
A Text-based Query Interface to OWL Ontologies

Danica Damljanovic, Valentin Tablan, Kalina Bontcheva

Department of Computer Science
University of Sheffield

Regent Court, 211 Portobello Street
S1 4DP, Sheffield, UK

{d.damljanovic, v.tablan, k.bontcheva}@dcs.shef.ac.uk

Abstract
Accessing structured data in the form of ontologies requires training and learning formal query languages (e.g., SeRQL or SPARQL)
which poses significant difficulties for non-expert users. One of the ways to lower the learning overhead and make ontology queries
more straightforward is through a Natural Language Interface (NLI). While there are existing NLIs to structured data with reasonable
performance, they tend to require expensive customisation to each new domain or ontology. Additionally, they often require specific
adherence to a pre-defined syntax which, in turn, means that users still have to undergo training. In this paper we present Question-based
Interface to Ontologies (QuestIO) - a tool for querying ontologies using unconstrained language-based queries. QuestIO has a very
simple interface, requires no user training and can be easily embedded in any system or used with any ontology or knowledge base
without prior customisation.

1. Introduction
Tools for creating, editing and querying ontologies are
widely developed to date. However, an initial barrier for
using these tools is in the required background knowledge
of the field. For querying ontologies, for example, one must
be familiar with existing formal query languages such as
SPARQL or SeRQL in order to extract useful data. Such
languages – while having a strong expressive power – re-
quire knowledge of their formal syntax and understanding
of ontologies and the way in which they are encoded in lan-
guages such as OWL.
To date, many interfaces for querying ontologies are al-
ready developed. Some of them are GUI-based and sup-
port: a) browsing an ontology, b) constructing a query us-
ing predefined templates or c) querying an ontology using
formal query languages (e.g., SPARQL). The most popular
is Protégé 1 - a platform useful for experts who are familiar
with query languages, SPARQL in this case, although they
also have to be experienced Protégé users.
KIM - Knowledge Management Platform (Popov et al.,
2004) goes one step further in simplifying the semantic
search process - it provides an interface for querying knowl-
edge stores by either using predefined query templates, or
by constructing a SeRQL query using a form-based inter-
face. Consequently, users are either restricted in what they
can search for, or they need to be familiar with the underly-
ing ontology.
According to user preferences the most user-friendly inter-
faces for accessing data encoded in the form of ontologies
is using full-sentence queries (Kaufmann and Bernstein,
2007). However, existing NLI systems tend to be either do-
main independent (i.e., portable) albeit with lower perfor-
mance, or more domain-specific (i.e., portable with prior
customisation) but with a much better performance. The
caveat in the latter case is that customisation tends to be
very expensive as it is performed by various experts (e.g.,
domain experts, language engineers).

1http://protege.stanford.edu/

The key for bridging the gap between the two extremes
would be to carry out customisation automatically. The na-
ture of semantic markup has power to give the sophisticated
dimension to NLIs by extracting human-understandable
lexicalisations from the ontology automatically. However,
for this to happen the quality of semantic information in the
formal ontology has to be very high i.e. to contain enough
human-understandable labels or descriptions.
In this paper we present QuestIO - a tool for querying
a knowledge store using natural language. It is domain-
independent, easily embeddable and requires no end-user
training. As a knowledge store we consider a set of on-
tologies and the knowledge base containing instances of
ontology concepts and relations between them. QuestIO
accepts free text query as an input and transforms it into
a formal language query (currently SeRQL), see Figure 1.
Generated queries are then being executed against the given
knowledge store and the result is returned to the user. Am-
biguities in the queries are resolved by using reasoning over
the ontology, in order to derive all potentially valid inter-
pretations. Finally, there is no customisation necessary for
the initialization of QuestIO as all relevant extractions are
derived automatically from ontology resources.

Figure 1: Process of creating formal language queries (e.g.,
SeRQL) from human language

The paper is structured as follows. In Section 2. we give an
overview of existing NLI systems to structured data where
we emphasise the main challenges that had to be met dur-

205



ing the development of QuestIO. In Section 3. we give de-
tails of the QuestIO system, followed by a discussion on
QuestIO’s language coverage in Section 4. In Section 5. we
present the evaluation, and finally we conclude and discuss
future directions in Section 6.

2. Related work
Development of NLIs to different kinds of structured data
(in particular NLIs to databases e.g. (Hallett, 2006)) has
been subject of research for a long time. The main chal-
lenges faced during the development of such systems are
tightly related to human language itself, which suffers from
ambiguity and complexity. A very common way to over-
come this problem is to define a Controlled Language (CL).
A Controlled Language is a subset of a natural language
that includes certain vocabulary and grammar rules that
have to be followed. On one hand, a CL provides a simple
way to retrieve data without extensive training for the end-
user, whilst on the other has less expressiveness than formal
languages usually used for accessing structured data.
Although systems that serve as NLIs to relational databases
and ontologies have some things in common (e.g., solving
the language complexity problem), the main advantage of
the latter is the possibility to link the word meanings, in-
herit the relationships based on the existing structure and
deal with ambiguities more efficiently. These advantages,
combined with the increasing usage of ontologies, have led
to a recent surge in research on NLIs to ontologies. Due
to space limitations, here we will discuss only some of the
most relevant ones.
Orakel (Cimiano et al., 2007) is a NLI to knowledge bases
that besides support for querying knowledge represented in
OWL, provides means for accessing F-Logic. The key ad-
vantage of this system making it different than other similar
NLIs is the support for compositional semantic construc-
tion. This means that Orakel is able to handle questions
involving quantification, conjunction and negation. How-
ever, a mandatory customisation of the system according to
the domain-specific knowledge might make it unattractive.
The task of the person in charge of customising the system
is to create a domain-specific lexicon by mapping subcat-
egorisation frames to relations as specified in the domain
ontology. Subcategorisation frames are essentially linguis-
tic argument structures, e.g., verbs with their arguments,
nouns with their arguments, and the like.
A very well rated system according to its evaluation is
Librarian (Serge Linckels, 2007) – a domain specific sys-
tem for libraries. This system uses Wordnet (Fellbaum,
1998) in combination with a dictionary developed with re-
spect to their domain-specific ontology. This dictionary has
to be created for each specific domain and most of the cus-
tomisation has to be performed or supervised by domain
experts.
ONLI (Ontology Natural Language Interaction)
(Shamima Mithun, 2007) is a natural language ques-
tion answering system used as a front-end to the RACER
reasoner and RACER’s query language, nRQL. ONLI
assumes that the user is familiar with the ontology domain
but does not need to know how to write queries using the
nRQL language. The system will transform the user natural

language queries into the nRQL query formats. Its major
difference to other similar systems is that of supporting
queries with quantifiers and number restrictions. However,
from (Shamima Mithun, 2007) it is not clear how much
effort is needed for the system customisation for a different
domain or query formalism.
Querix (Kaufmann et al., 2006) is another ontology-based
question answering system that translates generic natu-
ral language queries into SPARQL. In case of ambigui-
ties, Querix relies on clarification dialogues with users. In
this process users need to disambiguate the sense from the
system-provided suggestions.
In our view, among the many developed NLI systems to
ontologies, Aqualog (Lopez et al., 2007) provides the best
balance between domain customisation effort and perfor-
mance. It is also backed by a learning mechanism, so that
its performance improves over time, in response to the vo-
cabulary used by the users. However, this system heavily
relies on language processing (Lei et al., 2006) and requires
syntactically correct sentences.
With a controlled language, such as that used by Aqua-
log, users can create queries in the form of questions such
as: ”list hotels in Paris located by the river”. Similar or
even the same query can be used as input for Web search
engines, such as Google. Due to the way search engines
work, similar even better results would be given for a much
shorter query comprising only the most important con-
cepts, namely: ’hotel Paris river’. This behavior has had
a great impact on users, who can be thought of as be-
ing ’Googleized’, i.e. they are expecting the same sim-
ple search-box interface and the same concept-based search
behavior from any other language-based search interface.
This is why many of the new systems are trying to support
concept-based queries, in addition to full syntactically cor-
rect ones.
The complementary system to Aqualog is SemSearch (Lei
et al., 2006). Whereas Aqualog accepts only full-blown and
syntactically correct questions, SemSearch is a concept-
based system with a Google-like Query Interface. It re-
quires a list of concepts (e.g., classes, instances) as an input
query separated by colon (e.g., ’news:PhD Students’ is a
query that results in all instances of class News that are in
relation with PhD Students). The idea of having a simple
form for semantic search queries is very good. On the other
hand, SemSearch does not consider relations between con-
cepts, and neither does it disambiguate in cases when there
is more than one relation.
Retrieval of relevant relations is a very important task in
our approach, resulting in highly accurate SeRQL queries.
Moreover, our approach differs in that it is much more ro-
bust with respect to mistakes in the query language, unlike
Aqualog. In addition to question-based queries, it also sup-
ports concept-based ones such as ’accommodation Rome’
which are similar to those supported by SemSearch, only
with a simpler and more natural syntactic form.
The main advantage of our system in comparison to the oth-
ers is in its emphasis on robustness, i.e. it gives users the
freedom to enter queries of any length and form. It uses rea-
soning over the ontology extensively, in order to correctly
interpret the user queries, in conjunction with some very

206



shallow language processing. It analyses potential relations
between concept pairs, and ranks them according to several
relevant factors to achieve the most accurate interpretation.
QuestIO requires no configuration or customisation when
changing the ontology to be used with. It supports compo-
sitional semantic construction comprising conjunction and
disjunction. Last but not least, the query interface is very
simple (a Google-like search box), so it can be used without
any prior training.

3. QuestIO
In our work on QuestIO we aim to address a number of
open issues, raised by existing natural language interface
systems:

1. Portability without prior customisation.

2. Minimum training for the user.

3. Avoiding use of a controlled language, but allowing
users to enter queries of any length and form.

4. Assisting the user in the process of query refinement.

5. Allowing expert users to control the output by provid-
ing the mechanism to follow the system’s transforma-
tions from the input (query) to the output (result), so
that they can disagree on system’s decisions and refine
the query at certain points.

To meet the requirement number 1, we considered auto-
matic domain knowledge extraction from the ontology dur-
ing tool initialisation (section 3.1.). This extracted knowl-
edge is used at runtime when text-based queries are trans-
formed into SeRQL queries (section 3.2.). While our ap-
proach is driven by requirements number 2 and 3, require-
ments number 4 and 5 are yet to be addressed in our future
work, so they will not be discussed further in this paper.

3.1. Extracting domain knowledge automatically
To initialise our system automatically we preprocess the
ontology resources (e.g., classes, instances, properties and
property values) and extract any human-understandable
lexicalisations. To achieve this we first extract a list of the
following:

• names of all ontology resources i.e. fragment identi-
fiers 2 and

• assigned property values for all ontology resources
(e.g., label and datatype property values)

Each item from the list is further processed so that:

• any name containing dash ("-") or underline ("_")
character(s) is processed so that each of these char-
acters is replaced by a blank space. For exam-
ple, Project_Name or Project-Name would be-
come a Project Name.

2An ontology resource is usually identified by an URI concate-
nated with a set of characters starting with ’#’. This set of charac-
ters is called fragment identifier. For example, if the URI of a class
representing GATE POS Tagger is: ’http://gate.ac.uk/ns/gate-
ontology#POSTagger’, the fragment identifier will be ’POSTag-
ger’.

• any name that is written in camelCase style is
actually split into its constituent words, so that
ProjectName becomes a Project Name.

Each item from this list is analysed separately by the Onto
Root Application (see figure 2). The Onto Root Applica-
tion is a pipeline of several shallow language processing
modules provided by GATE (Cunningham et al., 2002). It
first tokenises each list item, then assigns part-of-speech
and lemma (i.e. root) information to each token. It is this
lemma or a set of lemmas which are then added to a dy-
namic gazetteer list (Ontology Resource Root Gazetteer).

Figure 2: Building a Dynamic Gazetteer from the Ontology

For instance, if there is a resource with a fragment identi-
fier) ProjectName, with assigned property rdfs:label with
value project names, the created list before executing the
Onto Root application will contain following the strings:

• ProjectName as a fragment identifier,

• Project Name as split fragment identifier,

• project names as the value of rdfs:label.

Each of the items from the list is then analysed separately
and the results would be:

• For ProjectName and Project Name the output will be
the same as the input, as the lemmas are the same as
the input tokens.

• For project names the output will be the set of lemmas
from the input, resulting in project name.

A dynamic gazetteer list is created directly from the pro-
cessed ontology resources and is then used by the subse-
quent components in the process of query interpretation. It
is essential that the gazetteer list is created on the fly, be-
cause it needs to be kept in sync with the ontology, as the
latter changes over time.
The overall performance of QuestIO is directly proportional
to the quality of the formal descriptions residing inside the
ontology: the more human understandable descriptions are
there in the ontology – the better the query interpretation
results will be.

207



3.2. Processing the query
QuestIO is an Information Extraction application, based on
the GATE language processing framework (Cunningham et
al., 2002). This application accepts a free text query as an
input, transforms it to the set of queries expressed in a for-
mal language, e.g. SeRQL, and as an output returns set
of results returned after executing these queries against the
given knowledge store. Key components of the system are
shown in Figure 3.

Figure 3: QuestIO diagram

Each user query is interpreted using the Query Interpreter
in the User Interface. It is then analysed by two compo-
nents, each of which representing a separate GATE pipeline
application. Firstly, the Key Concept Identification Tool
(KCIT) is identifying key concepts inside the query. Identi-
fied key concepts refer to mentions of ontology resources
such as instances, classes, properties or property values.
To enable considering lemmas when annotating a query
against the gazetteer of ontology terms, we process the
query with the same language processing resources we
used when extracting lemmas in the previous phase (section
3.1.), so that we can then match the extracted lemmas from
the ontology resources and the lemmas from the query. In
this way, we are matching all existing morphological inflec-
tions of the relevant terms.
Secondly, the Context Collector collects all words from the
query that are not recognised by KCIT, but could be useful
in the process of generating the formal query:

• keywords such in, of, from, etc. – used when analysing
the direction of a supposed relation between the two
concepts that they connect.

• keyphrases usually contain few keywords, or the com-
bination of a keyword and a verb, for example What
are, What is or How many.

• chunks – any part of a query that is between two iden-
tified key concepts, used later in the relation ranking
process.

To give an example, in a query ’What are the countries lo-
cated in Europe?’, KCIT annotates countries as a mention
of the class Country, and Europe as an instance of the
class Continent. What are is a keyphrase and in is a
keyword, both of which will be annotated by the Context
Collector as they could be used later to help disambiguate
the formal queries or to filter results. Additionally, the Con-
text Collector would extract the text between all identified
key concepts (i.e., chunks), which is in this case only one –
located in.

Next, the Query Analyser uses the identified key concepts
from the KCIT and all other concepts collected by the Con-
text Collector to perform appropriate transformations, for-
mulate SeRQL queries, execute them and send them back
to the User Interface where the Result Formatter renders
them in a user-friendly manner.
The Query Analyser, presented in Section 3.2.1. next, com-
bines the key concepts with the other keyphrases, key-
words, and chunks, in order to infer any potential relations
that are defined between these concepts inside the ontology.

3.2.1. Query Analyser
When all relevant data are collected, the Query Analyser
(QA) performs the following steps (Figure 4):

Figure 4: The Query Analyser module

1. Filtering the identified key concepts. With human lan-
guage it is possible to use the same expression in dif-
ferent contexts and express totally different meanings
(Church and Patil, 1982). When identifying key con-
cepts, more than one annotation can appear over the
same token or a set of tokens, which needs to be dis-
ambiguated. The most common disambiguation rule
is to give priority to the longest matching annotations.
For example, there is an instance with assigned la-
bel ANNIE POS Tagger inside the GATE knowledge
base3. The GATE knowledge base contains instances
of classes and relations between them based on the
GATE domain ontology4. ANNIE POS Tagger refers
to an instance of type POSTagger, which has assigned
label POS Tagger. If a query contains the text ANNIE
POS Tagger several annotations will be created. One
will refer to the class POS Tagger, whereas the other
one will refer to the instance of that class, namely AN-
NIE POS Tagger.
As the annotation covering the ANNIE POS Tagger
string inside the query is longer than the one covering
POS Tagger, it is given a higher priority. This disam-
biguation rule is based on the assumption that longer
names usually refer to the more specific concepts or
instances whereas shorter ones usually refer to more
generic terms.

3http://gate.ac.uk/ns/gate-kb
4http://gate.ac.uk/ns/gate-ontology

208



2. Identifying relations between key concepts. To achieve
the best possible query interpretation, we retrieve and
analyse potential relations (i.e. ontological properties)
between identified key concepts, based on the defined
relations in the ontology. These relations are very im-
portant as they add descriptions to the concepts and
define their behaviour by adding rules and constraints.
To retrieve these relations we use ontology-based rea-
soning provided by the reasoning component inside
QuestIO.

3. Ranking potential relations. Retrieved relations are
then scored using a combination of three factors. One
of them is similarity of the relation’s name with the
chunk and is called a similarity score. The other two
relevant factors for scoring the properties are more
complex and are based on the property position in
the hierarchy of concepts and properties: they are re-
flected by a distance score and a specificity score. The
next paragraphs provide more information on these.

The Similarity score reflects the similarity of the re-
lation’s name with the part of the query (a chunk)
between identified concepts. The highest score is
given to the relation that is the most similar to the
chunk. For this comparison we use Levenshtein
distance metrics. The Levenshtein distance be-
tween two strings is the minimum number of op-
erations needed to transform one string into the
other, where an operation is an insertion, dele-
tion, or substitution of a single character. Scores
vary in range from 0 to 1. For instance, if in
a query ’list cities located in Europe’, identified
key concepts would be cities and Europe, the first
referring to the class City, and the latter refer-
ring to an instance of the class Continent, the
text given between these concepts (located in)
will be compared with names of all defined prop-
erties between identified concepts. If the property
with name locatedIn is present in the ontology,
the calculated similarity score between ’locate-
dIn’ and ’located In’ will be 0.8.

The Specificity score reflects the position of the
property in comparison to other existing proper-
ties in the ontology hierarchy. Properties at the
top level usually refer to generic terms, whereas
those that are closer to the bottom refer to more
specific ones. For example, when property has-
Sibling is usually meant to connect two persons,
irrespective of their gender, it would have a do-
main and a range of class Person. A property has-
Brother could be defined as a subproperty of the
property hasSibling having a range of Man only
and thus being more specific. In QuestIO we give
the higher score to the more specific properties.

The Distance score reflects the position of the do-
main and range classes of the property inside the
ontology hierarchy. In an ontology, concepts are
usually organised in a sub-class hierarchy where
the most general ones are at the top, followed by

more specific ones lower down. For instance, if
unlike in the previous example, the two proper-
ties hasSibling and hasBrother are defined inde-
pendently, at the same level of the property hi-
erarchy, and the latter has a more specific do-
main (if we assume that the class Man is defined
as a sub-class of Person), it will be assigned
a higher value on the distance score, because in
QuestIO properties with more specific domain
and ranges are assigned a higher distance score.

4. Creating SeRQL queries. When all potential relations
are scored and ranked, the formal query in language
such as SeRQL is created dynamically. The key con-
cepts referring to ontology resources such as classes,
instances, or properties are combined together with
the derived properties in order to generate the relevant
query. The dynamic creation of formal queries makes
QuestIO flexible and independent, yet easy extend-
able towards any other formal query language e.g.,
SPARQL.

4. Coverage
Ideally, the range of queries supported by QuestIO is equiv-
alent to or greater than the range of queries supported by
formal languages such as SeRQL or SPARQL. In addition,
we try not to limit the user by forcing them to construct
queries following a pre-defined syntax, as our other goal is
to make a tool which will require no training, or alterna-
tively which will be able to interact with the user until they
become familiar with the tool and the domain ontology to
be queried.
As QuestIO works by recognizing key concepts inside the
query before performing other disambiguation and inter-
pretation, and as it creates the formal queries dynamically,
the number of concepts in the query is not limited. As long
as there are relevant relations between the key concepts
in the ontology, the required formal query can be created
and the results returned. An example is shown in Figure 5
where in a given query three concepts are identified when
ran against the GATE knowledge base: parameters - refer-
ring to the ResourceParameter class, PR – referring
to the ProcessingResource class, and ANNIE – re-
ferring to the instance of a GATE Plugin class. Potential
relations are identified between these resources and the ap-
propriate SeRQL queries are constructed.
The other important issue is that QuestIO is not relying ex-
clusively on other words in the query (e.g., keywords), be-
sides the key concepts. As long as it can recognise some
key concepts, the remaining parts of the query are used to
predict relations and filter the results, but are not required to
classify the type of the user query or the type of the formal
query that must be generated.
To illustrate this we give an example. If for instance, Eu-
rope is an instance of the class Continent and Country
is defined class inside an ontology, the queries:Which coun-
tries are located in Europe? and countries located in Eu-
rope will in most cases give the same results, regarless of
the first query being in the form of a fully-fledged ques-
tion, and the latter more similar to a concept-based search

209



Figure 5: Supporting relative clauses with QuestIO

with important keywords only. Therefore, the same SeRQL
query can be generated from a number of different natural
language queries, thus providing the user with flexibility.
Furthermore, as long as there are relations between the
identified key concepts in the ontology, the appropriate
SeRQL query will be formulated, regardless of the num-
ber of identified key concepts in the query. For example,
in a query which are the capitals of countries in Southern
Europe, if the key concepts found are: capitals, countries
and Southern Europe, the resulting query will include all
relations where capitals are related to countries (e.g., by
relation ’locatedIn’) and these are in relation with (e.g. by
relation ’locatedIn’) Southern Europe.
Similarly, the order in which key concepts are posi-
tioned is not affecting the final result. For example,
if a query List Processing Resources is run against the
GATE knowledge base, all known instances of the class
Processing Resource will be returned, because Pro-
cessing Resources is identified as a key concept referring
to the class Processing Resource. List Process-
ing Resources in ANNIE would result in listing all pro-
cessing resources (i.e. instances of class Processing Re-
source) that are in a relation with an instance ANNIE: in
the GATE knowledge base, ANNIE is an instance of class
GATE Plugin, and each instance is related to several
Processing Resources by containsResource relation. As
QuestIO does not require strict adherence to syntax, the
same results would be given for the queries Processing Re-
sources ANNIE and ANNIE Processing Resources.
Last but not least, our system supports queries including
conjunction and disjunction (see Figure 6 ). These type of
queries are processed so that first, those concepts connected
with ’and’ or ’or’ are grouped. Next, relations with other
identified concepts are found for each member of the group
separately. In this case, SeRQL UNION is used to represent
OR, and INTERSECT is used to represent AND.
In this given example, recognised concepts are parameters
- referring to the class ResourceParameter, ANNIE
POS Tagger - referring to the instance with this label and
Sentence Splitter - referring to the class with this label. AN-
NIE POS Tagger and Sentence Splitter are first grouped.
Further on, potential relations between ResourceParameter
and each member of the previously created group are found,

Figure 6: Supporting queries expressing conjunc-
tion/disjunction with QuestIO

and SeRQL queries are created accordingly.

5. Evaluation
Here we discuss two kinds of evaluation. The first one is
comparative, demonstrating the coverage and the advan-
tages/disadvantages of our system compared to Aqualog.
The second one is performance, where the same queries are
executed against two different knowledge bases of different
sizes, one being a subset of the other, and demonstrating
how the size of the knowledge base affects the query exe-
cution time.

5.1. Coverage and correctness
In addition to QuestIO’s evaluation on coverage and cor-
rectness shown in (Tablan et al., 2008), we extended the
same experiment by comparing the overall performance of
our system with that of Aqualog (Lopez et al., 2007).
Namely, 36 questions were collected from the GATE user
mailing list where users are enquiring about various GATE
modules and plugins. These questions were run against the
GATE knowledge base, which was created in the TAO5

project, where we first experimented with learning a do-
main ontology (Bontcheva and Sabou, 2006) from software
artefacts (e.g., GATE source code). This ontology encodes
the component model of GATE, the available plug-ins, the
types of modules included in each of the plug-ins, the pa-
rameters for the different modules, etc. The resulting on-
tology contains 42 classes, 23 object properties and 594 in-
stances.
Firstly, we filtered the questions so that those enquiring
about information that is not in the ontology were excluded
(14 out of 36 questions). We then ran the remaining 22
questions against the ontology and categorised results as
follows:

• correctly answered: the appropriate SeRQL queries
were generated.

• correctly answered after reformulation of the query:
the appropriate SeRQL queries were generated
correctly but after the original question was re-
formulated.

• partially correct: the generated queries missed out one
of the required constraints, so the answer was less fo-
cused. Partially correct answers are scored as 50%
correct and 50% wrong.

5http://www.tao-project.eu

210



• failed queries: when either no query was generated or
the generated query was not correct.

Further, we divided these 22 questions into 2 groups:

1. group: all questions that were malformed or we knew
they were not supported by Aqualog, among which
there were

• 1 conjunction query “What are the run parame-
ters of POS Tagger and Sentence splitter?”
• 1 query with brackets “Does GATE have a coref-

erence resolution component (PR)?”
• 1 query starting with “How many. . . ”
• 3 queries not in a form of a full-blown ques-

tion, for example “I cannot get Wordnet plugin
to work“.

2. group: full-blown correctly structured questions (16
queries)

Regarding group number 1, out of the 6 questions QuestIO
was able to correctly answer 4 queries, 1 question was an-
swered partially, and 1 failed.
Regarding group number 2, we executed all questions using
the Aqualog system, and then using QuestIO. The results
are shown in Table 1. Reformulating the query in order to
be answered with QuestIO did not affect its overall perfor-
mance, whereas for Aqualog 3 reformulated queries were
answered correctly afterwards. For example, What are the
values of the POS Tagger parameters? was correctly an-
swered by Aqualog when reformulated as What are the pa-
rameters of the POS Tagger?, whereas both versions of the
query were handled correctly by QuestIO.
Among the questions that were answered by QuestIO at
least partially correctly, while not being answered by Aqua-
log, the most common problem was that they were either
too long or enquired about information that is partially in-
side the ontology. For example, the question is there any-
body out there with experiences with MiniPar? failed to
be answered by Aqualog, whereas QuestIO returned details
about the MiniPar plugin only.
Several questions of this type were the main reason why our
system scored better than Aqualog in overall performance
(71.88% for QuestIO and 59.35% for Aqualog). In long and
complicated questions, our system was able to recognise at
least several concepts and generate SeRQL queries, even
though they did not always give the most precise answer.
On the other hand, the Aqualog system has a better inter-
face than QuestIO. For example, in cases when the result is
an ontology instance only it would be possible to examine
all assigned properties for this instance. In our system, it is
only possible to see the name of the instance, and therefore
the user has to go to the ontology itself in order to derive
more details. Additionally, in the case of disambiguation,
Aqualog will prompt the user with a dialogue, whereas our
system would automatically derive the result that is ranked
best, or in case of several equal scores, it would return all
of them without any help from the user.
In future work on QuestIO we will focus on developing a
more user-friendly interface supporting user interaction, in
order to assist the user in formulating the relevant query.

Table 1: Results of running the same set of queries with
QuestIO and Aqualog: c. correct - conditionally correct
(correct after reformulated), p. correct - partially correct

QuestIO Correct Aqualog Correct
correct 9 (56.25%) 56.25% 5 (31.25%) 31.25%
c. correct 0 (0%) 3 (18.75%) 18.75%
p. correct 5 (31.25%) 15.63% 3 (18.75%) 9.35%
failed 2 (12.5%) 0% 5 (31.25%) 0%

71.88% 59.35%

5.2. Portability and scalability
To address the portability aspect, in another experiment we
trialed QuestIO with two different knowledge bases of dif-
ferent sizes. One is the Travel Guides Knowledge Base
(KB) that contains instances and relations between them
from the Travel Guides (TG) Ontology6. TG ontology is
an extension of the PROTON ontology7 and contains data
about tourism destinations and tourist preferences (Daml-
janovic and Devedzic, 2008a). In total, this KB has 3194 re-
sources: 318 classes, 86 object properties, 2790 instances.
The core for Travel Guides Knowledge Base contains geo-
graphical data such as those about cities, countries and con-
tinents (Damljanovic and Devedzic, 2008b). This core was
exploited from KIM (Popov et al., 2004) KB that contains
general data, specifically about organizations, persons, lo-
cations, and has about 40 times more resources than the
Travel Guides KB.
Therefore, we prepared a set of queries enquiring about ge-
ographical locations and due to the overlap between the two
knowledge bases, they give the same results when executed
against them. During this experiment, the two knowledge
bases have not been changed or customised to work with
the QuestIO system. The set of queries chosen were of dif-
ferent level of complexity, where we consider a query more
complex in comparison to another one if it has more identi-
fied key concepts.
As shown in Table 2, the initialization time of QuestIO was
around 10 times longer when used with KIM KB, but still
within reasonable limits.

Table 2: Initialization time for two knowledge bases of dif-
ferent sizes and execution times for running the same set of
queries with QuestIO. Shown times are in seconds.

TG KIM
Initialization time 22.3 228
Queries Execution time
countries located in Asia 0.547 5.65
capitals of countries located in Asia 0.203 5.6
capitals of countries in southern Europe 0.109 5.4
which are the political regions in Europe 0.141 11.1
is London capital of any country? 0.625 111
capital country France 0.344 10.6

The execution times were between 10 and 177 times (aver-
age: 62) longer when executed with KIM KB. Still, most

6http://goodoldai.org.yu/ns/tgproton.owl
7http://proton.semanticweb.org

211



of the queries were executed within few seconds, excluding
some exceptional cases. For instance, the query is Lon-
don capital of any country? took 111 seconds as scoring
of the properties was not very efficient and several queries
were executed returning no results, until it finally found the
correct one in the fifth attempt. In future, we will explore
other methods to improve the property ranking algorithm,
in order to reduce the execution time to a more reasonable
level.

6. Conclusion and future work
To summarise, QuestIO transforms queries expressed in
natural language to formal ontology languages. This trans-
formation eases the process of querying ontologies for ex-
pert users, whereas for non-experts it gives an opportu-
nity to query the knowledge store without first having to
learn its particular query language. The main advantages of
QuestIO over other similar systems is its support for queries
of any length and form and its lack of customisation over-
head.
In future work we plan to explore requirements number
4 and 5 from Section 3. Support for user assistance and
dialogue-based interaction will help disambiguate queries,
which will enable the system to ask users which of the pos-
sible interpretations is the one they require. We also plan
to extend further the query coverage and to add support
for temporal constraints (e.g., give me events in Paris next
week) as well as quantitative constraints (e.g., give me ho-
tels in London that cost less than 100 pounds).
Another direction of future work will be extending our
knowledge store with annotated documents and implement-
ing an indexing mechanism. This will enable not only an-
swering questions from ontology resources, but also finding
the answer inside documents such as Web pages.

7. Acknowledgements
This research was partially supported by the EU Sixth
Framework Program project TAO (FP6-026460): www.tao-
project.eu.

8. References
Kalina Bontcheva and Marta Sabou. 2006. Learning On-

tologies from Software Artifacts: Exploring and Com-
bining Multiple Sources. In Workshop on Semantic Web
Enabled Software Engineering (SWESE), Athens, G.A.,
USA, November.

Kenneth Church and Ramesh Patil. 1982. Coping with
syntactic ambiguity or how to put the block in the box.
American Journal of Computational Linguistics, 8(3-4).

Philipp Cimiano, Peter Haase, and Jörg Heizmann. 2007.
Porting natural language interfaces between domains: an
experimental user study with the orakel system. In IUI
’07: Proceedings of the 12th international conference
on Intelligent user interfaces, pages 180–189, New York,
NY, USA. ACM.

Hamish Cunningham, D. Maynard, K. Bontcheva, and
V. Tablan. 2002. GATE: A framework and graph-
ical development environment for robust NLP tools

and applications. In Proceedings of the 40th An-
niversary Meeting of the Association for Computa-
tional Linguistics (ACL’02), Philadelphia, USA, Jul.
http://gate.ac.uk/sale/acl02/acl-main.pdf.

Danica Damljanovic and Vladan Devedzic. 2008a. Apply-
ing semantic web to e-tourism. In Zongmin Ma, editor,
The Semantic Web for Knowledge and Data Manage-
ment: Technologies and Practices. IGI Global.

Danica Damljanovic and Vladan Devedzic. 2008b. Seman-
tic web and e-tourism. In Mehdi Khosrow-Pour, edi-
tor, Encyclopedia of Information Science and Technol-
ogy, Second edition. IGI Global.

Christiane Fellbaum, editor. 1998. WordNet - An Elec-
tronic Lexical Database. MIT Press.

Catalina Hallett. 2006. Generic querying of relational
databases using natural language generation techniques.
In Proceedings of the Fourth International Natural Lan-
guage Generation Conference, page 95102. Association
for Computational Linguistics, July.

Esther Kaufmann and Abraham Bernstein. 2007. How use-
ful are natural language interfaces to the semantic web
for casual end-users? In Proceedings of the Forth Eu-
ropean Semantic Web Conference (ESWC 2007), Inns-
bruck, Austria, June.

Esther Kaufmann, Abraham Bernstein, and Renato Zum-
stein. 2006. Querix: A natural language interface to
query ontologies based on clarification dialogs. In 5th
International Semantic Web Conference (ISWC 2006),
pages 980–981. Springer, November.

Yuangui Lei, Victoria Uren, and Enrico Motta. 2006. Sem-
search: a search engine for the semantic web. In Manag-
ing Knowledge in a World of Networks, pages 238–245.
Springer Berlin / Heidelberg.

Vanessa Lopez, Victoria Uren, Enrico Motta, and Michele
Pasin. 2007. Aqualog: An ontology-driven question
answering system for organizational semantic intranets.
Web Semantics: Science, Services and Agents on the
World Wide Web, 5(2):72–105, June.

Borislav Popov, Atanas Kiryakov, Damyan Ognyanoff,
Dimitar Manov, and Angel Kirilov. 2004. KIM – A se-
mantic platform for information extraction and retrieval.
Natural Language Engineering, 10:375–392.

Christoph Meinel Serge Linckels. 2007. Semantic in-
terpretation of natural language user input to improve
search in multimedia knowledge base. it - Information
Technologies, 49(1):40–48.

Volker Haarslev Shamima Mithun, Leila Kosseim. 2007.
Resolving quantifier and number restriction to ques-
tion owl ontologies. In Proceedings of The First Inter-
national Workshop on Question Answering (QA2007),
Xian, China, October.

Valentin Tablan, Danica Damljanovic, and Kalina
Bontcheva. 2008. A natural language query interface
to structured information. In Proceedings of the 5h
European Semantic Web Conference (ESWC 2008),
Tenerife, Spain, June.

212


