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Abstract
Speech synthesis by unit selection requires the segmentation of a large single speaker high quality recording. Automatic speech recog-
nition techniques, e.g. Hidden Markov Models (HMM), can be optimised for maximum segmentation accuracy. This paper presents the
results of tuning such a phoneme segmentation system. Firstly, using no text transcription, the design of an HMM phoneme recogniser
is optimised subject to a phoneme bigram language model. Optimal performance is obtained with triphone models, 7 states per phoneme
and 5 Gaussians per state, reaching 94.4% phoneme recognition accuracy with 95.2% of phoneme boundaries within 70 ms of hand
labelled boundaries. Secondly, using the textual information modeled by a multi-pronunciation phonetic graph built according to errors
found in the first step, the reported phoneme recognition accuracy increases to 96.8% with 96.1% of phoneme boundaries within 70 ms
of hand labelled boundaries. Finally, the results from these two segmentation methods based on different phonetic graphs, the evaluation
set, the hand labelling and the test procedures are discussed and possible improvements are proposed.

1. Introduction
Very high quality text-to-speech synthesis can be achieved
by unit selection in a large recorded speech corpus (Dono-
van, 2001). This technique uses some optimal choice of
speech units (e.g. phones) in the corpus and concatenates
them to produce speech output. For various reasons, syn-
thesis sometimes has to be done from existing recordings
(rushes) and possibly without a text transcription. But,
when possible, the text of the corpus and the speaker are
carefully chosen for best phonetic and contextual covering,
for good voice quality and pronunciation, and the speaker
is recorded in excellent conditions. Good phonetic cover-
age requires at least 5 hours of speech. Accurate segmen-
tation of the phonetic units in such a large recording is a
crucial step for speech synthesis quality. While this can be
automated to some extent, it will generally require costly
manual correction. This paper presents the development
of such an HMM-based phoneme segmentation system de-
signed for corpus construction. We examine in particular
two modes of decoding. In the first mode, the decoding is
based on a phoneme bigram language model without any
text knowledge. In the second mode, the decoding is based
on a multi-pronunciation phonetic graph built according to
the text.
We first present the speech database recording, the archi-
tecture of the system and the training procedure. We then
detail the tests conducted to design the best models consid-
ering the segmentation based on the phoneme bigram lan-
guage model. Finally we discuss the procedure, the results
and future work.

2. Text and recording
The recorded text is a set of 3994 sentences in French, cho-
sen in (Corpatext, 2006) for good phonetic and contextual
covering. It was read by a male French speaker in a ane-
choic room and recorded with a high quality microphone
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and a 16 bits 44.1 kHz analog to digital converter. In-
structions for the speaker were to articulate clearly while
keeping a natural elocution, not too fast and without too
much expressive variation. Each sentence is recorded in a
separate file. By pressing a button, the speaker could re-
record any sentence until he was satisfied and then go on
to the next. A subset of 354 of these sentences has been
hand segmented, and then divided into one set of 200 sen-
tences for the tuning of the models (development set), and
another set of 154 sentences for testing (test set). The re-
maining 3640 sentences are used for model training (train-
ing set). The acoustic features used in all experiments
are Mel-Frequency Cepstral Coefficients (MFCC), together
with their first and second smoothed time difference fea-
tures (which we name MFCC- Energy Delta Acceleration
(MFCC-EDA)), calculated on 25 ms sample windows every
5ms.

3. Architecture of System
The segmentation system presented here is based on the
Hidden Markov Models Toolkit (HTK (Young et al.,
2002)). It has been designed to perform a Viterbi decod-
ing based on a phoneme bigram language model when the
text transcription is unknown, or to make use of the tex-
tual information modeled by a multi-pronunciation pho-
netic graph when the text is at least approximately known.
When a text transcription is not available or when the
pronunciation of the speaker differs from any of the per-
missible ones allowed in the multi-pronunciation phonetic
graph, a phoneme bigram language model is used. Indeed,
the absence of script-derived constraints on the realisable
phoneme sequences should allow better phoneme recogni-
tion for this case. However, the segmentation is less ro-
bust to non-speech noises like lipsmack or breathing which
can be intermingled with language phonemes. More, some
phoneme, such as /e/ (ses) and /E/ (seize), can be inter-
mingled if the models are not accurate enough. Therefore,
this scheme requires very accurate phoneme models (with
large number of Gaussians per state), which implies suffi-
cient amount of training data for every phoneme and, in the
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p[@|2|9]ti
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{p[@|2|9]ti}

Figure 1: Phonetic graph construction for the french sen-
tence “le petit chat”. The metacharacters : | denotes al-
ternatives, [] denotes encloses options, {} denotes zero or
more repetitions: 1) the sentence is splitted in words, 2)
phonetisation of each word, 3) each word is optional and
can be repeated, 4) optionals sp are added between words.

case of the choice of triphones as phonetic units, in every
left-right phonetic context.
On the other hand, when a text transcription is available, the
textual information, which can be seen as a constraint on
the permissible phoneme sequences, is provided by a multi-
pronunciation phonetic graph. This graph is built by using
a version of Lia phon, a rule based French text-to-phone
phonetisation program (Béchet, 2001), which we have im-
proved for this purpose. The graph is built as the following
and an example of the graph construction is presented on
Figure 1:

1. The sentence is splitted into words.

2. For each word, Lia phon generates different pro-
nunciations from which a corresponding multi-
pronunciation phonetic graph is generated.

3. Connections between the begining and the end of a
word and vice versa are added to allow skipping or
repetition of a word.

4. Optional short pauses are added between words.

Given the graph which has been selected (depending of the
text transcription availability), its associated set of HMMs
and an acoustic observation (MFCC), the log probability of
any path through the graph can be computed. The Viterbi
decoder (Fornay, 1973) then finds the path through the
graph which maximises the log probability. Finally, the
recogniser outputs the phonetic sequence that best matches
the speech data.
Two types of model have been experimentally compared in
our system. In the case of monophones, a separate HMM
is used to model each phoneme. In the case of triphones,
a separate HMM is used to model each phoneme in each
left-right context. Acoustic variations within each HMM
state due to differences in mode of speech, speaker mood,
background noises, etc., are modelled by a separate multi-
variate Gaussian distribution within the Gaussian mixture
model (GMM) used to represent the distribution of feature
vectors.

4. Training procedure
HMMs used for each phoneme (except ”sil” and ”sp”) have
the same topology of forward and self connections only and
no skips. The begin/end silence has a skip from the first to

the last active state and vice versa. Different numbers of
states per HMM and Gaussians per state were tested. The
models are estimated by embedded training, using a sin-
gle standard phonetic transcription of the whole sentence,
though the transcription text does not fit perfectly to the
speech recording, and an improvement will be proposed at
the end of the paper. Monophone HMMs are estimated by
embedded training on the training set. The phoneme bi-
gram language model is then trained on the training set
phonetic transcription by making the assumption that the
corpus is the realisation of a first order Markov chain the
states of which are the phonemes of the language.
If aiming for a final monophone based model, then a num-
ber of steps of mixture splitting, are applied while in-
creasing the number of Gaussians per state by splitting the
largest Gaussians, and models are re-estimated. If aiming
for a final triphone based model, then initial triphone mod-
els are first obtained from 1-Gaussian monophone models.
A clustering procedure is then used to map triphones ab-
sent from the corpus onto models of triphones present in
the corpus (Young et al., 2002). Several iterations of mix-
ture splitting and re-estimation steps are then applied, as in
the case of monophone models.

5. HMM design for phonetic decoding
Design of the models were conducted on the development
set sentences for different numbers of Gaussians. Optimi-
sations have been made considering the phoneme bigram
language model for which recognition results are more sen-
sitive in the HMMs topology than when considering the
multi-pronunciation phonetic graph. HMMs topology is
optimised according to the Match Accuracy measure (Mor-
ris et al., 2004) MAcc = 100×H/(H +S +D + I) where
H, S, D, I are the hit (H), substitution (S), insertion (I) and
deletion (D) counts obtained by Viterbi alignment of the
given and detected phoneme sequences. This measure ig-
nores timing information completely.
Initial tests use a model with 3 states, and 1, 2, 3, or 5
Gaussians. Variations tested in these initial tests include the
following: cepstral mean subtraction of the features; tying
of the central state of the inter or intra-word short-silence
HMM to that of the beginning and end silence HMM, with
given, extra or no forward and backwards skips added to the
silence model; low/high-frequency cutoff; different num-
bers of MFCCs; different sample window sizes and shifts,
and initial training of HMMs using hand-segmented data.
Finally, the best system configuration for the database was
the following :
* 64Hz low-frequency cutoff;
* EDA with 13 base MFCCs;
* Shift of the 25ms sample window;
* Initial training using hand-segmented data.
From this configuration, we then varied both the number of
Gaussians per state (1, 2, 3, 5, 10, 20, 40) , the number of
states per HMM (3, 5, 7, 9) and the number of Baum-Welch
iterations per processing step (3, 6, 9).
Figures 2 and 3 show match accuracy (ignoring timing in-
formation) according to, respectively, the number of states
per model and the number of Baum-Welch iterations per
training step. Figure 4 shows match accuracy against model

2404



Figure 2: Match accuracy versus number of Gaussians per
state for various number of states per HMM (6 iterations
per step, mono or triphones)

Figure 3: Match accuracy versus number of Gaussians per
state for various number of training iterations per step (7
state HMMs, mono or triphones)

size, for monophone and triphone models. A number of
points can be drawn from these Figures:
- Figure 2 shows that triphone models generally outper-
form monophone models for a given number of Gaussians
per model in terms of match accuracy. However, over-
all model size is usually much larger for triphones than
for monophones (see Figure 4). Further monophone tests
would be required to check whether monophone perfor-
mance will peak at a value lower than peak triphone perfor-
mance (94.4%). However, as triphone models take account
of known context dependencies, it would be expected that
triphone model accuracy would have a greater potential to
increase as the proportion of triphones represented in the
training data increases;
- Figure 2 shows that performance peaks at 7 states per
HMM for both monophone and triphone models (9-state
performance is almost the same, but slightly worse);
- Figure 3 shows that triphone performance start to satu-
rate at 2 Gaussians per state and peaks at 5 Gaussians per
state. Monophones peak somewhere above 40 Gaussians
per state;
- Performance peaks at 6 Baum-Welch iterations per pro-
cessing stage. However, performance does not increase
very significantly as this number of iterations increases be-
yond 3.
The results concerning concerning monophones and tri-
phones models with 7 states (6 Baum-Welch iterations per
processing stage) considering differents number of Gaus-
sians per state are resumed in the Table 1.

Figure 4: Match accuracy for monophone (1, 2, 3, 5, 10,
20, 40 Gaussian) and triphone (1, 2, 3, 5, 10 Gaussian)
models against model size.

NGaussians 1 2 3 5 10 20

Monophones

MAcc(%) 83.98 87.18 88.44 90.04 91.75 93.06

H 2694 2775 2800 2848 2891 2936

D 145 128 118 105 97 79

S 295 231 216 181 146 119

I 74 49 32 29 18 21

N 3134 3134 3134 3134 3134 3134

bytes/106 0.10 0.19 0.28 0.45 0.88 1.75

Triphones

MAcc(%) 92.83 93.99 94.08 94.47 94.30 -

H 2989 3004 3021 3026 3030 -

D 26 26 24 22 24 -

S 119 104 89 86 80 -

I 86 62 77 69 79 -

N 3134 3134 3134 3134 3134 -

bytes/106 4.34 6.82 9.22 14.96 28.2

Table 1: Results concerning monophones and triphones
models with 7 states considering different number of Gaus-
sians per state (6 Baum-Welch iterations per processing
stage).

6. Segmentation using textual knowledge
We now use the topology found in the last section (triphone
models, 7 states per phoneme and 5 gaussians per state)
and we study the results obtained with the test set consid-
ering the phoneme bigram language model to decide which
pronunciations will be allowed in the multi-pronunciation
phonetic graph.We then compare the results in term of
phoneme recognition precision and phonem boundary de-
tection precision.

6.1. Phoneme recognition precision
Table 2 shows the phoneme confusion counts for the seg-
mentation of the test set based on phoneme bigram lan-
guage model considering the best model topology pre-
sented in the last section (diagonal on the right under Diag).
Every one of the errors made was inspected and we only
show the most relevant ones. Of the remaining errors, lis-
tening tests showed that a large proportion were due to in-
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Table 2: Phoneme confusion matrix obtained after the test
set segmentation based on the phoneme bigram language
model (row=true phoneme, column=phoneme identified,
diagonal on the right under Diag). Hits=3026 Deletions=22
Substitutions=86, Insertions=85, Match accuracy=94.47%.

Table 3: Phoneme confusion matrix obtained after the test
set segmentation based on the multi-pronunciation phonetic
graph (row=true phoneme, column=phoneme identified,
diagonal on the right under Diag). Hits=3084 Deletions=16
Substitutions=34, Insertions=50, Match accuracy=96.85%.

accurate hand labelling, particularly the schwa phoneme
/@/. Also, the majority of substitution errors were due
to overlapping vowel classes, such as /e/ (ses) → /E/
(seize) and vice versa, /@/ (nulle) → /2/ (deux) and vice
versa, /O/ (comme) → /o/ (gros) and vice versa, and /w/
(coin) → /u/ (doux). Another source of errors are repeated
phonemes (such as /e e/ in “anne lue”, or /o o/ in “pot
au” or “zoo”, where there is sometimes an audible dip in

Boundary accuracy Whole sentence accuracy

Tol(ms) TAcc(%) H D I N Acc(%) T F N

5 19.76 991 1989 2036 2980 0.00 0 154 154

10 43.91 1833 1147 1194 2980 0.00 0 154 154

20 75.54 2585 395 442 2980 6.49 10 154 154

30 87.37 2801 179 226 2980 22.08 34 120 154

50 93.46 2902 78 125 2980 37.66 58 96 154

70 95.16 2929 51 98 2980 48.05 74 80 154

100 96.31 2947 33 80 2980 51.95 80 74 154

500 96.95 2957 23 70 2980 54.55 84 70 154

Table 4: Phoneme boundary detection precision (left)
and whole phrase alignment accuracy (right) for the seg-
mentation based on the phoneme bigram language model
with Tol=Tolerance in ms, TAcc=Timing accuracy in %,
H=Hits, D=Deletions, I=Insertions, T=number of fully cor-
rect, F=number of not fully correct)

Boudary accuracy Whole phrase accuracy

Tol(ms) TAcc(%) H D I N Acc(%) T F N

5 21.21 1049 1931 1965 2980 0.00 0 154 154

10 45.80 1883 1097 1131 2980 0.00 0 154 154

20 78.07 2628 352 386 2980 5.19 8 146 154

30 88.79 2819 161 195 2980 22.08 34 120 154

50 94.61 2914 66 100 2980 42.86 66 88 154

70 96.07 2937 43 77 2980 51.95 80 74 154

100 97.17 2954 26 60 2980 58.44 90 64 154

500 97.76 2963 17 51 2980 62.34 96 58 154

Table 5: Phoneme boundary detection precision (left)
and whole phrase alignment accuracy (right) for the
segmentation based on the multi-pronunciation phonetic
graph (Tol=Tolerance in ms, TAcc=Timing accuracy in %,
H=Hits, D=Deletions, I=Insertions, T=num fully correct,
F=num not fully correct)

the middle but sometimes just a slightly longer than usual
duration. The division between single and double occur-
rences therefore becomes blurred and this is then reflected
by confusion between single and double occurrences in the
automatic segmentation. Finally, many insertions are due
to schwas.
According to these remarks, we incorporated phonetics
rules in Lia phon in order to take the text information
into account via multi-pronunciation phonetic graphs. The
phoneme confusion matrix resulting from this new segmen-
tation is given in Table 3. Most of the errors are avoided
and the match accuracy is now equal to 96.8% compared
to 94.4% in the case of the segmentation based on the
phoneme bigram language model. Most of the errors are
still due to insertion/deletion of the schwa phoneme.

6.2. Phoneme boundary detection precision
We also compared the results in term of Timing accuracy
which is measured by the Timing Accuracy measure (tol)
TAcc = 100 × H/(H + D + I) where H is the number
of given transitions (i.e. manually placed) matched with a
closest estimated transition which falls within a given toler-
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ance (tol), D is the number of given transitions not matched
with an estimated transition, and I is the number of esti-
mated transitions not matched with a given transition. This
measure ignores phoneme identity information (label) com-
pletely. Table 4 shows boundary precision in terms of Tim-
ing Accuracy for the segmentation based on the phoneme
bigram language model. It also shows the percentage of
sentences with all boundaries within tolerance. Two esti-
mated boundaries are not allowed to be matched to the same
given boundary. The residual 5% inaccuracy for a tolerance
of 70 ms is therefore mostly due not to inaccurate boundary
positions, but to extra inserted boundaries (which may in
some cases not really be errors, because the hand labelling
in not 100% correct). On looking at Table 5, we can see that
there is a slight improvement concerning the segmentation
precision from 95.2% (phoneme bigram language model)
to 96.1% (multi-pronunciation phonetic graph) of phoneme
boundaries within 70 ms of hand labelled boundaries.

7. Discussion and future work
The match accuracy rate here obtained are promising but
should be interpreted with care. When building a cor-
pus from a controlled recording with a text transcription,
a match accuracy of 96.8% means that only some 3% of
the phoneme labels need hand correction. This will largely
diminish the cost of hand manipulations. However, error
locations are not provided directly in the system described
here. Some confidence measures still needs to be com-
puted such as in (S. Nefti and Moudenc, 2003). Another
indication of possible errors could probably come from the
comparison of the phoneme sequences provided by the seg-
mentation based on the phoneme bigram language model
(no text used) and the segmentation based on the phonetic
graph: we will also implement a comparison of these two
phoneme sequences as an indication of a possible error.
Match accuracy should be taken more as an indication of
the influence of the chosen architecture and parameters than
ground truth results. This is due to various reasons, among
which: the test set is relatively small and we have to in-
crease the hand segmented set. Also, hand segmentation is
far from being error proof and needs very careful verifica-
tion. It is probable that our test set contains errors requiring
careful examination.
As mentioned in section 4, the transcription text on the
whole sentences does not necessarily fit perfectly with the
recorded speech and this can degrade the estimation of
the models during the training procedure. To deal with
this problem, we propose to gradually relax the textual
constraint during training as follows: HMMs parameters
are first estimated by embedded training, as described in
section 4, using the rule-based phonetisation transcription
of the whole sentences given by Lia phon. After a few
steps of estimation, the phoneme models created so far are
used to realign the training data according to the multi-
pronunciation phonetic graph, and to create new transcrip-
tions that best match the speech recording. Then, the model
estimation is refined by embedded training based on the
new transcriptions. Finally, the training data are realigned
according to the phoneme bigram language model without
using any textual constraint. Thus, even if the text does not

correspond exactly to the speech recording, one should ob-
tain a good estimation of the phoneme models which finally
does not depend on the text.
System test results have been presented for the case of a sin-
gle speaker. However, the system has also been trained on
the Bref-80 multispeaker data base (Lamel et al., 1991) and
segmentation has been applied to unknown speaker record-
ings with promising results. More tests are to be done to
evaluate Match accuracy and time accuracy in these con-
ditions. A last improvement would be to allow different
number of states and Gaussians per states for HMMs.

8. Conclusion
This paper has presented some tests and improvements
of an HMM-based phoneme segmentation system aimed
at the construction of large speech synthesis corpus.
Optimal HMM architecture and parameter values have
been determined for a high quality monospeaker recording.
Segmentation based on phoneme bigram language model,
i.e. without text knowledge, and segmentation based on
multi-pronunciation phonetic graph with text knowledge,
have been studied and allow Match accuracy rates up to,
respectively, 94.4% (with 95.2% of phoneme boundaries
within 70 ms of hand labelled boundaries) and 96.8%
(with 96.1% of phoneme boundaries within 70 ms of hand
labelled boundaries). These results suggest that the cost
of manual verification and correction of the corpus can be
largely reduced. Possible improvements were discussed,
among which the use of multiple pronunciations during
training, segmentation and labelling error detection.
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