

(g(Ah(a); As(a)))

A filter f is of the kind:

f : (E � E �R)2 ! (E � E �R)2

The two filter functions f1 and f2 pick out which entities we
want to focus on in each representation, and g is the way we
compare atomic representations. Here, Ah(a) (respectively

uniqueness.

As(a)) stands for the relation holding on the edge with the
same endpoints as a in the human annotation (respectively
the system annotation). We can then define more specific
measures, with various focuses:

� With f1=Id (identity), f2=(x 7! �), we have a fam-
ily of measure focusing on the recall of edges in the
human annotation;

� With f2=Id, f1=(x 7! �), we have a family of measure
focusing on the precision of the edges contained in a
system’s annotation.

� If f1 or f2 only consider edges with a “single rela-
tion”: f(A) = f(ei; ej ; R) 2 A=jRj = 1g and with
g = (�x; y:x = y), we have the type of comparison of
(Mani and Wilson, 2000), precision and recall on “sin-
gle” (precise) relations. We have then the other filter
mapping to the null set.

� We can also filter event-event relations (event order-
ing) or events-dates (anchoring)

We can use gradual measure of comparisons for atomic
representations, like Jaccard, Finesse or Coherence (Muller
and Tannier, 2004):

� Jaccard = (aH\aS)=(aH[aS), a global overlap mea-
sure between the set of possible relations in the hu-
man annotation (aH ) and the system’s (aS) on a single
edge. Other similar measures, such as the Dice coeffi-
cient could be used, but since they are monotonically
transformable into one another, we can focus on the
study of only one of them.4

� Finesse = (aH \ aS)=aS applied to a recall on human
edges was proposed in (Muller and Tannier, 2004) to
estimate how informative was a system’s annotation.

� Coherence = (aH \ aS)=aH combined to a measure
of precision of edges was introduced in (Muller and
Tannier, 2004) to give an estimation of the correction
of the system’s annotation.

The global finesse score of an annotation is the average of
a measure on all edges that have information according to
the human annotation once the graph is saturated, while co-
herence must be averaged on the set of edges that bear in-
formation according to the system annotation.
Finesse is intended to measure the quantity of information
the system gets, while coherence gives an estimate of er-
rors the system makes with respect to information in the
text. Finesse and coherence thus are somewhat similar re-
spectively to recall and precision, but in a gradual setting.
We can also estimate every measure with respect to any set
of relation: in our case, the set of annotation relation (AR)
to focus on the task, or the set of Allen relations to focus on
the underlying computation.

4If j is a Jaccard score and d a corresponding Dice coefficient,
d = 2j � (1 + j).
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3. Evaluation of the evaluation
All the previous measures focus on one aspect of an evalu-
ation and all seem plausible ways of estimating the similar-
ities between representations. Obviously, many more could
be devised, so we must ask ourselves what kind of criteria
we can have to estimate what are good measures. A few
commonsense criteria could include:

� A measure is decreasing with the decreasing of infor-
mation (in a monotonic and if possible regular way,
even linearly with the level of information or correct-
ness provided);

� We have to deal with different number of edges in a
representation (see above): we must look at how a
measure behaves on texts of different sizes (in terms
of events and dates; as was stated above, the number
of relations grows in the order of n2 if n is the number
of temporal entities).

In order to do this, we have designed a few empirical tests
to see what measures seem the most useful. They are the
following:

� Compare an annotation with the same annotation
where information is taken out one piece at a time ;

� Compare an annotation with the same annotation
where some noise is introduced: a relation is changed
to something else ;

We are going to show a sample of what we have found
among all the possible combinations from our proposal.
We tested these on the TimeBank corpus5, which is a set
of news article in English.
This corpus is annotated with relations similar to Allen’s
relations, so it was directly usable, if not free from errors.
A few texts had inconsistent temporal annotations, so they
do not appear in the evaluation (since temporal closure will
fail on these texts).

3.1. Consequences of removing information
In the first experiment, we try to see the behavior of a mea-
sure with respect to the quantity of information contained
in a text in the following way: we take a human annotation
of a text, and we remove (at random) an annotated relation
before saturating the graph of constraints, and then we com-
pare it with the initial graph. We average this on a number
of different runs. We then do the same by removing 1, 2, ...
n-1 relations if there are n relations in the initial annotation.
We report the behavior of different measures by putting
scores in relation with the percentage of the initial anno-
tation that was removed (and averaging on texts with the
same amount removed), so that we can see all texts to-
gether. One disadvantage of this is that text with few re-
lations give an overall impression of having high scores be-
cause they lack points in the low-information area.
Precision on single measures is always going to be 1 given
our protocol, so this experiment is only useful to observe

5See http://corpora.dutchboy.net/timebank/.

the behaviour of “recall”-types measures: recall of all sin-
gle relations, recall of relations only from the kernel of re-
lations as explained above, and a gradual relation on each
edge (finesse).
Figure 2 compares various measures with respect to the per-
centage of information (the number of annotated relations)
removed in the first experiment. Scores decrease quickly
with the number of relations, following an inverted square
root (For each measure we show the best parabolic fit).
The relations include a simple measure of the recall of sin-
gle (non disjunctive) relations, a measure of finesse on each
informative edge, and a recall on relations that are in the
kernel of the key.
It is interesting to note that the measure based on the kernel
relations has a more linear fit than the other measures, as it
concentrates on the relevant set of relations. That was the
intended effect of focusing on a set of relations considered
as more “central” to the text.
We have noticed that averaging on the number of events for
each texts does not change much the results, something we
expected for the kernel measure, but not for the other ones.
The curves remain parabolic in nature, probably because
averaging over texts while removing events at random even
out the results anyway, while a measure on kernels stay sta-
ble.
We have nonetheless noticed very different results on small
texts (less than 10 relations) than on larger texts (some have
more than 120 relations in TimeBank). We hope these mea-
sures can help find annotation biases in such corpora, but
obviously this needs to be investigated in more detail.

Figure 2: Behaviour of measures when removing informa-
tion from annotation

3.2. Consequences of some incorrect information
A second test (“small change”) was done in a similar way,
but instead of removing relations from the original unsatu-
rated human annotation, it was slightly modified by pick-
ing out a few relations that were randomly changed, pro-
vided this preserved consistency of the global representa-
tion. When no change is possible preserving consistency
after a number of tries, we stop, (so the points near 0 av-
erage on less texts, and are less regular ). This experiment
is done to observe the behaviour of various measures when
confronted to variations of precision of an annotation (as
opposed to variations of recall in the previous experiment).
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In order to be able to compare texts that had not the same
number of events to begin with, we plot the scores against a
ratio of undisturbed events with respect to the total number
of events in a text, in a way similar to the experiment above.
As we average over texts of various sizes, we smoothed the
plot by putting points in bins around every 10% of infor-
mation left unchanged. It has to be noted that the variance
around each of this points is sometimes high.

Figure 3: Behaviour of precision measures when disturbing
information (unweighted)

Figure 4: Behaviour of recall measures when disturbing in-
formation (unweighted)

The precision-type measures that we have tested here are:
the precision of single relations, a measure on coherence
of each edge with information in the changed annotation
(thus including disjunctive relations), and a precision on the
relations that are part of the changed annotation.
The behaviour of all masures are rather far from the ideal
y = x (a linear decrease, shown also on the graph). This is
shown again by their best parabolic fit (figure 3). This time
the weighting of texts is crucial to reaching a sort of bal-
ance, most notably with the kernel-related measures (figure
4). This shows that considering only the kernel of rela-
tions in the annotation to be compared to the key is not
enough to be safe from the “parabolic” effect. Indeed, since

Figure 5: Difference of precision measures when disturbing
information (weighted)

Figure 6: Difference of recall when disturbing information
(weighted)

kernels are different, we must be sure that they are close
enough so the degrading of information is only proportional
to the number of events considered. This appears not to be
the case. However, averaging each text over its number of
events reinstate a better behaviour for all measures, all the
more for the kernel-based one.
For recall measure when degrading annotations, we see a
somewhat less dramatic but similar result (figures 5 and 6),
showing this experiment is less relevant to that type of mea-
sures.

4. Conclusion
In this paper, we have tried to give some empirical back-
ground to the design of the measure of temporal informa-
tion in written texts. A lot of evaluations and measures in
the literature are based on assumptions that are not always
explicit, or lack a study of their properties with respect to
the few problems we mention in the beginning: that tempo-
ral information is global, and that some relations are more
important than others. Although much work is still to be
done (especially for finding minimal graphs), we hope that
that kind of study will help improve evaluation of annotat-
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ing temporal information in texts. In short what we have
found is we can have a sort of recall measure that is im-
mune to the bias introduced by the size of a text in a given
corpus by restricting the evaluation to a kernel of central
relations, and that the precision on that same kernel can be
used also as a more stable measure than the others that we
tested, once we average the result on a text by the num-
ber of events it contains. Our work has a number of biases
that need to be further studied: we have only experiment
on news-related texts. Moreover, they vary in size in a way
that can have an influence on the stability of our results: a
lot of them are very short, and the longer are much longer
than the small ones. It is very likely that threshold effects
are hidden in our first attempt at this kind of investigation.
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