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Abstract
In this paper, we present a linguistic resource that annotatesevent structuresin texts. We consider an event structure as a collection of
events that interact with each other in a given situation. We interpret the interactions between events as event relations. In this regard, we
propose and annotate a set of six relations that best capture the concept of event structure. These relations are:subevent, reason, purpose,
enablement, precedenceandrelated. A document from this resource can encode multiple event structures and an event structure can be
described across multiple documents. In order to unify event structures, we also annotate inter- and intra-document event coreference.
Moreover, we provide methodologies for automatic discovery of eventstructures from texts. First, we group the events that constitute
an event structure into event clusters and then, we use supervised learning frameworks to classify the relations that exist between events
from the same cluster.

1. The Problem

Text and human communication abounds with reference to
events and their interrelations. Events can determine other
events or states, they may culminate in accomplishments
or they may cause states to terminate. In texts, events are
commonly described by verbs or nominalizations. But ver-
bal and nominalized predicates do not refer only to events.
Vendler (1967) has derived a seminal categorization of
predicates into states, processes or activities, accomplish-
ments, and achievements. The events, processes, achieve-
ments and states that occur in certain interrelations consti-
tute anevent structure.
Knowledge about event structure is extremely important.
Based on this knowledge, different forms of inference, in-
cluding temporal, causal, and intentional inference, may
be produced. Currently, such knowledge, although very
needed, is not readily available in any linguistic resource.
FrameNet (Baker et al., 1998) and WordNet (Fellbaum,
1998) annotate event relations at conceptual level. Prop-
Bank (Kingsbury et al., 2002) and VerbNet (Kipper et al.,
2000) encode only predicate argument structures in texts.
TimeBank (Pustejovsky et al., 2003b) contains annotations
with all the events from a given text, but only temporal rela-
tions are considered, whereas the ACE corpus (LDC, 2005)
focuses on a limited class of events that are annotated as
complex structures involving entities, time expressions and
values.

In order to discover event structures from texts, we have
to determine: (1) which events belong to the same event
structure; and (2) what relations exist between the events
from the same structure. To address the first problem, we
consider that the discovery of events from the same event
structure is similar to the problem of event clustering. For
example, given the event describing thearrest of a crimi-
nal, we discover that events such as thesearchfor the crim-
inal, theaccusationof a crime, hiscapturefollowing by his
interrogationare part of the same event structure. Another
approach for building event structures is by mapping events

to semantic frames and linking them by using the frame re-
lations that are encoded in FrameNet. However, since the
frame relations are defined at conceptual level, it is difficult
to capture all the events from an event structure in a given
context.

To address the identification of relations between events,
we have surveyed the literature for lists of relations between
events, processes, states and achievements within the same
event structure. Based on the theory of discourse relations
(Hobbs, 1985; Mann and Thompson, 1988), the theory of
cognitive semantics (Talmy, 2000), the theory of frame se-
mantics (Fillmore, 1982) and the event ontology defined in
(Sinha and Narayanan, 2005), we propose a set of six event
relations that exist in an event structure. We also consider
the temporal interpretation of each relation, such that we
can employ event structures for temporal inference appli-
cations.

In this paper, we describe a linguistic resource that encodes
event structure annotations as well as methodologies for au-
tomatic discovery of event structures from texts. In our
representation, we consider that a document can encode
multiple event structures. Also, the information about an
event structure may be scattered across multiple documents
and the unification of such information is granted whenever
event coreference can be established. The result is a collec-
tion of documents annotated with (1) events, which may
belong to different event structures, (2) event relations that
hold between events from the same event structure, and (3)
inter- and intra-document event coreference.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the event clustering model and a method
for evaluating this model. Section 3 details the methods
employed for recognizing relations that hold between the
events from the same event structure. Section 4 discusses
the event coreference framework. Section 5 presents the re-
sulting resource and its usage for temporal inference. Sec-
tion 6 summarizes the conclusions.
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2. Discovering Event Clusters
A first step for discovering event structures and relations
between events is the identification of event clusters. The
task of clustering events that belong to the same event struc-
ture was cast as a generative probabilistic model that en-
codes latent event structures and makes possible recover-
ing these structures using statistical inference. In particu-
lar, the generative model that we employed is called Latent
Dirichlet Allocation (LDA), which was introduced in (Blei
et al., 2003). In our adapted model, the basic idea is that
a document is expressed as a probabilistic mixture of event
structures and an event structure has assigned a probability
distribution over events.
In this model, an event is the basic unit of discrete data.
We considered as events all the predicates that fulfill the
TimeML specifications (Pustejovsky et al., 2003a). Ac-
cording to TimeML annotation guidelines, events are clas-
sified as: (1) REPORTING, (2) PERCEPTION, (3) AS-
PECTUAL, (4) I ACTION (intentional action), (5)I STATE

(states that refer to possible worlds), (6)STATE and (7)OC-
CURENCEevents.
More formally, we represent a documentd as a sequence
of Nd events,d = (e1, e2, . . . , eNd

), and acorpusC as a
collection ofM documents,C={d1, d2, . . . , dM}. We as-
sume that we haveS event structures andE unique events
in the corpusC. The assignment of an eventei to an event
structure is facilitated by a hidden variablezi, which takes
values from 1 toS. We use anE × S matrix Φ to denote
the distribution of events associated to each event structure
and anS × M matrixΘ to denote the distribution of event
structures in each document. With these notations, the gen-
erative process can be described as follows:

1. For each documentd ∈ {d1 . . . dM}:

1. Chooseθ(d) ∼ Dirichlet(α).

2. For each evente(d)
i , i ∈ {1 . . . Nd}:

1. Given the documentd, choose an event struc-
turez

(d)
i ∼ Multinomial(θ(d)).

2. Given the event structurez(d)
i , choose an

evente(d)
i ∼ Multinomial(φz

(d)
i ).

Therefore, for each documentd, the generative process is
performed in three steps. First, a distribution over event
structures,θ(d), is sampled from a prior Dirichlet distribu-
tion with parameterα. Next, an event structure is assigned
to each event in the document according to the sampled dis-
tribution. Finally, an event is chosen from the multinomial
distribution over events given the sampled event structure
chosen in the previous step.
We experimented with this new method on 50 event struc-
tures and trained the LDA model such that we could
derive the probability of any new event to be assigned
to any of the initial event structures. We also experi-
mented with this event clustering method using the event
annotations from TimeBank corpus. The event clusters
were obtained by employing thelda-c tool, which is
an implementation of the LDA model and is available

at http://www.cs.princeton.edu/∼blei/lda-c/. To assess the
quality of the model, we considered FrameNet-based sce-
narios as baseline event clusters. We automatically built
these scenarios by mapping the TimeBank events to seman-
tic frames and by connecting them through frame-to-frame
relations defined in FrameNet. The frame relations anno-
tated in FrameNet are listed in Table 1. Each frame relation
defined in FrameNet is asymmetric and holds between a
more abstract frame, called the Super-Frame, and a more
specific frame, called the Sub-Frame (Ruppenhofer et al.,
2005).

Inheritance
Subframe

Causative Of
Inchoative Of

See Also
Precedes

Perspective On
Using

Table 1:The FrameNet frame relations.

Figure 1 illustrates a common employment scenario that
is built using the FrameNet frame relations. For instance,
the SUBFRAME relation holds between a frame represent-
ing a complex process and frames that characterize sub-
processes of the complex process. In this example,Em-
ployee’s scenariois a complex frame that has the following
sub-frames:Get a job, Being employedandQuitting. A
sub-frame can also be a complex frame for other frames.
The PERSPECTIVEON relation is used when at least two
points of view are expressed with respect to a situation. For
instance, in Figure 1, theGet a jobandHiring frames refer
to the same situation, which corresponds to theEmploy-
ment startframe, butGet a jobis considered from an em-
ployee’s perspective whereasHiring is considered from an
employer’s perspective.

P

Perspective on
Subframe
Inheritance

Precedes

PP

P P

Employee’s
scenario scenario

Employer’s
continue

Employment Employment
end

Employment
start

Get a
job

Being
employed Hiring Employing Quitting Firing

Employment
scenario

P P

Figure 1:Building FrameNet scenarios using frame relations.

The evaluation of the LDA-based event clustering method
was performed by measuring the coverage of the event clus-
ters over the FrameNet scenarios. Bejan (2008) details
promising results obtained by this method.

3. Recognizing Relations in Event
Structures

After determining which events belong to the same event
structure, the next step is to define a set of relations that
hold between the events from the same cluster. Undoubt-
edly, the inter-event relations encoded in FrameNet are use-
ful. However, they do not cover all the relations that may
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define an event structure. For example, no specific re-
lations of ENABLEMENT/DISABLEMENT exist to capture
PRECONDITIONS, no EFFECTSare considered and no dis-
tinction between CAUSALITY , PURPOSEand REASON is
considered. Also, because they are defined at conceptual
level, the scenarios defined by frame relations are too gen-
eralized and therefore they cannot capture all the events
happening in specific situations.
In our effort, we consider the following set of relations that
capture the concept of event structure:

• SUBEVENT is similar with the SUBFRAME relation
from FrameNet. It holds between an eventA that is
part of a composite eventB. The composite eventB
can have multiple subevents and an subevent can be
a composite event for other events. The hierarchy of
events resulted using the SUBEVENT relation can en-
code complex semantic and temporal structures.

• REASON is a causal relation which happens between
a reason event and a consequence event. When mul-
tiple reason events cause one consequence event, this
relation is applied repetitively. For example, in the fol-
lowing sentence

(S1) Diego Montoya isaccusedof leading Norte del
Valle cartel andexporting tons of cocaine to the
United States.

there is one REASON relation betweenleading and
accusedand another one betweenexporting andac-
cused. In this context, the reason for theaccused
event to happen is caused by theleadingandexporting
events.

• PURPOSEis a causal relation which represents the in-
tention of an eventA to achieve a goal eventB. In mul-
tiple cases, the presence of the signal wordto between
two consecutive events in the same sentence implies
the existence of a PURPOSErelation between the two
events:

(S2) FBI officials Monday werecheckingfingerprint
databases toconfirm that it was, in fact, Montoya who
wascaptured.

In this sentence, thecheckingevent happened with the
purpose ofconfirmingby the FBI officials Montoya’s
personal identity.

• ENABLEMENT relation is a causal relation for which
an eventA allows an eventB to happen, but does not
necessarily cause B. An example of ENABLEMENT re-
lation holds betweencapturedandcheckingfrom sen-
tenceS2. In this example, thecheckingevent will hap-
pen only if thecapturedevent happened.

• PRECEDENCEis similar with the PRECEDESrelation
from FrameNet. This relation determines a sequential
ordering of two events belonging in the same event
structure and does not hold between events from dif-
ferent event structures.

• RELATED refers to events between which there is a
weak connection. For example, a related relation ex-
ists between a reporting event and an event mentioned
in the reported statement.

It is worth mentioning that in many cases these relations
depend on the context within which their corresponding
events are used. For example, the two REASON relations
exist inS2 only because leading a drug cartel and export-
ing drugs are illegal activities. This is also the reason that
this particular relation examples cannot be recovered using
frame-to-frame relations. In our example, there is no con-
nection between theLeadershipframe, which is evoked by
the leading event, and theNotification of chargesframe,
which is evoked by theaccusedevent. Similarly, there is
no connection betweenExporting, which is evoked by the
exportingevent, andNotification of charges.
Table 2 lists various properties that hold for these binary
relations. This table also shows the temporal interpretation
associated for every event relation. For instance, if a re-

lation A SUBEVENT
// B exists, then the time interval of the

eventA must be included in the time interval associated to
the composite eventB. The temporal relations correspond-
ing to event relations allows us to build a chronological or-
der of the events that belong to the same event structure.

asymmetric
irreflexive

transitive
A B

Subevent
A B

During

asymmetric
irreflexive

antitransitive
A B

Reason
A B

Any relation

asymmetric
irreflexive

antitransitive
A B

Purpose
A B

Before

asymmetric
irreflexive

antitransitive
A B

Enablement
A B

Before

asymmetric
irreflexive

transitive
A B

Precedence
A B

Before

asymmetric
irreflexive

transitive
A B

Related
A B

Any relation

Relation Temporal InterpretationRelation Properties

Table 2:Properties of event relations.

The annotation of event relations was performed by follow-
ing the annotation procedure described in section 5. In or-
der to automatically detect these relations, we assembled
a supervised learning framework using support vector ma-
chine (SVM) algorithm. Most of the features used in this
framework are presented in the next section of this paper.

4. Event Coreference
We have noticed that several portions of an event structure
are mentioned in different documents or in different parts
of the same document. In order to unify such information,
we have to perform event coreference.
Figure 2 shows how two event structuresES1 andES2 can
be unified inES12 if Event1 andEvent4 are identified
as co-referent. Moreover, if the semantics of the relations
between events is considered, the unification of two event
structures can identify additional event coreference. For
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Event4

Event5Event6

R1

Event3
Event2

Event1

Event1

Event6

Event2

Event3

Event5
R1 R3

R2

R1

R2

R3

R1

Coreference

ES2

ES1 ES12

Figure 2:Unifying event structures.

example, since an event cannot have more than one pur-
pose/goal, after unifying two event structures based on a
coreferring eventEi, which has two distinct PURPOSEre-
lations pointing toEj andEk, we may conclude thatEj

and Ek must be coreferring or must belong in the same
event structure as well. Furthermore, some relations from
the event structure may be also consolidated. If fromEi

we have two distinct PRECEDENCErelations pointing toEj

andEk, we need to resolve their temporal precedence and
consolidate the PRECEDENCErelations accordingly. In the
same way, contradictory information in the event structure
may be detected and resolved. In order to identify event
coreference between two events, we used the following list
of requirements: (a) both events are expressed by the same
predicate or their synonyms or hyponyms, and (b) when-
ever specified, both predicates have the same arguments.
An example that shows how event coreference relation
helps in identifying event structure relations is illustrated
in Figure 3. In this example, a coreference relation exists
betweencamefrom the first sentence andcamefrom the
second sentence because the requirements mentioned above
are fulfilled. This coreference relation together with the two
PURPOSErelations impose a relation to hold between the
teachandwork events. In this context, a SUBEVENT rela-
tion is applied.

Mary came to school yesterday to teach.

Mary came to school yesterday to work.

Subevent

Purpose

Purpose

Coreference

Figure 3:Contribution of coreference relation for detecting event
structure relations.

In order to detect event relations from the same event struc-
ture and to solve inter- and intra-document event corefer-
ence, we trained SVM multi-class classifiers in a supervised
learning framework. In the data processing phase of this
framework, we extracted syntactic parse trees for the anno-
tated sentences using Collins’ parser (Collins, 1997). For
example, Figure 4 shows the syntactic parse tree representa-
tion associated to the sentenceS1 with the annotated events
highlighted. The syntactic information encoded in these
representations helps us explore the properties of event re-

lations. In the learning phase, we considered a learning
instance as a pair of events, where each event is mapped to
a constituent from a syntactic parse tree. The features that
we extracted for an event pair(e1, e2) in our preliminary
experiments are:

• e WORD: The head word of the constituent associated
to evente.

• e1 + e2 WORD: The combination of thee1 WORD and
e2 WORD features.

• e STEM: The stem word of thee WORD feature.

• e1 + e2 STEM: The combination of thee1 STEM and
e2 STEM features.

• e CLASS: The lexical class associated to the evente.
This feature can take three values: verb, noun and ad-
jective.

• e1 + e2 CLASS: The combination of thee1 CLASSand
e2 CLASS features.

• e POS: The head part of speech associated toe.

• e1 + e2 POS: The combination of thee1 POSande2

POSfeatures.

• SIGNAL WORDS: A set of binary features testing for
the presence of words between thee1 ande2 events
such as:’as a result’, ’and’, ’because’, ’while’ , ’next’,
etc. This feature is extracted only for pairs of events
that belong in the same sentence.

• e PREVIOUS WORD: The first word preceding the
event expression.

• e NEXT WORD: The first word following the event ex-
pression.

• IDENTICAL : Binary feature indicating whether thee1

STEM ande2 STEM features are identical.

• SYNONYMOUS: Binary feature indicating whether the
e1 STEM ande2 STEM features are synonymous.

• NOMINALIZATION : Binary feature indicating whether
one of the events is a nominalization of the other event.

• ADJACENT EVENTS: In case when they belong in the
same sentence, this feature tests whethere1 ande2 are
adjacent.

• SAME CLAUSE: Binary feature testing whether the
two events belong in the same clause. This feature is
extracted only for pairs of events from the same sen-
tence.

• DIRECTED PARSE TREE PATH: The path in the
syntactic parse tree between the constituents asso-
ciated to thee1 and e2 events. For example, the
path between theleading and accusedevents from
the syntactic parse tree illustrated in Figure 4 is
VBG↑VP↑VP↑S↑PP↑VP↓VBN. When the events be-
long to different sentences, this feature is computed
from the combination of the partial paths associated to
e1 ande2. A partial path corresponding to an event is
the path in the parse tree between the event constituent
and its root constituent.
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NNPS

States

PP

of VP

IN Saccused

VBN

VP

is

VBZ

VP

S

Valle

NNP

delNorte

NNP

cartel

NN

NP

VP VP

exporting

VBG

PP

IN

of

NP

NP

NNS

tons

cocaine

NN

NP

TO

to

PP

.

.United

NNP

NP

the

DT

VBG

leading

CC

and

MontoyaDiego

NNP NNP

NP

NNP

Figure 4: Syntactic parse tree representation of the sentenceS1.

• UNDIRECTED PARSE TREE PATH: The same syntactic
path asDIRECTED PARSE TREE PATHwithout preserv-
ing the movement direction.

• SAME SENTENCE: Indicates whether the two events
belong in the same sentence.

• SAME DOCUMENT: Indicates whether the two events
belong in the same document.

• DISTANCE IN WORDS: If the events belong in the
same sentence, this feature counts the number of
words between the two events.

• DISTANCE IN SENTENCES: If the events belong in the
same document, this feature counts the number of sen-
tences between the two events.

• POSITION: Binary feature indicating whethere1 oc-
curs before or aftere2. This feature is extracted only
for pairs of events that belong in the same document.

• SUBFRAME: When both events can evoke seman-
tic frames, this feature indicates whether their corre-
sponding frames are connected through a SUBFRAME

relation. For those events that can evoke multiple se-
mantic frames, a frame disambiguation task is applied
(Bejan and Hathaway, 2007).

• SAME SEMANTIC ROLES: In order to establish
whether the two events share the same participating
entities, happen at the same time and take place in the
same location, we extracted a set of binary features
from the semantic roles corresponding to these events.
Therefore, we first extracted the semantic structures
for the two events using our semantic parser (Bejan
and Hathaway, 2007), and then test whether these
structures share the same semantic roles or not.

5. A Linguistic Resource for Event
Structure and Event Coreference

In order to use these methodologies for clustering events,
for learning event relations and for solving event corefer-
ence, we created a collection of documents with: (1) event
annotations, (2) inter- and intra-document event corefer-
ence annotations and (3) event relation annotations. The
annotation procedure for this resource is performed in five
steps:

STEP 1: Theme selection.The first question for building
a linguistic resource is which documents to choose
for annotation. We decided to choose web articles
from Google News because it has the facility to clus-
ter the articles by subject matter, and, therefore, it al-
low us to annotate multiple parallel articles describ-
ing the same event scenarios. In consequence, this op-
tion has multiple advantages: (1) the cross-document
identical events can be easily identified; (2) the event
structures mentioned in one document can be unified
with other events by using inter- and intra-document
coreference annotations (see Figure 2); and (3) var-
ious topics about specific events can be selected by
using Google’s news archive search service. For our
linguistic resource, we extracted articles using search
keywords such asattack, death, earthquake, catastro-
phe, etc.

STEP 2: Web documents processing.For each theme, we
extracted on average seven parallel articles. These
web documents are manually cleaned and saved into
files. The text files are further tokenized and splitted
into sentences (one sentence per line).

STEP 3: Event annotation.We annotated events in texts
in accordance with TimeML specification (Puste-
jovsky et al., 2003a). For this task we used an an-
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Psearch surrounded P resistance

R

victory said

Rel

[R]eason
[Purp]ose
[E]nablement

[C]oreference
[Rel]ated

[P]recedence

[S]ubevent

C
nabbedarrest

captured
C C

SS

E

checking

escorted

limped

S

wearing

S

P questioned extraditedP P trial

Purp
confirm

P

accused
E

S

P

PP

P

exporting
R

producing

leading
R

R planning

hidding

wanted

offeredP P

P

Figure 5: Example of event structure annotations.

notation tool called Callisto, which is available at
http://callisto.mitre.org.

STEP 4: Event coreference annotation.Callisto has the
ability to convert annotated documents into TimeML
format documents. This allows us to use for annotat-
ing coreferring events belonging in the same TimeML
document a tool called Tango, which is available at
http://timeml.org/site/tango/tool.html. For annotating
cross-document coreferring events we used a modi-
fied version of Tango on generated document pairs be-
tween files with the same theme.

STEP 5: Event relation annotation.To be able to annotate
the event relations defined in section 2, we modified
Tango and performed a similar method as the one men-
tioned in the previous step for intra-document event
coreference.

Figure 5 illustrates an example of event structure annota-
tions on several articles describing the arrest of a Colom-
bian drug leader, Diego Montoya, on September 10, 2007.
As can be seen in this figure, most of the events are linked
to thecapturedevent, which is the main event of the story.
To describe the events depicted in Figure 5, we summa-
rize the story as follows. Diego Montoya wascapturedbe-
cause he wasaccusedof leadingan important drug cartel
in Columbia and because he wasproducingandexporting
drugs. Between theaccusationand hisarrest a series of
events happened: Montoya waswantedby FBI thatoffered
a reward for information leading to hisarrest. Aware of the
arrest, FBI officials werecheckingfingerprint databases to
confirm that it was, in fact, Montoya who wascaptured.
The article also describes in detail how Montoya wascap-
tured: first, a searchoperation was initiated, and, when
the drug leader wassurroundedby the Colombian forces,
he put up noresistance. After his arrest, Montoya was
escortedto be questionedbefore beingextraditedto the
United States for atrial . Colombian officialssaidthat Mon-
toya’sarrestwas a big drug warvictory.
The mapping of this example in the FrameNet crime sce-
nario is illustrated in Figure 6. In this figure, only the
shaded frames contain events from our example. As can
be noticed, the frame scenario contains only approximately
20 percent of all the events depicted in Figure 5. As we
mentioned in section 3, one reason for a weak coverage

of event structures on frame scenarios is that frame rela-
tions map concepts and not specific events. Another well
know problem of the FrameNet resource is related to the
coverage of the lexical units that are assigned to frames.
For instance, the eventsresistance, surroundedandoffered
from the example are not yet covered in FrameNet. The
last problem that we noticed when mapping our exam-
ple to the FrameNet crime scenario refers to the tempo-
ral order of accusedand capturedevents: in FrameNet
a captured

BEFORE
//

accused
relation can be inferred,

whereas, in this context, an AFTER temporal relation exists
between these two events.

process
Criminal

Arraignment

Notification of charges
accused

Trial
trial

Arrest
arrest

examination
Court

wanted
Want suspect

P

Using
Subframe

Precedes

P P

Surrendering

questioned
Questioning

Figure 6:Building event structures using FrameNet relations.

Based on the temporal interpretation associated to every
event relation, we can derive a strict partial order of the
events that belong in the same event structure. For exam-
ple, Figure 7 illustrates the chronologies of events associ-
ated to the event structure depicted in Figure 5. Further-
more, these chains of events from the same event structure
can be linked to other events from the document collection
if the TimeML temporal relations and the semantic roles
that encode a temporal expression are considered.

6. Conclusions
We created a novel linguistic resource for encoding event
structures in texts, which are defined by a set of six event
relations, as well as for capturing inter- and intra-document
event coreference. We argued that this resource is useful
for performing several forms of inference and showed that,
based on the temporal interpretation of event relations, we
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questioned extradited trial
B BB
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search
B
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B
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search
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B
hidding

accused
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offered

wanted

planning

B B
escorted
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wearing

B
hidding

B
checking

B
confirm BeforeB

Figure 7: Deriving chronologies of events from event structures.

can derive event chronologies for the events that belong to
the same event structure.
In addition, we described how the event structures can be
recovered through a generative probabilistic model and pro-
vided a supervised learning framework for classifying event
relations and solving event coreference.
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