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Abstract

In this paper we present an approach to terminology recognition whereby a sublanguage term (e.g. an aircraft engine component term 
extracted from a maintenance log) is matched to its corresponding term from a pre-defined list (such as a taxonomy representing the 
official break-down of the engine). Terminology recognition is addressed as a classification task whereby the extracted term is 
associated to one or more potential terms in the official description list via the application of string similarity metrics. The solution 
described in the paper uses dynamically computed similarity cut-off thresholds calculated on the basis of modeling a noise curve. 
Dissimilar string matches form a Gaussian distributed noise curve that can be identified and extracted leaving only mostly similar 
string matches. Dynamically calculated thresholds are preferable over fixed similarity thresholds as fixed thresholds are inherently 
imprecise, that is, there is no similarity boundary beyond which any two strings always describe the same concept.

1. Introduction
Although objects are discrete, the terms people use to 
describe objects are usually not. Different communities 
can use different descriptions to refer to the same objects. 
Phenomena such as sublanguage (Harris, 1968) influence 
not only the syntax of languages but its terminology as 
well. Synonyms introduce a ‘many-to-one' relationship 
between the linguistic descriptions and the concept being 
described. Technical domains are particularly affected by 
the multi-word synonimity issue. Technical terms can be 
very complex from a linguistic point of view; an average 
technical domain has thousands of official terms and 
several thousands of synonyms can be found. For 
example, (Ciravegna, 1995) discusses how in the car 
domain, technical lists can contain around 30,000 terms 
and synonymic terms can be represented in Italian via 
complex noun phrases up to ten words long. Studies in the 
biological domain have shown a similar situation 
(Krauthammer & Nenadić, 2004). There are a number of 
issues that affect terminology recognition. From simple 
orthographical differences (change in case, hyphenation, 
use of Arabic Vs Roman numerals, etc.) to more complex 
issues like abbreviations and acronyms, as well as the use 
of synonymous words. While orthographical 
normalisation is a fairly simple process that can be 
performed using some regular grammars, the more 
complex cases require the use of more sophisticated 
techniques. Soft string matching (e.g. using string metrics) 
returns a similarity score between two terms that are not 
identical. If the process is applied between one target term 
and a dictionary, it can return a set of candidate terms, 
ranked according to their matching score. 

Similarity metrics can be tuned to a specific task by 
modifying some parameters (typically the cost of edit 
operation), either manually or automatically. Some 
automatic approaches use only positive examples (i.e. 

synonymous strings) to tune the cost of editing (Yeganova 
et al. 2004; Cohen & Minkov 2006). Other, more recent 
approaches use also negative examples to learn (Bilenko 
& Mooney 2003; McCallum et al. 2005; Tsurouka et al. 
2007) hence enabling the adaption to features that 
discriminate negative from positive examples.  Modeling 
the cost function is just one of the steps, though. Once the 
metrics has been identified, there is still the issue of 
applying the metrics and identifying the thresholds to 
discriminate spurious matches from correct matches. The 
use of a fixed threshold is adopted by many authors. 
Unfortunately a fixed threshold does not take into account 
the actual distribution of matches in each single test. 
Some terms have a number of similar terms (i.e. they will 
require a restrictive threshold), while others have just a 
few and can allow a less restrictive threshold. However,
applying strict thresholds can negatively affect recall 
when the results of the match are very sparse. 

In this paper we present an approach to terminology 
recognition that departs from the use of a fixed threshold. 
Instead, it identifies the most appropriate threshold case 
by case (i.e. every time a term is tested against a bank of 
potential terms). In practical terms, we define a statistical 
filter which inspects the distribution of scores of the 
matches and models the noise in the distribution. As noise 
is a random variable, it takes on a Gaussian distribution. 
As 100% of a normally distributed variable falls below 4 
standard deviations above the mean, noise can be 
identified as all matches that achieve a score below the
value of approximately four standard deviations, and 
those terms that score higher are deemed to be correct 
matches; hence the threshold is set at 4 standard 
deviations above the mean of the distribution of scores for
an individual query. This means that every time a term is 
tested against a bank of terms, an individual optimal 
threshold is identified. 
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We applied the filter on a set of experiments in the 
aerospace domain where the scores returned by a standard 
library of distance metrics were filtered of noise.

This paper is organized as follows: section 2.1 describes 
the investigation carried out in selecting a suitable 
similarity metric capable of effectively modeling noise. 
Section 2.2 describes how noise is identified and removed. 
Section 2.3 describes a how the methodology operates on 
strings of various length and provides a practical example. 
Section 3 describes the results.

2. Investigation
Observations were made by conducting experiments on 
two datasets of aerospace terminology terms. These 
consisted of a list of 298 component terms automatically 
extracted 1 from reports written by engineering 
technicians and a list of 513 official engine component
terms. SimMetrics2, a Java library containing 23 string 
similarity metrics was used to compare the lists of terms. 
SimMetrics has the functionality to produce normalized 
similarity coefficients where all metrics output a bound 
result between 0 (totally dissimilar) and 1 (totally 
identical).

2.1. Metric Selection
The first step in terminology recognition is to select the 
best string similarity metrics for the case at hand. Other 
authors (Cohen et al.  2003) have approached the issue by 
investigating a selection of string similarity metrics used 
by various communities, including statistics, AI and 
databases to ascertain which similarity metrics performed 
most accurately when comparing strings from datasets 
including data such as names and addresses. Different 
metrics from different communities were investigated 
since each community had devised the problem of 
matching strings differently. It was found that a hybrid 
scheme combining TF-IDF weighting, with the 
Jaro-Winkler string-distance metric, was the overall best 
performing method in terms of speed and accuracy.

In order to select the most effective string similarity 
metrics, it was essential to analyze the strengths and 
weaknesses of the standard, unmodified string distance 
metrics included within SimMetrics. An experiment was 
devised and performed whereby every combination of the 
298 unique extracted component term strings were 
compared using each of the metrics within SimMetrics, 
this resulted in 298C2, = 44,253 similarity comparisons for 
each metric.

Equation 1: Number of string comparisons for each metric

                                                          
1 Using a separate Named Entity Recognition tool
2 SimMetrics available at 
http://www.dcs.shef.ac.uk/~sam/simmetrics.html

By ordering the pairs of strings by similarity score, it was 
seen that only the similarities above certain values
appeared to have meaningful string matches, for example 
the Jaro metric assigns the two strings “p2/t2 probe” and 
“p2t2 probe” a similarity of 0.969697, this is a meaningful 
match as the two strings are similar, whereas “oil pump” 
and “starter (post sb 80-d207))” which scores a similarity 
of 0.4433333 is not a meaningful match as the two strings 
are unrelated. The similarity value between the mostly 
similar and mostly dissimilar matches was named the 
Terminator and is a different value for each metric.

By totaling the number of pairs of strings that fell into 
0.01 increments in similarity score a graphical 
representation of the distribution of similarity scores is 
given, according to the metric used these distributions 
were either Gaussian, Dirac or a mixture of the two.

 Dirac distributions occurred frequently for vector 
based similarity metrics such as Block distance, 
Jaccard similarity and Cosine similarity, and for 
overlap based similarity metrics such as Overlap 
coefficient and Dice’s coefficient. Dirac distributions 
occurred when many pairs of strings took on 
relatively few similarity scores. These occur for 
example for pairs of strings where both strings have 
m words, where n words are in common, these pairs 
of strings would attain a similarity score of n/m no 
matter how long the common words are.

 Gaussian distributions occurred primarily for edit 
distance similarity metrics such as the 
Smith-Waterman, Jaro-Winkler and Levenshtein 
metrics. String similarity scores are randomly 
distributed and take on a Gaussian distribution due to 
the wide ranging edit costs incurred when comparing 
one dissimilar string with another.

Our approach is to identify good matches by modeling 
(and then filtering out) noise. As noise is generally a 
randomly distributed variable about a mean value, it was 
decided to focus a metric that provides a Gaussian 
distribution. This is because Gaussian distributions 
characterize randomly distributed variables; hence they 
are able to model the behavior of noise. This decision is in 
accordance with what proposed by (Cohen et al, 2003)
who suggests a TF-IDF weighting scheme with the 
Jaro-Winkler metric (i.e. a Gaussian distribution); 
however, we focused on the use of the Levenshtein metric, 
because an investigation into the Jaro-Winkler metric 
concluded that this metric gave consistently relatively 
high scores to unrelated strings. The Terminator value for 
the Jaro-Winkler metric was 0.637 and the mean 
similarity score was 0.51 (Figure 1).

44253
)!2298(!2

!298

)!(!

!





 knk

n

2818



Figure 1: Jaro-Winkler distribution

Compared with the Levenshtein metric where the 
Terminator for the same set of strings was 0.33 with a 
mean similarity of 0.17 (Figure 2):

Figure 2: Levenshtein distribution

This means that differentiation between a meaningless 
match score and a meaningful match score is less apparent 
with the Jaro-Winkler metric than that for the same set of 
strings using the Levenshtein metric. This is seen when a 
search is performed using the string “oil pressure 
transmitter”. The mean similarity score using the 
Jaro-Winkler metric was 0.5918. The same search string 
attained a mean similarity of 0.2438 with the Levenshtein 
metric. By analyzing the similarities assigned to string 
pairs by the Jaro-Winkler metric it was seen that there was 
little difference in similarity between the highest score of 
a meaningless result and the score of the lowest 
meaningful result.

The Levenshtein metric also has the additional 
advantages of being able to model most of the 
requirements for terminology recognition in the aerospace 
domain, i.e.:

 It does not give excessively low scores to pairs of 
strings that include terms that only differ by one or 
two characters but otherwise may be related; for 
example “air valve” and “air valves” score 0.5 with 
the Overlap Coefficient, but score 0.9 with the 
Levenshtein.

 It gives inherent preference to word order, for 
example although “oil filter” and “filter oil” contain 
the same two words, they refer to two very different 
concepts. The Levenshtein metric assigns a similarity
score of 0.199.

 It allows the greatest flexibility as more specific 
similarity metrics can be used for post processing.

2.2. Noise Detection and Removal
As expected, it was noted experimentally that 
meaningless matches formed a Gaussian noise curve, 
while meaningful matches are located above the noise 
curve closer to a similarity of 1. However, it was also 
noted that the peak of the curve occurred within a wide 
similarity boundary depending on the relative length of 
the strings being compared, this makes the application of 
a fixed cut-off threshold ineffective because:

 A threshold that is set too high would always filter 
out the noise curve, but would risk being too 
restrictive and could also filter out poorly scoring 
relevant matches. This would provide high precision 
but low recall.

 A threshold that is set too low would let a large 
number of relevant matches through, but would also 
let through a portion of the noise curve. This leads to 
low precision.

Our proposal is therefore to apply dynamic thresholds that 
are sensitive to the location and geometry of the noise 
curve. A statistical approach such as this is preferable over 
setting an arbitrary cut off as it scales well with the size of 
the source data. When the top ten matches from a 
candidate list of some hundreds of terms are considered, it 
is likely that there will be less than ten relevant matches, 
meaning that all relevant matches are returned along with 
some irrelevant matches. However, when the list is much 
larger, for example 1000, it is likely that there will be 
more than 10 significant matches meaning that some 
relevant matches are missed. It may also be the case that 
there are no relevant matches, this means all results will 
constitute a Gaussian distribution and would therefore be 
disregarded with the proposed method.

Figure 3: Results distribution for "fuel pump drive and 
idler housing"

The discrete results distribution graphs produced by 
Levenshtein metric (Example Figure 3) can be modeled 
with a Gaussian distribution by the following equations:

Equation 2: Standard Normal Random variable Z


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Z
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Equation 3: Mean, μ

Equation 4: Standard Deviation σ

Because it is only the edit costs associated with 
transforming one randomly dissimilar string into another 
that causes the Gaussian noise distribution, by detecting 
and removing the randomly distributed similarity scores 
the significant and more meaningful matches will remain.

100% of a randomly distributed variable will fall below 
approximately 4 standard deviations above the mean;
therefore the value for which scores below should be 
disregarded can be calculated with Equation 5.

Equation 5: Cut off similarity is four standard deviations 
above the mean

For example, consider the sublanguage term “external 
gearbox drive shaft and shroud”, when compared against 
the terms in the official list, the distribution of similarity 
scores is shown in Figure 4.

Figure 4: Discrete results distribution term “external 
gearbox drive shaft and shroud”

The Gaussian curve for term “external gearbox drive 
shaft and shroud” has standard deviation σ = 0.085362 
and mean µ = 0.210: by applying equation 4 it is possible 
to derive that:

By setting the cut off similarity to 0.551 noise matches are 
severely attenuated, the list of candidate strings in the 
official term list is reduced from 513 to the 10 most likely 
and meaningful matches.

2.3. Shorter Terms
To investigate the performance of automatically 
calculating the cutoff threshold with shorter strings, the 
list of 298 component strings was split into individual 
words (minimum string length was 1, maximum string 
length 48), these individual words were then compared in 
turn against the original list of component strings and for 
each set of comparisons the mean similarity, standard 
deviation and word length was recorded. This is 
summarized in Figures 5 and 6.

Figure 5: Mean similarity scores for strings of various 
lengths

Figure 6: Standard Deviations for strings of various 
lengths

As can be seen in Figure 5, the mean similarity initially 
increases as larger search strings are used. This is because 
shorter single word search strings, such as “lp”, “air” and 
“fuel”, only constitute a small percentage of longer and 
more typical component terms such as “lp axial 
compressor”, “oil cooled air vanes” and “fuel metering 
unit”. As longer and more realistic search strings are used 
(such as “support assy of lp turbine exhaust”), the mean 
similarity became fairly constant and was located 
between approximately 0.17 and 0.325.

It can be seen in Figure 6, that the standard deviation did 
not vary greatly, and was distributed fairly uniformly 
between the values of 0.05 and 0.25. This showed that the 
same basic distribution shape is seen in all searches.

2.3.1. Practical Effect of Shorter Strings
The effects searching for successively longer strings have 
on the Gaussian distribution are now examined.

The discrete results distribution, where the normally 
distributed results, mean similarity, calculated cut-off 
similarity and any similarity scores above the cut off 
similarity are indicated as in Figure 7.
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Figure 7: Discrete Results Distribution legend

The mean is located at the first full height double line and 
the cut off similarity is located at the second full height 
double line. Suggested results (results whose similarity 
falls above the cut off similarity) are shown by lines that 
are ¾ height. In Figure 7, the search string was “air 
cooled air cooler”, the mean is shown to be 0.2153, cut 
off similarity is 0.516 (shown in the window title) and 
there are two unique suggested results, “air cooled air 
cooler” and “fuel cooled air cooler”.

To investigate the effects of string length on the 
distribution of noise and number of suggested results, 
searches for “air”, “air cooled”, “air cooled air” and “air 
cooled air cooler” were made.

Figure 8: Similarity distributions and automatically 
calculated cut-off thresholds for search strings of various 

lengths

The top window in Figure 8 shows the results distribution 
for the search string “air”. The resultant matches all 
scored a similarity below 0.194. All the results scored low 
similarities as the search string “air” contains 3 characters,
most of the strings in the official terms list are multi-word 
strings with a mean length of 32 characters, and hence the 
string “air” is a very small percentage of any of the strings 
in the pool and would score a low similarity. In the top 
window it can be seen that there were several results close 
to the automatically calculated cut-off value marker of 
0.194. Short strings in which “air” is a substring would 
score highly, for example the string “air tube” scores 
highly with a similarity of 0.182.

In the second window, the search string “air cooled” was 
searched for. The mean has increased to 0.175 and the 
automatically calculated cut-off to 0.411. The results 
distribution now demonstrates a strong Gaussian 
distribution pattern. Two results were above the cut-off 
value, the highest matching of these was “air cooled air 
cooler” and the lower “fuel cooled oil cooler”.

The third window shows the distribution for “air cooled 
air”. The noise distribution has become more defined. 
The mean and cut off values have increased. There are 
still two results above the cut off value and these are the 
same results as those for the search term “air cooled”, 
however one result has gained similarity and one has lost 
similarity. This can be expected as the search string “air 
cooled air” constitutes a larger percentage of “air cooled 
air cooler” than the previous search string (“air cooled”), 
and a smaller percentage of “fuel cooled oil cooler”.

In the final window, the search string “air cooled air 
cooler” was searched for. The mean and cut off value 
once again increased. One result scored a perfect match. 
The second significant match (“fuel cooled oil cooler”) 
had a slightly higher score than the previous search string; 
this is because some of the new characters added to the 
search string are common.

3. Results
To evaluate this approach, the 298 extracted sublanguage 
terms were compared a list of 513 official terms. Only 112 
of the extracted terms had similar enough terms in the 
official list to have relevant terms automatically suggested. 
An exhaustive manual examination of the official list 
showed that the remaining 186 extracted terms did not 
have corresponding terms in the official list (the official 
list contains 513 terms from just one section of one model 
of engine).

Recall is the ratio of the number of correct (relevant) 
terms returned to the total number of correct terms in the 
official term list. Recall gives an indication as to how 
much of the total relevant information has been retrieved.

Precision is the ratio of the number of correct (relevant) 
terms returned to the total number of irrelevant and 
relevant terms retrieved. It is usually expressed as a 
percentage. Precision gives an indication of how much of 
the information retrieved from a particular search is 
relevant.

Precision and recall for all search terms was calculated for 
n = 1 to 5, where n is number of suggested results. This 
was done to simulate how the system would perform if it 
were to be used automatically (where n=1) as well as if a 
user was allowed to choose results from a list of up to five 
suggestions. Calculating precision considering the first n 
results is called ‘Precision at n’.
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n Recall at n Precision at n

1 86.84% 86.84%

2 90.13% 88.82%

3 92.67% 89.04%

4 98.67% 91.56%

5 99.40% 92.08%
Table 1: Recall and Precision at n = 1 to 5.

The experiment showed that five suggestions were 
enough to return 99.40% of the relevant components and 
that 92.08% of these would be correct. This number of 
suggestions would be sufficiently low for a 
knowledgeable user to quickly select the relevant 
components from the suggestions. A larger number of 
suggestions would increase the time taken to select the 
relevant terms without significant increase in recall.

4. Conclusions
The results show that the method of selecting most 
relevant string similarities by disregarding those that form 
a noise pattern is effective in automatically detecting only 
the most similar terms and also finding sublanguage terms 
for which no corresponding official term exists. By 
allowing a system based on this method to suggest up to a 
maximum of five results 99.40% of relevant terms are 
returned, furthermore as the cut off similarity is 
automatically set on each query there are often less than 
five results returned, as there are often less than five 
relevant terms in the official list.

Although the datasets used in the experiments discussed 
in this paper belong in the aerospace domain, the resultant 
approach and methodology for Terminology Recognition 
can be applied to virtually any field requiring the 
comparison of strings. The authors have successfully 
applied the methodology to the recognition of people’s 
names.
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