
DIAC+: A Professional Diacritics Recovering System

Dan Tufiş, Alexandru Ceauşu
Institute for Artificial Intelligence, Romanian Academy

 “13 Septembrie”, 13,050711, Bucharest 5
tufis@racai.ro, aceausu@racai.ro

Abstract
In languages that use diacritical characters, if these special signs are stripped-off from a word, the resulted string of characters may not
exist in the language, and therefore its normative form is, in general, easy to recover. However, this is not always the case, as presence
or absence of a diacritical sign attached to a base letter of a word which exists in both variants, may change its grammatical properties
or even the meaning, making the recovery of the missing diacritics a difficult task, not only for a program but sometimes even for a
human reader. We describe and evaluate an accurate knowledge-based system for automatic recovering the missing diacritics in MS-
Office documents written in Romanian. For the rare cases when the system is not able to reliably make a decision, it either provides the
user a list of words with their recovery suggestions, or probabilistically choose one of the possible changes, but leaves a trace (a
highlighted comment) on each word the modification of which was uncertain.

1. Introduction
Spell checking is one of the oldest natural language
processing applications that is used on large scale. Most
of the spell checkers, rely on large word-form lexica and
are designed to detect spelling errors and suggest possible
corrections. In keyboarding a text most users make typing
errors, the majority of them due to transposing characters,
pressing the key next to the intended one, omitting a
character, inserting an unnecessary character, or omitting
a space between words. A different class of errors (called
cognitive errors) refers to those situations where the user
does not know the correct orthography of a word and uses
a plausible near-miss. Yet, there is another important
aspect of spelling verification and correction which,
although does not occur in English, is relevant for almost
all European languages (see (Mihalcea, 2002), Table 1):
restoring the diacritics wherever they are missing.

Having an automatic procedure for restoring the
missing diacritics is worthy not only for old valuable texts
stored in electronic form, but also for contemporary
electronic texts as they continue to be produced in non-
diacritical form. The reasons for this could be many,
including the lack of localized and standardized
keyboards. Ergonomic factors can also be mentioned (if
someone is supposed to press more than two keys to get a
diacritical character, then, mainly in informal
communication (e.g. e-mail), he/she will probably take the
easiest one-stroke solution).

The problem of diacritics restoration has been, and
continues to be, addressed by various researchers with
respect to different languages. There are two major
approaches in solving this problem, one based on words
and the other one based on characters. While the word-
based approaches are, in general, informed systems,
relying on lexica and language models (thus being
language dependent), the character-based methods are
language independent uninformed algorithms that do the
job based on statistical information on n-grams extracted
from given training data. Each approach has merits and

drawbacks; the informed word-based systems require
large lexical resources (which are never completely
covering any new text) and their maintenance, additional
processing tasks (e.g. tokenization, tagging) and, thus,
need more time to finish the job. The character based
systems are easy to implement, need only raw training
data for the languages of interest and are very fast. On the
other hand, for languages where the diacritics have
grammatical and/or semantic role, the word-based
systems are much more reliable than the character-based
systems. For such languages, the lack of, or mistakenly
added diacritical signs may be extremely annoying
especially in texts meant for publication. For languages
where the absence of required diacritics is context-
independent detectable, a character-based (n-gram)
approach can do the work almost equally accurate but
much faster and with little development effort.

The decision on the approach to follow in the
development of a diacritics restoration program depends
on many factors: the grammatical and/or semantic role of
the diacritics in the language of interest, the availability of
adequate language resources, the required processing
speed, the users' requirements and needs.

We describe and evaluate an accurate knowledge-based
system, called DIAC+, for automatic recovering the
missing diacritics in MS-Office documents written in
Romanian. The out of lexicon words (usually, very rare)
are processed by a character-based back-off procedure.
The present system builds on our previous work (Tufiş
and Chiţu, 1999), extending the former DIAC system in
many ways and significantly improving its performance
and appearance.

2. Related work
Word-based implementations of diacritics restoration

programs have been described, among the others, in (El-
Bèze et al, 1994), (Yarowsky, 1994), (Spriet & El-Bèze
(1997), (Simard, 1998), (Tufiş & Chiţu, 1999), etc.

El-Bèze and his colleagues (1994) use POS-tagging of
French texts to exploit the contextual information and N-

167

gram statistics to decide whether or not an accent has to
be added for the word under investigation. In a follow-up
paper, Spriet and El-Bèze (1997) describe the use of an N-
gram model on parts-of-speech for re-accentuation of
French texts. They evaluate their method on a 19,000
word test corpus consisting of news articles and obtain a
99.31% accuracy. In this corpus, only 2.6% of the words
were unknown, among which 89.5% did not need accents.
The resulting error rate (0.3%) accounts for nearly one
half of the total error rate, but is so small that it is not
worth trying to guess accentuation for unknown words
(cf. Zweigenbaum & Grabar, 2002).

Yarowsky (1994) addresses this problem for Spanish
(mainly) and French but instead of POS tagging, he
reports the best performance with a decision-list
framework.

 Simard (1998) also uses the POS tagging technology,
but as all the previously mentioned systems, leaves the
out-of-lexicon words untouched.

The methodology described in (Tufiş & Chiţu, 1999) is
similar to the one presented in (Simard, 1998), but the
system, developed for Romanian language, have a better
success rate, although, compared to French, Romanian
makes more intensive use of diacritical signs and their
absence creates much more difficulties. As before, this
system ignores the unknown words.

The character-based approaches became quite popular
lately, mainly because of their simplicity, language
independence, good performance and easy to get training
data (which is simply, raw texts containing the required
diacritics). The expensive wide-coverage lexicons are not
required by these methods.

Mihalcea (2002) addresses the restoration of diacritical
characters in a Romanian electronic dictionary using an n-
gram model and made experiments with a memory-based
learning system (TIMBL) and a decision tree classifier
(C4.5). She reports in each case very good precisions
(letter-based), with average accuracy beyond 99%.

Using the same evaluation data as used by Mihalcea
(2002) Bobiceva (2008) describes another letter-based
implementation of the diacritics recovery for Romanian.
She applied a statistical method used in text data
compression (PPM- prediction by partial matching) and
shows that her method obtains comparable results to
Mihalcea's. Both methods have hard times with dealing
with the a-ă (the average precision is 96,15%) mainly
when the respective letters are word final1.

Zweigenbaum and Grabar (2002) describe a system
specifically designed for recovering the various diacritical
versions of 'e' (é, è, ê, ë) in specialized French lexicon (the
French version of MeSH). They use two different
methods: a finite state transducer and Brill's tagger to

1 In Romanian this is the most difficult case, since feminine
nouns and adjectives ending in "a" are definite forms while
when ending in "ă" they are indefinite forms. Also, the verb-
final "a/ă" distinguishes among tenses (present vs. simple
perfect). When embedded, this alternation frequently changes
the meaning of the word (par=pole, versus păr=hair or pear tree).

learn contextual transformation rules for the letter 'e' (each
proper word, containing an 'e' is split into its constituent
letters which are considered the tokens to be tagged).

When dealing with resource-scarce languages, as
African languages described in (Wagacha et. al. 2006) or
(De Pauw et. al. 2007), the character-based methods
hardly have a choice competitor.

3. Diacritics in Romanian
Romanian language has 5 diacritical characters: ă,â,î,ş
and ţ (plus their uppercase variants). A text missing the
diacritics will usually have these characters substituted by
a (for both ă and â), i, s and t respectively. For a
significant part of the words with the diacritics stripped-
off their recovering is deterministic, because the non-
diacritical variants of those words are not legal lexemes of
Romanian. But in most of the cases, the absence of
diacritics creates genuine ambiguity, hard to resolve
sometimes even for a human (when given only a limited
context).

Here are some examples of strings with missing
diacritics that are not valid Romanian words (the real
word and its translation are specified between
parentheses):

A) padure (pădure - forest), tufis (tufiş - bush), cantar
(cântar - balance), carare (cărare - pathway), casmir
(caşmir - cashmere), macar (măcar - at least), fara (fără -
without), cati (câţi - how many), etc.

Such strings, which could be unambiguously recovered
by relying on a adequate lexicon, are called U-words.

To exemplify the ambiguity caused by the lack of
diacritics, let us consider the string fata. In a text where
the diacritics were removed, this string could stand for
any of the following words:

B) fata – the girl, fată – a girl; or (about animals) gives
birth , fâţa – the quick-swimming little fish/the coquette,
fâţă – a quick-swimming little fish/a coquette, faţa – the
face, faţă – a face, făta – (about animals) to give birth;
gave birth, fătă – (about animals) just gave birth.

All the strings of the fata type above (i.e which could
stand for more than one diacritical or non-diacritical
word) are referred to in the following as ambiguous
stripped words, or A-words. The strings that are neither U-
words nor A-words are simply referred to as words.

We found that the morpho-syntactical information
disambiguates most A-words. Yet, there exist subsets of
A-words for which morpho-syntactic descriptions are
identical and diacritics restoration distinction could be
made only based on meaning:

C) fata (Ncfsry) – the girl, fâţa (Ncfsry) – the quick-
swimming little fish/the coquette, faţa (Ncfsry) – the face.

These words, which we call S-words, require sense
disambiguation. The S-words are a subset of A-words.

The Table 1 displays data we extracted from our
reference corpora. The journalism corpus consists of
articles from the weekly magazine “Agenda” from
Timişoara (years 2003-2006). The juridical corpus is a
collection of around 6000 Romanian documents extracted
from the Jrc-Acquis corpus (Steinberger et al., 2006). The

168

part-of-speech annotation was made with our tiered tagger
in order to reduce as much as possible the number of
tagging errors. The total number of words shown in Table
1 (line 1) does not include numbers or tokens containing
one or more digits, proper names, foreign words (tagged
by the X tag), abbreviations (tagged by the Y tag), dates
(tagged by the DATE tag) and punctuation. From the total
number of tokens in the mentioned texts, the discarded
tokens account for 36% and 26% respectively. The big
difference between the number of discarded items in the
two corpora is due to the fact that journalism corpus
contains lots of numbers (in the "Sport" sections one can
find scores, minutes, timings, distances etc) dates, foreign
words and abbreviations. These categories are not
significant for the diacritics restoration problem because,
in the vast majority of cases, they do not contain
diacritical signs. However, the proper names in Romanian
are words that might contain diacritics, thus being
relevant for the diacritics restoration task. Yet, in the
juridical corpus, although the names are quite frequent,
none of them contained diacritics. Thus, in order to make
a meaningful comparison among the two register data, we
excluded the proper names from our analysis.

There are two different figures for S-words, depending
on what tagset was used in POS tagging: a reduced tagset
(Ctag-set in line 5) and the lexicon morpho-syntactic
descriptors tagset (MSDtag-set in line 6). The two figures
demonstrate that the diacritics restoration is more
accurately done when the system has access to more
linguistic contextual information. On the other hand, in
general, using a reduced tagset as compared to a large
one, increases the tagging accuracy, which is vital for our
approach in diacritics restoration. The Ctag-set and
MSDtag-set and the way we solved the tension between
tagset cardinality and tagging accuracy are briefly
discussed in section 4.2.

Corpus Journalism Juridical
1. Words 6680448 3511093
1* Characters 37008236 21404666
2. Words with diacritics (of
1.)

2004763
(30,01%)

1026385
(29,23%)

2*. Diacritics 2351220 1192875

3. U-words (of 2.) 238132
(11,88%)

175822
(17,13%)

4. A-words (of 2.) 1766631
(88,12%)

850563
(82,87%)

5. S-words (Ctag-set, of 4) 58420
(3,31%)

38323
(4,51%)

6. S-words (MSDtag-set,
of 4)

24916
(1,41%)

16463
(1,94%)

Table 1. The distribution of the words with diacritics in

texts of different registers

As one can notice in the table above, in regular
Romanian texts, almost one third of the words contain at
least one diacritical character (30% of the words in the
journalism data contain on average 1,17 diacritical signs,

while 29% of the words in the juridical texts contain on
average 1,16 diacritical signs). Out of the diacritical
words only a small percentage are U-words (12% in the
journalism data and 17% in the juridical texts). That is, in
an ideal setting, with a fully coverage dictionary available
and a text with no typographical error other than the
missing diacritics, about 25% (#A-words/#Words) of the
total number of words in a running Romanian text would
remain ambiguous. In a more realistic setting, this figure
is significantly higher because no dictionary fully covers
any possible text and most texts contain typing errors
(other than missing diacritics). In our supposedly error
free data we identified 72722 (1.09%) typing errors in the
journalism texts and 29387 (0.84%) typing errors in the
juridical texts. Below we list the main categories of errors:

a) even if a word contains diacritics, it might not
contain all of the necessary ones (e.g. "invăţămant"2 vs.
"învăţământ", "lacătuş" vs. "lăcătuş" etc.);

b) even if a word contains diacritics, one or more of
them might be wrong (e.g. "sărmă" vs. "sârmă", "câtre"
vs. "către", "neâncăpător" vs. "neîncăpător" etc.)

c) even if a word contains diacritics, they might not be
in accordance with the current orthography of Romanian
(e.g. "considerînd" vs. "considerând", "curînd" vs.
"curând" etc.)

d) the words (with or without diacritics) might be
misspelled (e.g. "înopta" vs. "înnopta", "indenmizaţie"
vs. "indemnizaţie", "compensdiu" vs. "compendiu" etc.)
or miss-tokenized (e.g. "5%pentru" vs. "5% pentru" etc.)

e) a lexical token might be distorted by a combination
of the above cases, making it very difficult to be
recovered.

One could argue that a traditional spell-checker could
identify these error-cases and a user might fix them, but
at least for Romanian, this is not entirely so, because of
what we called A-words (words which remain legal words
of the language even after the diacritics removal, e.g.
"peste" (over) versus "peşte" (fish), "scoală" (wake up)
versus "şcoală" (school), "barca" (the boat) versus "barcă"
(a boat) etc. A standard spell-checker (such as A-spell or
the one included into MS Office) would not even detect
the A-words as possibly problematic.

In a traditional spell-checker solution, the "out of the
dictionary" words are highlighted and the user is expected
to select one correction from a list of possible choices
(which might not include the proper correction). In our
approach, most of the corrections (all but the S-words) are
automatically performed without user going through each
individual token. While the automatic procedure is
practically done in no time, the manual procedure is error
prone and even when assisted by a spell-checker might
require hours, days or even months for very large textual
data. For the S-words occurring in a text, the system
behaves like a spell-checker, i.e. it requires the user to
make a choice, out of a list of contextually plausible
corrections. A contextual plausible correction should

2 All the examples in this paper are extracted from the corpora
described in Table 1.

169

comply with the linguistic restrictions specified by the
morpho-syntactic description associated to the respective
S-word. For instance, if the S-word "fata" was tagged as a
feminine noun, in a direct case, definite singular form, the
plausible solutions are "fata" (the girl), "faţa" (the face),
"fâţa" (the quick-swimming little fish/the coquette) all
characterized by the same morpho-lexical attributes as the
original S-word. All the other variants (fată, faţă, fâţă,
făta, fătă) should be ignored due to different morpho-
syntactic descriptors (indefinite nouns or verbs).

The last two lines in Table 1 show that when we use a
tag-set of finer granularity (614 tags in the MSDtagset
versus 92 tags in the Ctagset) the number of S-words (the
tokens for which the diacritical forms cannot be
deterministically recovered) is more than twice less than
before. We noticed that the majority of the S-words in this
case are genuine spelling errors, very few of them
requiring sense disambiguation.

In the next sections we will briefly describe the
underlying technologies used by our diacritics restoration
system DIAC+, provide an evaluation and few details on
its implementation and conclude with a comparison
between DIAC+ and its ancestor described in (Tufis, Chitu
1999).

4. Text pre-processing
Since the DIAC+ was designed to work with MS
formatted documents, the system extracts the textual data
from the input file and stores it in an internal format
adequate for our pre-processing tools, using as database a
full-text search engine – Lucene3. The textual data
extracted from the input file is tokenized and tiered-
tagged, thus creating a linguistic knowledge space for the
current text within which the proper restoration of
diacritics takes place.

4.1 Tokenization
The tokenizer is a program that identifies within the input
text the elementary processing units called lexical tokens.
A lexical token usually corresponds to the generally
accepted idea of a word, namely a sequence of characters
delimited by white spaces. However, several words may
form a natural single unit (such as “pentru că” – because)
or on the contrary, a sequence of characters delimited by
white spaces may be split into distinct lexical units (such
as “dă-mi-le” – you_(singular) give to_me them = give
them to me). The tokenizer also recognizes dates
expressed in a large variety of formats (1 ianuarie, 1999;
01/01/99; 01-ian-99, etc), abbreviations (dl, dna, dra, dr.
etc.), various types of punctuation, etc.

4.2 Tiered tagging
In highly inflectional languages, encoding the morpho-

lexical properties of the word-forms requires a large set of
description codes. The Multext European project in co-
operation with EAGLES Lexical Specification Group
developed a set of recommendations for the languages in

3 http://www.apache.org/dyn/closer.cgi/lucene/java/

Western Europe. Starting with these specifications, the
Multext-East Copernicus project further developed them
so that to account for the specificity of six other languages
from Central and Eastern Europe – Bulgarian, Czech,
Estonian, Hungarian, Romanian and Slovene (see
http://nl.ijs.si/ME/). The set of morpho-syntactic
descriptors (MSDs) specific to Romanian contains 615
codes.

It is well known that the larger the tag-set, the larger
the training corpora needed and unfortunately this is not a
linear dependency. To avoid severe data sparseness and
accuracy degradation, a huge amount of manual work
would be necessary for building appropriately large
training corpora.

Tiered tagging (Tufiş, 1999, 2000) is a two-stage
technique addressing the issue of data-sparseness. In
general terms, tiered tagging uses a hidden tagset (we call
it Ctag-set) of a smaller size (in our case 92 tags) on the
basis of which a language model (LM) is built. This LM
serves for a first level of tagging. Then, a second phase
replaces the tags from the small tagset with contextually
the most probable tags from the large tagset (we call it
MSDtag-set) which contains 615 tags (MSDs). The
fundamental idea in using the tiered tagging approach is
that the attribute values in a MSD and the word-form are
not independent. That is to say, having a MSD-based
word-form lexicon, from a word-form and a subset of
attribute-value pairs one could, in the vast majority of
cases, deduce all the rest of the feature-values pairs
characterizing the current word-form. In (Tufis, 1999) we
call this property the MSD-recoverability. The subset of
the features in the MSDtag-set having the recoverability
property represents the set of attributes in terms of which
the Ctag-set is defined. In (Tufis, 1999) we provided an
algorithm to construct the Ctag-set from a MSD-based
lexicon. In (Tufis, 2000) we demonstrated that the
algorithm is language independent and that the tiered-
tagging approach is working very well for a completely
different language than Romanian. In (Tufis,
Dragomirescu, 2004) we presented a further enhanced
version of the Ctag-set automatic design and
demonstrated its effectiveness on six languages (Czech,
English, Estonian, Hungarian, Romanian and Slovene).

The lexicon, underlying the induction of the Ctag-set
and backing-up the tiered tagging approach, contains the
words annotated with the MSD tags, an entry having the
form: <word> <lemma> <msd>. For Romanian, this
lexicon, referred to in the following as LEX, contains
more than 800,000 entries.

For a small number of the C-tags, the recovering
process can face some ambiguities which have to be
solved by using additional knowledge resource. In (Tufis,
1999) this new resource is a set of hand-written contextual
disambiguation rules. The applicability of both the
deterministic and the rule-based recovering is limited only
to the words recorded in the MSD tag-set lexicon. We
replaced the second phase of the tiered tagging process
with a maximum entropy-based MSD recovery (Ceauşu,
2006). In this approach, the rules for Ctag to MSD

170

conversion are automatically learnt from the corpus and
their application does not require looking-up the MSD
tag-set lexicon. Therefore, even the Ctags assigned to
unknown words can be converted into MSD tags. If an
MSD-lexicon is available, replacing the Ctags for the
known words by the appropriate MSD tags is almost
100% accurate.

5. Diacritics insertion
The overall architecture of DIAC+ is shown in Figure 1.

Figure 1. General architecture of DIAC+

From the LEX lexicon, mentioned in the previous

section, the system derives a diacritical words only
lexicon (D0), and a diacritics stripped-off lexicon (D1)
which are used to generate the hypotheses search space
for the current text. Additionally, the system builds on the
fly a list of words in the current text which are not in the
previous dictionaries but which could be considered
typographical errors (D2):

- D0 dictionary is the subset of LEX containing all the
words containing at least one diacritical character;

- D1 dictionary is the diacritics stripped-off version of
LEX; one should bear in mind that the entries from D0
corresponding to A-words will differ among each other
only by POS information

- D2 dictionary contains words in the current text which
are neither in D0 nor in D1 and which are suspected of
being typing errors; they are derived from the words in
D0∪D1 differing by plus or minus one character or by
switching two consecutive characters (additionally, the
switched characters should be neighbors on the keyboard).

The procedure for automatic insertion of diacritics in
Romanian texts has four stages:

(i) TOKENIZATION. The input text is segmented into
lexical tokens according to the rules specified as external
resources.

(ii) HYPOTHESES GENERATION. In the hypotheses
generation step, a word is first searched in the union of D0
and D1 dictionary because in a text without diacritics or
with partial diacritics one cannot be sure if a word is in its
regular form or not unless contextual information is
available.

If the word cannot be found in the union of D0 with D1
it is searched in the D2 dictionary. A word which is not
found in any of the system's lexicons is considered
unknown and irrecoverable by the word-based approach,
and its processing is left in charge of a character-based
recovery module.

In this step, a word W, occurring in the current text,
may be associated with several entries in the LEX word-
form lexicon and as such it will be associated with a set of
pairs <surface-formk MSDk> provided that the diacritics
stripped-off versions of the surface-formk and of W are
identical. The information provided by the next tagging
step will be used to filter this set and eventually to select
the single contextually correct <surface-formi>.

(iii) TIERED TAGGING. The text is tiered-tagged (tagged
with the reduced tag-set, then each C-tag is mapped to a
MSD-tag by the ME-tagger (Ceauşu, 2006); for this stage,
only the MSDs from the hypothesis generation step are
taken into consideration). In the case of unknown words
the tagger chooses the best alternative resulted from the
maximum entropy model. For tagging texts with partial or
missing diacritics we used a special HMM language
model in which the transition probabilities were computed
from the regular training corpora (i.e. with diacritics) and
the emission probabilities were computed from the
diacritics stripped-off training corpora. This way the
ambiguity classes for the words in the probabilistic
lexicon and their respective POS lexical probabilities
were modified, but the transition probabilities remained
unchanged. For instance, the two unambiguous words
peste/Spsa (eng. over) and peşte/Ncms-n (eng. fish) in the
diacritics stripped-off training corpora will be represented
by the same token type (peste) which in this case will
become POS ambiguous (Spsa or Ncms-n). It is obvious
that the spurious ambiguities created by the lack of
diacritics degrade the tagging accuracy, but as discussed
in (Tufis, Chitu, 1999) not all tagging errors are harmful
for the diacritics restoration process.

(iv) CANDIDATE SELECTION. The U-words are replaced
with their diacritical counterpart. The A-words which are
not S-words are replaced by the surface-form identified by
the MSD assigned by the tagger to the respective A-word.
For the S-words, depending on the DIAC+ variant (see
further) either the user is presented with a list of
contextually meaningful choices or the replacement is
automatically done based on lexical probabilities or some
probabilistic preferences.

(v) UNKNOWN WORD PROCESSING is used as backup for
the candidate selection stage where no equivalent word-
form was found in the lexicon. This case is quite rare –

Input text

Output text & spelling
alternatives

(i) Tokenization

(iii) Tiered tagging

(ii) Hypotheses
generation

(iv) Candidate selection

(v) Unknown words
processing

D0,D1,D2
Dictionaries

Language
model

Tokenizer
resources

Character
model

171

very few words are not covered by the 800000 entries
lexicon. The stage of unknown word processing can be
designed to work in parallel with the stage of candidate
selection. For processing unknown words, we used a
character-based N-gram model similar to the one used in
(Mihalcea, 2002).

Model
order Perplexity Accuracy

(no spaces)
Model

size
2-gram 12.42 93.67% 20.8 KB
3-gram 9.72 95.52% 223 KB
4-gram 7.11 97.72% 1.29 MB
5-gram 5.77 98.59% 4.82 MB
6-gram 5.29 98.79% 13.1 MB
7-gram 5.17 98.84% 27.7 MB
8-gram 5.18 98.85% 48.4 MB

Table 2. Evaluation of several character models for

unknown words processing

We opted to use Viterbi estimation with a 5-gram

character model to find the most probable string for the
unknown word. We used SRILM - SRI Language
Modeling Toolkit (Stolcke, 2002) to train several
character models. The training corpus contained 5124277
characters (including spaces) in 48308 sentences and the
test corpus has 613234 characters in 6411 sentences.
Table 2 displays a comparison of the perplexity, accuracy
and size for the models of different order.

6. Evaluation
For the evaluation purposes we used a reference corpus R,
containing about 118,000 words and about 502,000
characters. The reference corpus was hand tagged and
lemmatized. We removed all the diacritics, from R but
preserved the original tagging. This version of R is what
we call the idealized DIAC+ tagged text (TT): it has no
tokenization or tagging errors, and no diacritical character
is present in the text. Running DIAC+ on TT provided us
with an evaluation of the upper-limit of the system's
accuracy (when perfect tagging is available).

For a more realistic setting we further removed from
TT the associated tags getting a raw tokenized text (RT)
on which we applied the processing chain (tagging with
the reduced tag-set, mapping the C-tags to MSD and
DIAC+). In both of these experiments DIAC+ was used
without any user interaction (that is with the S-words
automatically dealt with).

The results of these evaluations are synthesized in
Table 3. Unlike the statistics in Table 1, here, no tokens
were removed from the evaluation.

In order to asses the diacritics insertion accuracy we
developed a baseline system. The baseline system was
built using the Agenda corpus (10 million tokens). The
system uses a dictionary of non-diacritical forms with
their valid counterparts ordered by the number of
occurrences. The baseline system replaces the non-
diacritical form with the most frequent word-form. The
correct surface forms differences in the two experiments

(1,27%) can be ascribed entirely to the tagging errors, but
as mentioned before not all the tagging errors generate
diacritics restoration errors. A significant part of the
incorrect surface forms were S-words (321), which should
have received the user attention and choice.

In Table 4 we show the evaluation results of the same
experiments, but this time in terms of characters. As it
can be seen, the accuracy evaluation on characters shows
a performance of over 99% even for the baseline system.
One should note that the error score in the character-based
evaluation (0,6%) looks much better then the error score
in the word-based evaluation (2,25%). This supports our
previous intuition (see the footnote 4) that one could
easily estimate one evaluation score (word or character
based) knowing the other score and if the average word
length is smaller than the average distance between two
diacritical characters.

However, based on the log file they could be easily
corrected. The rest of the incorrect surface forms resulted
from tagging errors. Some of these tagging errors in
Romanian are very difficult to solve in a limited context.

DIAC on

tagged text
(TT)

DIAC on
raw text

(RT)

Baseline
system

Tokens 117 909
Words with
diacritics 34745 (29,47%)

S-words 361
Unknown
words 2130 (1,8%)

Correct
word-forms

116 810
(99,06%)

115 262
(97,75%)

113 491
(96,25%)

Incorrect
word-forms

1 092
(0,94%)

2 609
(2,25%)

4 418
(3,75%)

Table 3. Word-form accuracy evaluation DIAC+

Most of them refer to the tense value attribute (present
and imperfect tenses) of verbs in the first class
conjugation, the infinitive form of which ends in "a".
Their resolution would require a post-tagging processing
with an inspection of the neighboring clauses and an
analysis of sequence-of-tenses (hoping that the
neighboring verbs are not in the same conjugation class).

Table 4. Character accuracy evaluation DIAC+

DIAC on

tagged
text (TT)

DIAC on
raw text

(RT)

Baseline
system

Characters (no
spaces) 501735

Diacritics 41144
Correct characters
(no spaces)

500400
(99.73%)

498764
(99.40%)

497096
(99,07%)

Incorrect characters
(no spaces)

1335
(0,27%)

2971
(0,6%)

4639
(0,93%)

172

7. Implementation
The DIAC+ system is available in two implementations:
as a web service, requiring a licensed access on our
linguistic web-services platform for natural language
processing and as a stand-alone variant, intended for local
recovering of the diacritics in case of sensitive documents
which the author might be reluctant to send via internet.

The web-service accepts a MS-Word document and
autonomously decides on the required corrections . The S-
words are corrected according to the user preferences, but
a logfile is generated documenting each correction (initial
word-form, possible replacements and the actual one).
Optionally, the logfile can include for each replacement
the sentence in which it was operated.

The stand-alone version of the application is embedded
into the Microsoft Office suite and complements the MS
spell checker.

Once an MS-Office document is opened, pressing the
Search button of the DIAC+ interface will launch the
entire processing chain (text extraction, tokenization,
tiered-tagging and multi-criteria indexing) discussed in
the previous sections. As a result, all the words in the
current document, potentially requiring diacritics
restoration, will be listed in the left pane (Suggestions) of
the DIAC+ interface as shown in Figure 2.

Each word-form listed in the Suggestion window is
preceded by a '+' unfolding button and a "check" box. If
the "check" box is checked-out () the system signals
that for the respective word it found a unique correction.
Selecting a word-form in the "Suggestions" window, will
bring-up in the "Context" window (left window in the
DIAC+ interface) the sentence containing the respective
occurrence and scroll the document window highlighting
the selected.

Pressing the "Insert all checked" will operate the
respective corrections and in the "Suggestions" pane will
remain only the words for which the system could not

make an informed decision. These words are preceded by
an unchecked box and pressing the '+' unfolding button
will show the contextually possible diacritical forms. Each
possible solution has a "check" button allowing the user to
specify his option.
The system can correct a few typographical errors such as
transposed characters, wrong typed characters, or omitted
characters. The MS spell-checker underlines all the
unknown words, thus allowing the user to further inspect
spelling errors which are out of reach for DIAC.

8. Conclusions
In comparing accuracies of two diacritics restoring

systems, one has to take into account the processing unit
(word or letter) and the way accuracy is defined because,
otherwise the comparison might be very misleading. For
instance, a very easy evaluation method starts with a
regular text (containing all the required diacritics), strips
off all the diacritics, run the automatic recovery and
compares the original text with the text produced by the
recovery algorithm. Non-identical units (words or
characters) are considered mistakes. By dividing the
number of mistakes to the total number of units in the text

Figure 2. Diacritics recovery in Microsoft Word 2003

173

(words or characters) one gets what usually is reported as
the error rate of the algorithm. This score depends on the
considered unit, but also on the average character-length
of a word (awg-length) and on average distance (awg-dist)
between two consecutive correct diacritical characters.
These two numbers may be language or even genre
dependent. For languages where the average distance
(avg-dist) between two correct diacritical characters is
comparable or higher than the average length of a word
(avg-length), as the is the case for Romanian and for
many other languages, the evaluation of the character-
based error rate looks always better the word-based error
rate4 (approximately avg-lenth better) .

As compared to our previous version (Tufis, Chitu,
1999), the present DIAC+ implementation includes
spelling corrector and processing for unknown words. It is
more accurate due to the significant improvements in the
underlying language model (the underlying lexicon is
almost triple in size) as well as due to the increased
accuracy of our tiered tagger. Also, in the previous
version we used a combined language model (requiring
the text to be re-tagged with each of the available
language models and in the end combining the results (see
(Tufis, 1999) for details). DIAC+ is much faster because it
uses a single tagging step, thus avoiding the time
overhead of combined language model tagging (at a price
of a less than 0.3% decrease of accuracy5). Since the
coverage of the DIAC+ essentially depends on the
statistical underlying dictionary and the language model
used by the tiered tagger, the system checks, on a regular
basis, our linguistic web-service platform for newer
language models and lexicons and updates itself
accordingly.

The stand-alone version of DIAC+ is implemented as a
DLL and incorporates all the required information and
processing tools. The web-service version does not have
this problem, as the DIAC+ code runs independently of
MS-Office programs and thus, it is more appropriate for
mass document processing than the DLL-based stand-
alone version.

9. References
Bèze, M., Mérialdo, B., Rozeron, B., Serouault, A., M.

(1994). Accentuation automatique de texte par des
méthodes probabilistes. Technique et sciances
informatiques, 13(6) pp. 797-815

Bobiceva, V. (2008). O altă metodă de restabilire a
semnelor diacritice. In Pistol I., Cristea D. Tufiş D.

4 An informal explanation: on average, each wrong diacritical
character produces one wrong word (avg-dist > avg-length) so
the nominators of the two scores are approximately the same;
however the denominator of the character-based evaluation
score is awg-length times larger than the denominator of the
word-based evaluation score;
5 Recall that not all tagging errors generate diacritics recovering
errors: a 2% improvement of the tagging quality, has not a
significant effect at diacritics restoration level.

(eds.): Resurse Lingvistice şi Instrumente pentru
Prelucrarea Limbii Române, pp.179-188

Ceauşu, Al. (2006). Maximum Entropy Tiered Tagging,
Janneke Huitink & Sophia Katrenko (editors),
Proceedings of the Eleventh ESSLLI Student Session,
ESSLLI 2006, pp. 173-179

Mihalcea, R. (2002). Diacritics Restoration: Learning
from Letters versus Learning from Words. In
Proceedings of CICLing, pp. 339-348.

De Pauw, G, Wagacha, P. W., de Schryver, G-M (2007).
Automatic Diacritic Restoration for Resource-Scarce
Language. In V. Matousek and P. Mautner (Eds.): TSD
2007, LNAI 4629, pp. 170–179

Simard, M. (1998). Automatic Insertion of Accents in
French Texts. In Ide & Vuotilainen (eds) Proceedings
of the Third Conference on Empirical Methods in
Natural Language Processing , Granada, Spain, 27-35

Spriet T. and El-Bèze M. (1997). Réaccentuation automa-
tique de textes. In FRACTAL 97, Besançon.

Steinberger, R., Pouliquen, B., Widiger, A., Ignat, C.,
Erjavec, T., Tufiş, D., Varga D. (2006). The JRC-
Acquis: A multilingual aligned parallel corpus with 20+
languages. Proceedings of the 5th International
Conference on Language Resources and Evaluation
(LREC'2006). Genoa, Italy, pp.2142-2147

Stolcke, A. (2002). SRILM - An Extensible Language
Modeling Toolkit, in Proc. Intl. Conf. Spoken
Language Processing, Denver, Colorado, September
2002

Tufiş, D., Chiţu, A. (1999). Automatic Insertion of
Diacritics in Romanian Texts. In Proceedings of the 5th
International Workshop on Computational
Lexicography COMPLEX, Pecs, Ungaria, 1999, pp.
185-194

Tufiş, D. (1999). Tiered Tagging and Combined
Classifiers. In F. Jelinek, E. Nth (eds) Text, Speech and
Dialogue, Lecture Notes in Artificial Intelligence,
Springer, pp. 28-33

Tufiş, D. (2000). Using a Large Set of EAGLES-
compliant Morpho-Syntactic Descriptors as a Tagset
for Probabilistic Tagging, International Conference on
Language Resources and Evaluation LREC’2000,
Athens, 2000, pp. 1105-1112

Tufiş, D., Dragomirescu, L.(2004). Tiered Tagging
Revisited. In Proceedings of the 4th LREC Conference,
Lisabona, 2004, pp. 39-42

Zweigenbaum, P., Grabar, N. (2002). Accenting unknown
words in a specialized language. In Proceedings of the
Workshop on Natural Language Processing in the
Biomedical Domain, ACL 2002 Philadelphia, July
2002, pp. 21-28.

Yarowsky, D. (1994). A Comparison of Corpus-based
Techniques for Restoring Accents in Spanish and
French Texts. In Proceedings of the Second Annual
Workshop on Very Large Corpora, Kyoto, Japan

Wagacha, P.W., De Pauw, G. , Githinji, P. W. (2006). A
Grapheme-Based Approach for Accent Restoration in
Gĩkũyũ. In Proceedings of LREC2006, Genoa, Italy, pp.
1937–1940.

174

