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Abstract
Data models and encoding formats for syntactically annotated text corpora need to deal with syntactic ambiguity; underspecified repre-
sentations are particularly well suited for the representation of ambiguous data because they allow for high informational efficiency. We
discuss the issue of being informationally efficient, and the trade-off between efficient encoding of linguistic annotations and complete
documentation of linguistic analyses. The main topic of this article is a data model and an encoding scheme based on LAF/GrAF (Ide
and Romary, 2006; Ide and Suderman, 2007) which provides a flexible framework for encoding underspecified representations. We show
how a set of dependency structures and a set of TiGer graphs (Brants et al., 2002) representing the readings of an ambiguous sentence
can be encoded, and we discuss basic issues in querying corpora which are encoded using the framework presented here.

1. Introduction
Ambiguity poses a problem for syntactic annotation of text
corpora. Although a parser may produce a fully disam-
biguated analysis, as e.g. a probabilistic (tree-bank) parser
would do, one may opt for a non-disambiguated analysis for
several reasons. First, one might be interested in the precise
nature, distribution and frequency of ambiguities which can
be observed in corpus data1, in which case a disambiguated
corpus is obviously of no use. Second, automatic disam-
biguation is not perfect nor uncontroversial (and neither is
manual disambiguation), thus we might loose the syntactic
reading intended by the author by forcedly disambiguating
the syntactic structure of a sentence. Third, we might not
be able or not interested in calculating fully disambiguated
structures, because the nature of our linguistic task does not
require that, or because a certain state of tools and resources
is to be documented and shared, without any stipulations.
In all these cases, we need an annotation data model which
allows us to represent ambiguous structures without pro-
ducing invalid data structures (e.g. tree fragments instead
of a tree) or forcing us to use means of representation in
a non-canonical way (fragmentary parses, for example, are
often represented with the root nodes of tree fragments con-
nected to a non-linguistic artificial root node).
In this paper we will outline a data model for underspeci-
fied representations of syntactic structures in text corpora,
based on the upcoming ISO standardLinguistic Annotation
Framework(LAF; Ide and Romary, 2006). Our representa-
tion is designed to be a generic encoding scheme for under-
specified representations. We use dependency structures to
exemplify our encoding scheme.
The main requirement to our representation is to beinfor-
mationally efficient:

• The representation should encode as much informa-
tion as is necessary to correctly describe those parts of
an analysis which are not subject to ambiguity;

1The data model described in this paper was originally de-
signed for a corpus of syntactically ambiguous sentences collected
for the study of syntactic ambiguity.

• The representation should avoid unnecessary overhead
in encoding variation, e.g. between the structures of
different readings.

This sounds trivial, but is not easy to achieve. The second
requirement above actually constitutes a trade-off, as the
threshold for being unnecessary may in practice vary with
the task. In section 2. we examine generic requirements for
underspecified representations of dependency structures.
Informational efficiency intrinsically allows for compact
storage, as only a minimum amount of information needs
to be stored. It furthermore helps to reduce inconsistencies
in the annotations, as it eliminates the need to check for
consistency several encoded instances of the same piece of
information.
While treebanks are often conceived of as containing only
intended, thus (manually) disambiguated syntactic struc-
tures, some parsers producepacked parse forests(Dörre,
1996) to represent those structural ambiguities which can-
not be eliminated during parsing (e.g. Bitpar: Schmid,
2004). Packed parse forests essentially encode local dif-
ferences between structures by means of spelling out lo-
cal alternatives. Our representation allows to specify such
spelled-out disjunctions, but goes further by allowing to
specify interval-like constraints (e.g. for a highest and a
lowest node to which a PP can attach). Furthermore, we al-
low for interdependencies between constraints to be spec-
ified explicitly, i.e. not only by mere parallelism between
disjunctions.
Using a pre-existing framework as the basis for a new en-
coding scheme increases reusability of data encoded in the
new scheme. Reusability here has two aspects:

1. Re-using tools:Existing tools can be used to analyse
or to modify the data, perhaps with little modifications
to the tools. This facilitates investigations based on the
data.

2. Re-using the data:The data encoding can be inter-
preted more easily because it shares concepts, data
model, and representational means with other encod-
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ing formats. Thus, sharing the data among projects
and re-using it in later projects becomes easier.

We base our encoding on an upcoming ISO standard for
corpus encoding, thus we should be able to profit from up-
coming tools and methods based on this standard, as well as
being able to contribute to the development of this standard
and the collection of pertaining tools.

2. Requirements for a
dependency-based Representation

Dependency structures encode governor-dependent rela-
tions between individual words; a dependent is seen to bear
a certain role with regard to its governor. Thus, a depen-
dency structure can be represented by a directed acyclic
graph, with tokens as nodes and pair-wise dependency rela-
tions as edges. Each node is labelled with features pertain-
ing to the particular word it represents, like part-of-speech
tag, lemma, and morphosyntactic analysis, while an edge
is annotated with the grammatical relation it encodes. The
distinction between governor and dependent is encoded in
the direction of the edge, which is either governor to depen-
dent or dependent to governor (as used by e.g. Schiehlen,
2003; Schröder, 2001). The following example shows de-
pendency edges directed from dependent to governor taken
from an analysis forJohn buys a book:

John
SB
−→ buy

book
OBJ
−→ buy

a
SPEC
−→ book

There are three kinds of possible ambiguities in dependency
structures:

1. Alternative labellingsof edges or nodes: Edge label
alternatives occur e.g. with subject-object ambigui-
ties, node label alternatives e.g. with homographic
forms which may receive multiple part of speech tags.
Examples:

(1) Hans
SUBJ|OBJ
← liebt

OBJ|SUBJ
→ Maria

(2) Er bevorzuge/VVFIN ein gutes Arbeitsklima, sie
dagegen sichere/VVFIN|ADJA Arbeitsplätze

2. Alternative topologies,where a particular node can be
a dependent of two (or more) possible governors: This
is the case e.g. for PP attachment ambiguities.
Example:

(3) Klaus beobachtet den Mann mit dem Fernrohr.
Klaus watches the man with the telescope.

3. Interdependent ambiguities, where one option out of
one set of possible alternatives depends on the choice
of an option in another set of alternatives: for example,
an ambiguitiy in the attachment of a PP to either a verb
or a noun may only occur if the PP can be analysed
as adjunct to the verb. If the PP can be alternatively

labelled as subcategorised PP (i.e. a prepositional ob-
ject), the ambiguity disappears. Thus, the structural
ambiguity depends on the labelling ambiguity.

To outline our approach, we will refer to example (4)
throughout the paper:2

(4) Karl sieht nur Schrott in seinem Wagen

a Karl sees nothing but scrap, which is inside
his car.
(PP as noun adjunct)

b Karl is in his car, and sees nothing but scrap
(PP as verb adjunct)

c Karl regards his car as nothing better than
scrap.
(PP as POBJ, attachment not ambiguous)

Encoding by constraints. Our approach to encoding
these types of ambiguities is to specifyconstraintsfor those
parts of the annotation which are different between individ-
ual readings. Such constraints need to be as generic as pos-
sible to cover all possible readings, while being as specific
as is necessary to prevent illegal instantations which leadto
illegal structures or unwanted readings (e.g. readings ruled
out by partial disambiguation). Each type of ambiguity in-
troduces an own class of constraints, namelylabelling con-
straints, structural constraints, andconstraint interdepen-
dencies. These are discussed in detail in section 4.1.
The number of nodes in a dependency structure is directly
correlated with the number of words in a sentence. Thus
an underspecified representation of dependency structures
normally can not contain constraints which are instanti-
ated by nodes. Representations of phrase structures, on
the other hand, may contain constraints for the existence
of nodes, namely if a constraint controls optional adjunc-
tion. In example (4) we can optionally build a complex NP
from Schrottand the PPin seinem Wagen, which means that
we can have an additional node above the node pertaining
to Schrott(cf. section 5.).
This means that there may be nodes which instantiate con-
straints describing an alternative local phrase structure.
However, this does not introduce a new type of constraint; if
we can put constraints on the arrangement of partial struc-
tures, new nodes can be (part of the) instantiations of such
arrangement constraints.
Representations for all three kinds of ambiguities (as out-
lined above) should be encoded with as few modifications
and extensions to GrAF as possible.

3. The GrAF Data Model and
packed Structures

As far as we can see, there have not been many propos-
als for representing syntactic ambiguity in corpora. In
treebanks, the problem does not occur, because annota-
tors are trained to identify the intended reading of the sen-
tences they deal with. On the other end of the scale, for-
mats for detailed corpus annotation, such as Annotation
Graphs (Bird and Liberman, 2001) and the ATLAS tools

2The scope ambiguity introduced by the adverb is silently ig-
nored for simplicity.
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Figure 1: Example (4) represented by an AND-OR tree of
dependency structures.

(Laprun et al., 2002), or NITE and NXT (Carletta, et al.,
2004) aim at representing alternative annotations of arbi-
trary complexity. For syntactic ambiguities, this implies
that such formats don’t aim at informational efficiency, but
rather list different completely disambiguated structures,
even if they partly overlap. More recent proposals, such
as Eckart and Teich (2007), focus so far on other types of
linguistic annotations. The SALSA corpus (cf. Burchardt
et al., 2006) is based on the TiGer treebank (Brants et al.,
2002) and thus does not deal with structural ambiguity; for
its semantic annotation, it allows for local underspecifica-
tion at the level of semantic frames (of Frame Semantics, cf.
Baker et al., 2003) and roles: if a given syntactic structure
may receive two alternative frame semantic interpretations,
different roles may point to the same constituent. As also
this is only a partial account, our proposals will need to be
compared with the LAF/GrAF approach proposed by Ide
and Romary (2006).
In LAF/GrAF, the most basic layer is a so-calledprimary
segmentation, e.g. a conventional tokenisation, of the in-
put orprimary data3 which is represented as a set of edges
defined on elementary parts of the primary data. Edges in
the primary segmentation are viewed as nodes when being
referred to by annotations from higher levels, so-calledlin-
guistic annotations. Linguistic annotations consist of nodes
and edges; annotations are encoded in feature structures at-
tached to nodes and edges.
If a span of primary data receives multiple alternative
annotations, e.g. several syntactic structures, this can be
handled in two ways in GrAF: either both annotations
are stored independently, or the alternative structures are
merged into a combined structure. When two or more
nodes cover the same sub-span, they can be joined by a
dummy parent node, which in turn has the two alternative
nodes as descendants (cf. figure 2).
This representation scheme resembles packed parse
forests represented as AND/OR trees as decribed

cat:VVFIN

role:alt

edge
in linguistic annotation

lexical edge
(node to primary segmentation)

node feature

edge feature

node

cat:VVFIN

cat:NE
cat:NN

cat:APPR

cat:NN

cat:PPOSAT

role:alt role:alt
role:alt

role:obj

role:pobj

role:adj

role:adj
role:obj

role:obj
role:subj

role:subj

role:subj

role:arg

role:det

Karl sieht Schrott in seinem Wagen

Figure 2: Graphical depiction of the GrAF representation
of example (4)

e.g. by Dörre (1996), cf. figure 1.
GrAF appears to restrict annotations of edges to technical
items like indices within multipart tokens and suggests that
dependency relations be annotated to special nodes inserted
into the word-word edges. We assume in the following that
edgesare labelled with relations, but obviously the trans-
formations necessary to obtain a representation fully com-
pliant with GrAF are fairly easy to implement.

4. A flexible encoding scheme based on
LAF/GrAF

The aims of the representation scheme we propose are as
follows:

1. The representation scheme should be informationally
efficient,

2. the representation scheme must allow to cleanly en-
code underspecified representations of syntactic struc-
tures,

3. and the representation scheme must be as flexible as
possible.

Requirement (1) has been discussed in the introductory sec-
tion 1. The requirement for a clean encoding of underspeci-
fied representations (2) both forbids to use representational
means in non-canonical ways and implies to produce en-
codings easy to read and to understand. For example, using
pseudo-nodes to represent constraints or disjunctions (cf.
AND-OR trees, Dörre 1997) would mean to introduce a
special category of nodes (and edges), which are not part of
the linguistic description as such, but serve technical pur-
poses; cf. for example the OR-node and the vast number of
reduplicated edges in figure 1. On the other hand, several
alternative elements (e.g. the edge linking the PP in exam-
ple (4) to either verb or noun) can just be included in the

3Primary data is, in the sense of a true stand-off annotation,
only referenced, never copied or modified.
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representation without further marking them as belonging
to the same set of options; reconstructing the structure of
one specific reading means that first we must detect (by ex-
amining a large part of the representation) that there is a set
of options, before one specific option can be selected.
The requirement of flexibility (3) dictates that the repre-
sentation format must not be limited to means of repre-
sentation which are specific to a particular type of under-
specified representations. If, for example, the only means
of representation is disjunction, difficulties arise with in-
terdependent ambiguities, as interdependencies cannot be
expressed4. Furthermore, the means of representation must
not be tied to a specific kind of annotation or annotation
scheme, but should operate on the abstract properties of the
annotations (e.g. on the fact that both dependency struc-
tures and TiGer structures are graphs). Thus, the format
need not be redesigned at large for adapting it to a new type
of syntactic annotation format.
To ensure this, we propose an extension to the LAF/GrAF
data model which allows to specify constraints over struc-
tures in a generic way. The data model defined by
LAF/GrAF, which has been described in section 3., rep-
resents syntactic ambiguity by a construction equivalent to
packed parse forests. However, the resulting representation
introduces dummy nodes and edges marking alternatives,
which means that strictly syntactic parts of the description
are interspersed with strictly technical elements. To avoid
this, we extend the data model by genericconstraints.

4.1. Constraint extension of the LAF data model
Our extension of the LAF data model consists of acon-
straint list, which contains all constraints for arranging and
labelling the structures described by a particular document.
The constraint list may contain three kinds of constraints,
namely structural constraints, labelling constraints, and
constraint interdependencies.

The constraint list contains all constraints imposed on
a certain collection of partial graphs. These partial graphs
are encoded as defined by LAF/GrAF, i.e. as a list of edges
and a list of nodes.5 The partial graphs (or graph frag-
ments) need not be connected; for increased compatibility
with tools which are not aware of underspecified represen-
tations as defined in this paper, one reading may be picked
arbitrarily.6

Structural constraints define relations between those
parts of the structure which can be deterministically recog-
nised, that is, which do not contain ambiguities. Parts of
annotations in LAF/GrAF can be referenced by theiriden-
tifiers (the XML attributeid on nodes and edges). Thus,
a structural constraint is a triple〈NG, NF , t〉, whereNF is

4Parallel disjunctions may incur duplication of elements.
5Mathematically: sets of uniquely identifyable elements.
6In a scenario where a parser always delivers one unique struc-

ture which is guaranteed to contain all fragments of possible struc-
tures, and which is ‘augmented’ later on with information which
permits to construct the structures of all possible readings (cf.
Spranger and Kountz, 2007), this structure may be picked as the
reading spelled out. However, this reading has no particular status
with regard to the other readings whose structures are not stored
explicitly.

the root node of a graph fragment which needs to be placed
in the structure. It may be placed inside a subgraph whose
root is the nodeNG. t tells the way of combiningNG and
NF . We define three types7 as follows:

1. BELOWAPPROPRIATELY means thatNF will be
placed in anyappropriateplace inside the structure
whose rootNG is. The grammar defines which places
are appropriate.
If NF is a preposition in a dependency structure, and
NG is a noun, with other prepositional phrases be-
tweenNG andNF , thenNF may be adjoined to any
noun betweenNG andNF which sits on the right edge
of a noun phrase. This is the case inPeter calls the
manNG

behind thetelescopeonNF
the hill, with the

nodes marked in bold being possible governor nodes
for the prepositionon.

2. BELOWWITHOPTIONS is essentially the same as BE-
LOWAPPROPRIATELY, but the possible points of at-
tachment are given in the constraint instead of by
grammatically defined appropriateness.

3. ATTACHMENTOPTION means thatNF may be at-
tached toNG in particular, but to no other node inside
the fragment whose rootNG is. This constraint is not
very useful in isolation, but needs to be combined with
other constraints.

Instantiations of structural constraintsare generally edges.
In dependency structures, all nodes are known in advance,
thus it is sufficient to allow constraints to just be instanti-
ated by adding an edge between two existing nodes. But
in other formalisms not all nodes may be present in ad-
vance. In TiGer structures (see section 5.), for example,
some nodes may only be present if needed as source or tar-
get of an edge; if present, they incur creation of additional
edges. For example, a bare noun (without article, adjective,
or prepositional adjuncts) may be directly attached to a verb
as an object. If a PP is attached to the noun, an NP node is
constructed which becomes the object of the verb, and the
noun and the PP are attached to this new NP node. That is,
attaching the PP results in creating an NP node, the edge
from the PP to the NP, and a new edge linking the NP to its
head noun.
The semantics for the instantiation of a structural constraint
we assume is a three-step procedure: The first step is to
construct thetarget edge, as immediately specified by the
constraint. This edge may require as apreconditiona node
to be present, which is first sought within the structure; if
it exists, it is used. Otherwise, a new node is created, and
along with this new node all edges are created which the
grammar requires, as aside effect. See section 5. for an
example of the above case of attaching a PP to an NP.

Labelling constraints define options for labelling parts
of the structure. A labelling constraint is basically a triple
〈S, L, t〉, whereS is a structural element which receives a

7More types may need to be defined in order to encode more
sophisticated underspecified representations than those we con-
ceive of here.
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label as specified byL. t indicates the interpretation ofL
as follows:

• LABELSET indicates thatL is a set of possible labels
for S. S may receive exactly one element out of the
set given inL.

• LABELSUBTYPE indicates thatL is a supertype of the
possible labels whichS may receive. S is labelled
with a label which has a terminal subtype of the type
given inL.
That is, if there are subtypes of the type given asL

which themselves are supertypesL1, . . . of subtypes
l1,1 . . ., then these non-terminal subtypesL1, . . . can-
not be labels ofS. Instead, only any of their terminal
subtypes can be an instance of the label ofS.

Many structural elements have more than one label,
thus it is necessary to specify the typeF of label
which is constrained; Labelling constraints thus be-
comequadrupels〈S, F, L, t〉, with S,L,t as specified
above.

The objectS to which a labelling constraint refers may
be an existing node or edge, or a node or edge which re-
sults from instantiating a constraint. In the latter case, there
is no identifier to which a labelling constraint could refer;
thus, a labelling constraint has to refer to the structural con-
straint which, by instantiation, allows to introduce the la-
belled node or edge.

Constraint interdependencies allow to specify interde-
pendencies between particular instantiations of other con-
straints. Basically, a constraint interdependency encodes a
relation between two (classes of) instantiationsvA andvB

of two constraintsA andB. We specify the following rela-
tionships:

• ENFORCES: Instantiating constraintA by vA enforces
the choice ofvB as instantiation of constraintB.

• PRECLUDES: If vA instantiates constraintA, thenvB

may not instantiate constraintB.

A constraint interdependency is described by a quintuple
〈A, B, vA, vB , t〉, whereA, vA, B, vB are constraints and
possible instantiations as described above, andt is one of
said types ENFORCESor PRECLUDES.
References to structural constraints are made in a short-
hand manner: The structural constraints we defined above
can only be instantiated by edges fromsomegovernor to
oneparticular fragment root, thus only one end of the edge
varies. This is exploited by referring to the varying node in
vA or vB attributes of a constraint interdependency.

4.2. The GrAF encoding of the constraint extension
exemplified

We exemplifiy the linearisation of the extended LAF data
model described above by giving one possible encoding for
example (4), analysed in dependency structures.8 Figure 3

8We represent the predicative NPSchrott in the readingcon-
sider sth. as sthas an accusative object. Obviously, the predicative
could equally be represented by means of a specific grammatical
relation; however, the analysis as an accusative object is in line
with the TiGer treebank and Engel (1996).

v4

v1

SUBJ
OBJ

ADJ

v5

Karl sieht nur Schrott in seinem Wagen

DET

PN

Figure 3: Fragments and nodes referenced by constraint in
example (4)

shows the fragments of the analyses of readings (4a,b,c).
The nodesv1, v4, andv5 are those nodes that need to be
taken into consideration when constraining the arrangement
of these two fragments.
Example (4) can be encoded using any of the three types
of structural constraints given in section 4.1. Here, we
opt for a constraint of the type BELOWAPPROPRIATEand
explain which grammatical knowledge must be available
when spelling out the particular readings. We also shortly
discuss the differences between this encoding and an en-
coding using BELOWWITHOPTIONS.
The fragments given in figure 3 can be encoded as given in
figure 4. The arrangement of the two fragments is ruled by
following constraint:

〈v1, v5, BELOWAPPROPRIATE〉

In order to instantiate a constraint of type BELOWAPPRO-
PRIATE, a notion of “being appropriate” is needed. Here, a
prepositional phrase is to be attached; thus, only verbs and
nouns are appropriate candidates to which the PP might be
attached. Furthermore, a PP can only attach to a noun im-
mediately left of it, which rules outKarl.
The constraint list we need contains exactly one constraint,
which is the structural constraint described above:

<constraint-list>
<structural-constraint

id="c1" type="BelowAppropriate"
gov="v1" frag="v5" />

</constraint-list>

As indicated above, we chose this type of constraint over
the alternative encoding using a structural constraint of the
type BELOWWITHOPTIONS. In this alternative solution
with BELOWWITHOPTIONS, a list of possible points of at-
tachment would have been necessary, as in the following
XML fragment:

<constraint-list>
<structural-constraint

id="c1" type="BelowWithOptions"
gov="v1" frag="v5"
options="v1 v4" />

</constraint-list>
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1 <!-- primary segmentation omitted -->
...

10 <!-- nodes -->
11 <node id="v1">
12 <f name="cat" value="V"/>
13 </node>
14 <node id="v2">
15 <f name="cat" value="NE"/>
16 </node>
17 <node id="v3">
18 <f name="cat" value="ADV"/>
19 </node>
20 <node id="v4">
21 <f name="cat" value="N"/>
22 </node>
23 <node id="v5">
24 <f name="cat" value="PREP"/>
25 </node>
26 <node id="v6">
27 <f name="cat" value="PPOSS"/>
28 </node>
29 <node id="v7">
30 <f name="cat" value="N"/>
31 </node>
32 <!-- dependency edges -->
33 <edge type="dep-rel"

id="e1" from="v2" to="v1">
34 <f name="role" value="SB"/>
35 </edge>
36 <edge type="dep-rel"

id="e2" from="v3" to="v1">
37 <f name="role" value="ADJ"/>
38 </edge>
39 <edge type="dep-rel"

id="e3" from="v7" to="v5">
40 <f name="role" value="PN"/>
41 </edge>
42 <edge type="dep-rel"

id="e4" from="v4" to="v1">
43 <f name="role" value="OA"/>
44 </edge>
45 <edge type="dep-rel"

id="e5" from="v6" to="v7">
46 <f name="role" value="SPEC"/>
47 </edge>
48 <!-- lexical edges

(from nodes v1..v7 to the primary segments)
omitted -->

Figure 4: Fragments in figure 3 encoded in XML

The advantage of using a BELOWWITHOPTIONS con-
straint is that the whole annotation is self-contained insofar
as no additional knowledge about appropriateness needs to
be available. A query tool, for example, could just produce
the two instantiations by examining the constraint. On the
other hand, for this solution we must encode more informa-
tion, namely thatv1 andv4 are possible points of attach-
ment.
In any case the instantiation of the above structural con-

straint depends on the label assigned to the edge which
is to instantiate the structural constraint. If the edge is to
be labelled as a prepositional object (POBJ), the instance
〈v4, v5〉 (attachment to noun) is ruled out – the nounSchrott
cannot have a prepositional object.
We first define which labels are possible for this edge by a
labelling constraint (which has the IDc2 in the XML frag-
ment below), then constrain the choice of the edge which
instantiates the above structural constraint (c1) by a con-
straint interdependency (c3).

<constraint-list>
<structural-constraint

id="c1" type="BelowAppropriate"
gov="v1" fragment="v5" />

<labelling-constraint
id="c2" type="LabelSet"
reference="c1"
labels="ADJ POBJ" />

<constraint-interdependency
id="c3" type="Enforces"
a="c2" aValue="POBJ"
b="c1" bValue="v1" />

</constraint-list>

Efficiency vs. Informativity. Chosing the best encoding
of a certain phenomenon of ambiguity turns out to be a
trade-off. The encoding scheme we propose is designed to
be flexible enough to accomodate both the needs of a query
tool, namely self-containedness, and the need of encoding
information about ambiguities as efficiently as possible.
Corpus annotation in general has to trade off informativity
for space. In the first case, the corpus fully documents the
analyses of the sentences with regard to a particular gram-
mar. A tool reading this corpus does not need much more
than built-in knowledge about the representation format as
such to decode the corpus. On the other hand, storing only
the minimun amount of information necessary to describe
the linguistic analysis is difficult or impossible. In the sec-
ond case, the encoded corpus data as such becomes small,
at the expense of efficiency in software which reads the cor-
pus, such as query processors. The software reading a cor-
pus needs very detailed grammatical knowledge (such as
the information that only verbs and nouns may be modi-
fied by PPs). Furthermore, the corpus does not fully serve
as a documentation of linguistic phenomena, as part of the
knowledge about the constructions is only available as a
separate grammar.
Our aim is informational efficiency, thus we basically adopt
the second view with regard to therepresentationswe pro-
pose. However, theencoding schemelaid out here is de-
signed to be versatile, and thus it should serve both for en-
coding maximally efficient representations and for encod-
ing more self-contained annotations.

5. Representation of TiGer structures
In the TiGer treebank (Brants et al., 2002) sentences from
newspaper text are annotated with syntactic analyses using
a special, hybrid syntax which describes a sentence in terms
of dependency and phrase structure. The phrase structure

2267



Karl sieht Schrottnur in seinem Wagen

OA

PN

SB HD

S

PNAC

PP

MO

PN PN

NP

Figure 5: Noun adjunct reading (4a) of example (4) in
TiGer structures

annotation is flat, and nodes are only introduced if they
cover more than one terminal elements (no unary branching
nodes are used). Dependency relations are as well inten-
tionally underspecified in many cases, e.g. the many pos-
sible sisters of a noun (like article, adjective, and PP) are
annotated as PN (part of noun).9

For the TiGer treebank as such, there is no need to repre-
sent ambiguity, as it is seen as part of the task of the an-
notators to fully disambiguate the syntactic analyses they
assign to sentences. However, one might be interested in
representing ambiguities while using TiGer-like structures
as the syntactic annotation format in a NLP tool, e.g. to
be able to compare output from the tool against the TiGer
treebank.
In this section, we exemplify how a representation of syn-
tactic ambiguities based on TiGer structures could be de-
fined within the framework we lay out in this paper. Again,
we use example (4); assuming the current TiGer grammar
(release 2.1, 2006-Aug-24), thein-PP is uniformly anno-
tated asMO (modifier), thus there is no equivalent to reading
(4c). For reading (4a), an analysis by a TiGer structure is
given in figure 5, while reading (4b) receives the structure
given as figure 6.
Reading (4a) differs from reading (4b) in so far that it has
an additional node: the NP headed bySchrott is annotated
with a separate node, as it covers more than one token.
This node and the necessaryPN edge from the NP node to
the head noun is created automatically when the structural
constraint which rules the attachment of the PP becomes in-
stantiated. We use a BELOWAPPROPRIATEconstraint; oth-

9TiGer structures are usually depicted as trees, where all
phrase structure nodes are represented by their respectivelabel,
enclosed in an elliptical frame. Edge labels are drawn as small
rectangels on the edges. The TiGer edge categories used in the
figures are:
SB — subject,HD — head (e.g. of a sentence),MO — modifier
(adverb or PP),AC — ‘adpositional case marker’, i.e. the prepo-
sition in a PP,PN — ‘part of noun’, i.e. determiners, nouns, and
adjectives in NPs and PPs.OA — accusative object. Especially
PPs and NPs are annotated in a way that avoids decisions about
which daughter node is the head of the structure. Cf. Brants et al.
(2002).

Karl sieht Schrottnur in seinem Wagen

SB HD OA

PN PNAC

PP

S

MO MO

Figure 6: Verb adjunct reading (4b) of example (4) in TiGer
structures

erwise, we would need to store a precomputed NP node in
the corpus.

<constraint-list>
...
<structural-constraint

id="c2" type="BelowAppropriate"
gov="n501" fragment="n502" />

</constraint-list>

6. Querying
In this section we outline how a corpus could be queried
which is encoded according to the framework presented in
this paper. This will be done in two steps: First, we sketch
the querying of a graph representation as the one GrAF
uses, i.e. a representation using separate node and edge
lists. Second, we show how the challenge of taking con-
straints as the ones we specified above can be solved.

6.1. Querying the basic Graph Representation

As our encoding scheme basically allows to constrain the
arrangement of graph fragments, it builds on a representa-
tion for graphs; in our case, the basis is the representation
specified by GrAF. GrAF represents graphs as two sets (en-
coded as lists), one containing all nodes and the other all
edges. Edges refer to the nodes by XML identifiers. Both
nodes and edges may be labelled with feature structures (cf.
section 3. for the LAF/GrAF data model and encoding).
Queries for graphs essentially specify constraints for struc-
ture and labelling of parts of the graphs which are desired as
a result. For the labels, this amounts to giving feature struc-
tures and checking whether a given feature structure in the
query subsumes a feature structure in the node or edge list
of a sentence in the corpus. This leads to sets of candidate
nodes and edges for each part of the query, represented by
their identifiers.
Structural parts of queries basically consist of sets of edge
templates, where the endpoint nodes of the edges are spec-
ified as said above. The matching procedure now has to se-
lect those entries in the edge lists of sentences which match
the conjoined edge templates as given by the structural part
of the query.
Besides edge sets proper, search predicates allow to search
lists of candidate edges by applying more abstract checks.
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These checks may, for example, examine the intersection
of the candidate edges and the transitive closure of edge
templates given in the query, e.g. for transitive dominance
checks.
Implementation of abstract search predicates is much more
complex than just to allow users to specify parts of the
graphs they are interested in, because the search engine has
to construct intermediate partial representations dynami-
cally.

6.2. Querying a Representation containing
Constraints

The constraints we specify are fundamentally similar to
search predicates insofar as they also allow to construct
additional structure during the instantiation of constraints.
They are basically a declarative specification of parts of the
structure which can be constructed by rule, in the same way
as expressions over search predicates are declarative spec-
ifications of structure templates which are built when the
search is executed.
In principle, the constraints given in the representation of
a particular sentence have to be instantiated when a search
pattern is checked whether it matches that sentences. Un-
like the procedure for ‘spelling out’ high level search predi-
cates, this process of instantiating constraints is not limited
by a pre-defined set of edges and nodes, but has a much
larger domain of candidate nodes and candidate edges. This
is especially true for representations of sturctures for which
additional nodes and edges have to be introduced during
constraint instantiation, cf. section 5.

7. Conclusion
We presented an extension to the LAF data model and its
GrAF serialisation which allows to encode underspecified
representations of ambiguous sentences in a variety of un-
derlying annotation structures. We exemplified this for de-
pendency structures and TiGer structures; the latter impose
the additional problem of nodes which need to be created
during instantiation of constraints but do not exist in the
structures of all possible readings. We showed that the
framework presented here can handle such cases.

Future Work. The constraint inventory as presented in
this paper is far from complete. Although the basic con-
straints we specify cover a garden variety of phenomena of
ambiguity, it remains to be extended to more complicated
cases.
The logic behind the interdependency of constraints is quite
complex. We are only tackling very basic cases here, but
it must be investigated further how exactly constraints can
interact, and which restrictions can be placed on the inter-
action of constraints.
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