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Abstract

When dealing with large, distributed systems thee gtate-of-the-art components, individual comptsene usually developed in
parallel. As development continues, the decouplingriably leads to a mismatch between how thesapoments internally represent
concepts and how they communicate these represergad other components: representations canueifesynch, contain localized
errors, or become manageable only by a small gobegperts for each module. In this paper, we diesthe use of an ontology as part
of a complex distributed virtual human architectireorder to enable better communication betweedutes while improving the
overall flexibility needed to change or extend sistem. We focus on the natural language undeiisiguwepabilities of this architecture
and the relationship between language and coneéiiis the entire system in general and the ontplogparticular.

tools both within each module and across modulesake
1. Introduction modification and creation of new domains easier and

Designers of large heterogeneous systems (such fossible without additional work by the designefreach
task-oriented  communicating agents) have anmodule. .

uncomfortable choice to make regarding their knagte ~ Of course, this approach has a cost: one has telatev
representations: should they choose a unhcormaddm_onal integrating representation  resources and
representation for all modules that enforces commorotation conversion tools. Central among thesenis a
understanding and re-use, or should they allow eacipntology that provides the standardized terminolagy
module to use its own representation, tailored ifipatty inter-term relationship constraints, plus code tmwert
for that module? Either alternative includes a egt this terminology to the component notation. We desc
difficult and perhaps insoluble problems. In thenfer  the ontology, representation, and different usedatd in
case, using a single common representation, itoeasery this paper and provide our experience with thereffand
difficult to decide which representation to useyegi the ~ tradeoffs involved. o

different demands of such diverse processes asipan Ve illustrate these points through our expenemudsthe
perception in a real or virtual world, and natleaiguage ~ Virtual Human Project at the University of Southern
dialogue, and especially since the ways in whiglytwill ~ California (USC), which has built virtual agents fihe

be developed are not fully understood at the skirould ~ Mission Rehearsal Exercise (MRE) (Rickel at al.020
one choose an impoverished language for which ane ¢ and Stability And Support Operations — Simulatiord a
guarantee fast algorithmic complexity (but thatfensft  Training (SASO-ST) (Swartout et al., 2006).

from representational inadequacy), or a very ricfglage ) )

that has expressive capacity closer to that of rahtu 2. TheVirtual Human Project

language (but that requires each component to merfo

complex deconstruction of the representations)?ti@n 2.1 Project Overview

other hand, if each module is free to choose it$1 oW The Virtual Humans Project, at USC's Institute for
notation, how does one convert the necessary elsmencCreative Technologies (ICT) and Information Science
from one representation to another? How does asw@en |nstitute (ISI), has the main goal of designingomatmous
that the overlap in capacities is sufficient andhfal agents that support face-to-face interaction wétbpge in
translation to the degree required is even posaible many roles and in a variety of tasks. The agentst ine

In this paper, we suggest a middle ground is p@ssib  embedded in the virtual world and perceive evemthat
which a multi-phase project lifecycle can achieve t world, as well as the actions of human participafitey
advantages of each approach while minimizing theirmyst represent aspects of the dynamic situation in
disadvantages. In the early stages of the projeetbest  sufficient depth to plan contingencies, developdigland
strategy is to allow each module designer to chdbse intentions, and form appropriate emotional reactidhey
representation language best suited for the sfateeart  must communicate with each other and with human
in that area, while developing inter-process participants using multi-modal natural language
communication languages to bridge the gap, e.@uffiret  communication.

al., 1996). As understanding of the relationshipsl a Qur latest scenario, an extension of SASO-ST, dedu
requirements are better understood, one can bheg t two virtual humans: a Spanish doctor and an Iréiige
languages closer together. Finally, one needs gppte  elder. Set in a small Iragi town plagued by viokenthe
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human trainee takes on the role of an US Army @apta

with orders to move the doctor’s clinic to a sdferation

(Figure 1).

In the course of the interaction, the human traimeest

negotiate with the virtual characters, establistinogt and
satisfying the objections of the doctor and eldembving

the clinic. The virtual humans evaluate the utteesn
made by the trainee and each other, update theleimof

the conversational states and models of each adiner,

An emotion module that appraises the state of the
world in relation to beliefs and goals, resulting i
emotion and specific coping strategies (Gratch and
Marsella, 2004). The emotion model makes direct use
of the task model representations, as well as facto
such as temporal status, likelihood, controllailit
and changeability.

A Dialogue Manager (DM), which relates the NLU

plan how to react and what to do next.

2.2 Virtual Human Architecture

output to the context of previous conversation and
other internal state, including the task and enmotio
models, updates the internal state, and plans new
communications (Traum et al 2003b, Traum 2003).
The dialogue manager uses both the task model
representations as well as more structured
abstractions of actions related to natural language

e A Natural Language Generation module (NLG),
which converts internal communication goals to
output text (Traum et al 2003a, DeVault et al, to
appear). This uses detailed aspects of the dialogue
model as well as either lexical and grammar rutes o
framebank (or both).

* A text-to-speech synthesizer. We have used several
synthesizers, including Festival and rVoice. These
require domain words as input.

e Anon-verbal behavior generator, which decides what
body movements should be performed in order to
convey the appropriate meaning of NLG output,
emotions, perception and conversational regulation.
(Lee & Marsella, 2006). This requires representegio

Figure 1: SASO-EN Scenario

The Virtual Human Architecture includes a large skt
modules, which reason about knowledge in diffeveays.
Figure 2 shows a conceptual organization and inddion

from the dialogue, task, and emotion models, a$ wel
as the NLG output and the body’s current position,
orientation, and behaviors. The generator outputs a

flow for these modules. The task reasoner, emotion
module and Dialogue Manager are developed in SOAR
and TCL (Newell, 1990). Other modules are develdped *
Java and C++. For a more in-depth discussion of the
general architecture and some of its applicaticee s
(Kenny et al., 2007). Below we describe some of the
modules and the ways they use knowledge:

Behavioral Markup Language (BML) (Kopp et al,
2006).

A behavior blending system, SmartBody, which takes
directives for motions and allocates resources
(Thiebaux et al, 2008). This requires BML input and
knowledge of the character’s attributes in theuatt
environment.

The virtual environment, displaying the characters
and their surroundings. We currently use the Unreal
2.5 Engine as our renderer. It must track the Visua

An Automated Speech Recognizer (ASR), converting®
vocalizations into words (Pellom, 2001). ASR needs
the words (spelling and pronunciations) that apjprear
the domain, as well as their frequencies (Unigram,  aspects of objects in the world and motion.

bigrams, and trigrams). * The real environment, consisting of the trainee.

A Natural Language Understanding module (NLU), These modules communicate using a message passing
converting unconstrained natural language protocol that any module can subscribe to. Someutesd
expressions to internal representations (Bhagat,et (€.9. ASR, NLU, NLG) are stateless, and transfdngirt
2005). Our statistical approach to NLU requires ainput into an appropriate output. Other moduleskrand
training corpus of paired utterance texts and séiman update context and may send commands and reqeests t
representations from the domain (that we call aother modules.

Framebank )

Atask reasoner that can plan how to achieve gowls 2.3 Representation Languages and Knowledge
reason about alternatives and utilities of variousR€SOUrCes

actions (Traum et al, 2003b). The task reasones described above, there are many different typles
focuses on states (that can have utilities foreciiit ~ knowledge resources in the SASO system, which bave
agents) and tasks (that can have states abe consistent in some ways, but also have different

preconditions and effects), as well as plans thaffeguirements for the different modules.

combine the two in causal networks.
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Figure 2: Virtual Human Architecture

Authoring these resources and maintaining themhas t error and effort to maintain consistency. Theséuinhed:
domain is changed and expanded can be a significant SOAR productions that directly create objects and
undertaking. Part of the problem is that thereairkeast links as part of SOAR'’s working memory

three sources of content authoring:

e TCL macros, that take in arbitrary argument strresu

1. General information on human cognition and and create a set of SOAR productions
interaction, from psychological and Al theories. ¢« NL frames containing an action or state with added

2. Story-based information, devised by an author. linguistic information for both the NLU and NLG
3. Language-based information, trying to make
sense of the things people say in these domains. 3. Ontology

These sources can cause conflict, e.g., when the wa
people talk about a domain does not match up with t 3.1 General

way the domain was formalized from the story. For
example, from the point of view of the task modwily
fully specified ‘move’ actions can take place, with a
source and destination specified. On the other hiansl
easy to say in English, “move the clinic”, without
specifying these. It is thus a challenge to comeviip a
meaningful representation for that phrase. E.gukhone
represent literally what was conveyed even if iesiot
make sense to the task reasoner? Should one autireent
task reasoner to handle such abstractions? Shaéd o
“misrepresent” the utterance as the closest reptaten
that is in the task model? This same suite of @wis
presented many times in building the necessary doma

modules.

Moreover, there are different means for providing
knowledge to different components. Previously, theg
to be constructed independently, which was a soafce

In order to address the problem of terminology &xiaacy,

we developed a single terminology repository, the
Ontology. We gathered from all modules’ represéonast
the terms they employ and merged them into one
standardized list that forms the terms of the aggl In
doing so we faced a complex task, not yet completed
namely decomposing conceptually composite termd use
by some modules into their component terms andioels

as required by others. In addition, to ensure thahe
future terms are related only in ways that all vheious
modules can actually support, we defined inter-term
relationships, such as an inheritance hierarchy and
constraints on frames’ slot values.

In themselves, these are not innovative ideas. tBat
range of tasks the ontology must support is ralgeyer
than most NLP-related projects have to deal with.
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Covering aspects as diverse as speech recognitidn a
synthesis, natural language understanding, geoaratid

information over a set of closely-related scenarieisally,
at the lowest level, we haveseenarioontology that stores

dialogue management, body movement, task planningscenario-specific information.

and emotion, we were faced with the need to hamdlele
spectrum of representational needs. Details of/#imus
aspects of the ontology are described in the rentians.
This work is not fully complete. At present, theéngipal
modules now directly using the ontology are thektas
model and the NLU (while some other modules buitd o
these representations). We have been experimentthg
the ontology itself in order to find the most supgpe and
flexible environment and notation.

At present, we have two iterations of our ontolagy use

The world ontology is structured to provide a widel
applicable set of concepts that can be specialemd
instantiated at the scenario family and scenareci§p
levels. The highest level of the ontology definésy,
example, entities such as military officers; sge@htities
like our captain are then defined at the scenamilf
level. The world level is expected to be usefubasmmany
different scenario families.

In addition to the entities, instantiated actionsl states
exist at the scenario family level in a basic foffhese

Stanford’s Protégé (Knublauch, 2004) to manage .bothinstances are used by both the task model and thé N

Protégé supports two types of representation lagegiea
frame-based representation (Protégé Frames) antfahe
Ontology Language (OWL) (McGuiness & van Harmelen
2004, Bechhofer et al 2004). For our first iteratiove
chose to use Protégé Frames, as this lay conchpticde

to the existing data sources and did not have veehead
that OWL brings in. Our philosophy was to create an
ontology that did not require many modificationsthe
existing system. This version gave us the beneffit o

integrated data sources and created the necessary

experience needed to leverage all the benefithtoiagy
can give.
The goal for the second version of our ontology wees

frames, which add module-specific information terth
such as relations and linguistic information. Témsures
consistency between modules and enables re-use of
knowledge.

Consider a basic ‘move’ action, where our captan i
moving the clinic from the market to the downtowea
We can define this as a set of slot / value pairs:

event nove

agent captain-kirk

theme clinic

source mar ket

destinati on downt own

Similarly, we can define the state ‘the clinic mwhtown’

re-use of knowledge and the introduction of a moreas follows:

principled ontology design. Instituting a princigldesign
of the ontology meant making changes to existing
representations of the system.

object clinic
attribute | ocation
val ue downt own

We switched the representation language to OWL toCurrently, the world ontology contains 192 classkzb

automatically classify concepts and instances, raodt
crucially because it allowed us to institute a &iehical
structure of domain independent and domain depénde
concepts. This resulted in a three-level orgarorati
which will be discussed in the next section.

The OWL language allows a more flexible distribuatiof
assertions. Drawing on its semantic web roots, OW
allows the addition of assertions to objects thet a
imported, as well as those created in a particideel.
This is in contrast to Frames, where imported imsta
cannot have any information changed. The greate
flexibility of OWL makes sharing of information aag
since one can inherit partially specified instan{te
shared part) and then complete the customizatianmvaire
detailed level.

One further consideration was the wider availapibf
tools and ontology resources for OWL.

3.2 Sructure

r

properties and 199 individuals. The scenario farglel
has an additional 6 classes and 548 individuale Th
multi-party scenario level adds 5 classes and 88

r}ndividuals, along with additional relations betwee

individuals inherited from the family level.

3.3 Task Moddl

I‘I’he purpose of the Task Model is to represent dis&st

(action plans), at both generic and specific (intséaed)
levels, of the agents. This naturally encompasées t
model each individual agent has of the world. Thena
model contains entities, a representation of theddisiate
with object:attribute:valudriples, and task elements using
a STRIPS-like representation (Fikes & Nilson, 197he
task elements use states as their preconditionsffeuts.

In the OWL ontology, we introduced the notiongaieric
actionsthat include descriptions of their preconditiordan
effects templates. This allows us to define badienain
independent preconditions and effects only once lahd
the system instantiate that for each scenario.

Using the import mechanism of the OWL language, Wegq example, the generic ‘move’ action defines atffe

created a three-level organization of the knowledie
have a common, general-purposerld ontology. Most
classes, like ‘Person’ and ‘Action’, are definedrehe
Inheriting the world ontology and adding more spbzéd
knowledge shared by multiple scenarios—locationsp®,
characters and basic task structures—is shenario
family level. This allows us easily to share certain

such as adding “ththemeis at thedestinatiori that are
later instantiated for our scenario. This type edsoning
goes beyond the standard OWL inference capabikines
required the construction of our own template
interpretation code.

The different levels of ontology structure, comlingith
the flexibility to choose where to assert knowledga be
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used to add some additional scenario effects ajrectAs
noted above, generic preconditions and effectctbr@s
are defined at the world ontology level. Some addél
effects of more specialized movement can be atthahe

which stores information that is linked to the uryiag
actions, world state and entities. These framediraked
with natural language utterances to form an utterah
frame pair. These pairs are grouped per domaieparsite

the scenario family or scenario specific level. Oneframebanks, one for each character. The framelmrtké

example of that is the way that particulastrumentsof a
movement action can affect the (perception ofShanish
doctor’s neutrality. If, for example, U.S. troop®we the

trainee is used by the NLU; the framebanks fornvinial
humans are used by the NLG. At the moment, only the
NLU is fully integrated with the ontology. The NL&ses

clinic, that has a negative effect on the doctor’sthe concepts that are defined in the ontology, MuG

neutrality—which he doesn’t want to occur. If local
workers perform the move,
maintained. This information is added at the sdenar
family level, since it depends both on specificstioé
scenario family and on the existence of entitiest tire
defined at that level (the local workers and Ut8ops).
Although it is possible to make these specific aiEses
manually, we have also been exploring ways to nilaése
effects flow from a causal model.

One innovative use of the OWL language is soméalnit
work on assigning additional properties to actioRer
example, we have a general definition for “actidihat
reduce neutrality”. This is defined as an actideetaby a
partisan party that benefits a neutral party. Hilisws us
to automatically infer the effects on neutrality agrtain
actions in our domain, specifically, having the Lu®ops

then his neutrality is manipulates

frames are produced by the dialogue manager. Titer la
the task model using an internal
representation of concepts, rather than the onyolog
directly, so there is still a possibility of a captual
mismatch if the representations in the ontology and
dialogue manager are out of synch. In future wdnk t
dialogue manager will get all of its representagidrom

the ontology.

Before the introduction of the ontology, all NLUnsantic
frames were created by hand. This allowed our Istguo
create semantically rich frames. The drawbackas tthis
richness is hard to support in the Dialogue Manauyer
task model. Typos and other mistakes can lead Herot
performance problems. It can also lead to lower
performance in the NLU if the frames are not inédgn
consistent.

move the clinic. We plan to use a library of such In order to recreate the NLU framebank in the auy)

meta-descriptions to include additional effectshmitt the
need to assert them specifically.
In addition to preconditions and effects, authas also

we needed three different types of information:riatural
language utterance, formal information about thetexat
of the utterance and linguistic information.

defineconcernghat agents might have for certain states toFor example, an urgent request from the captaih asc'|

be true or false. These concerns allow the ematiodule
to calculate how an agent feels about the curtate and /
or possible future states of the world.
Below are the examples we used in section 3.2, antgd
with the knowledge that is specific for the taskd®lo For
the event, these are the preconditions and effects:

event nove

agent captain-kirk

thene clinic

source mar ket

desti nati on downt own

pre: clinic-location-narket
del: clinic-1location-narket
add: clinic-1ocation-downt own

For the state, these are the belief and concern:

object clinic

attribute | ocation

val ue downt own

belief false

concern {doctor-perez 10}
At the moment, our ontology contains 14 types aioas
and around 40 instantiated actions. These can tndel @f
15 case roles (theme, source, etc.). States canebéed
using 20 objects, 15 attributes and 25 values. &hes a
total of around 40 non-generated states.

3.4 Natural Language

The NL modules communicate with the Soar agent b
exchanging semantic information in semantic frame

must move the clinic to the downtown area”, can be
represented in a semantic frame as follows:

mood decl arative

sem speechact . type stat enent

sem nodal i ty. deonti c nust

sem pol arity positive

sem type event

sem event nove

sem agent captain-Kkirk

semthenme clinic

sem sour ce nar ket

sem desti nati on downt own
Note that the core semantics are derived from #eich
‘move’ action presented in section 3.2.
Our initial prototype for the multiparty domain halsout
60 semantic NLU frames that are linked to aroun@ 25
utterances. We have yet to start formal subjedintgs
which will produce a substantial increase in thenhar of
utterances (our previous two-party domain has abo00
utterances in the framebank).
Ideally, all of the words in an utterance wouldpdaet of a
lexicon in the ontology, tying the natural languagectly
to the concepts we support. However, the current
implementation of the NLU is geared towards whole
utterances rather than individual words or phrases,
allowing us some short cuts in interpretation. @dtions
have a word family associated with them, which
potentially allows for a variety of tenses. In dd, each
object ID is treated as a lexical item. Currennplanclude
Ymore advanced NLU and NLG, which will make use of
more lexical information.
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3.5 Exporting Representations

Naturally, simply incorporating an ontology into a
collection of disparate modules did not magicatlive the
standardization problem. Since it was infeasibthegito
rebuild the various modules from scratch or to decihem
to employ the standardized representation formalise
created a set of ‘exporter functions’ that converésh
representation statement—from a single attributaeva
pair all the way up to a scenario—into the intem@thtion

of most modules, and a set of ‘import functiong&rform
the opposite conversion.

useful for generic NLP, and for us for NLU and Nltkgy
do not provide enough information to support thereno
detailed reasoning required, in our case, by tagkagtion
planning, body movement, etc. Our ontology, in castt
has to contain more information about speech aots a
intentional connotations of words, and hence is anor
focused on the particular domain, thereby beindgharex

to a semantic representation that the agents uadelrs
Our ontology is also linked to a concrete modeblyects

in the simulated world, rather than being more gahe
connected to real-world items.

We have implemented these importer and exporterhis fact has led us to develop our ontology thfoag

functions as Protégé editor tabs. The use of mataepts
allows us to make changes to the ontology withbet t
need of rewriting our plugins.

Generating all of the output code from the cerdrablogy
gives us the assurance that all of the system rascare
using consistent semantics for our application. deetine
importer and exporter functions also provide somnity
control.

3.6 Reasoning

One of the benefits of using OWL is the availabilif
classifiers, which can automatically maintain hiehy
information based on the logical definitions of sdas.
This allows one to have a multi-hierarchy of maosteact
and more specific classes maintained automaticalis

is helpful in the organization of the action hiefay, since
one can have general move actions, and then sgecial
them, say, to move actions that have “the clinis"tlae
theme. Classifiers can maintain the class/sub-clas
relationships as well as properly assigning instanto
their proper place in the hierarchy.

OWL defines several levels of expressive powergiram
from Lite, through Description Logic (DL) and Full.
Certain reasoners, like concept classifiers onkrage on
the DL level of the language. Parts of the ontoltgy are
expressed using the OWL Full language cannot b

automatically classified, because the standard OWL

reasoners require that one restrict the expregsiver of
the OWL language to the OWL-DL subset. But certzin
our constructs are most naturally modeled using th
OWL-Full language. In particular, OWL-DL does not
allow one to specify properties as the values dfeot
object properties. This causes problems in thenidiefin of
simple queries, since simple query is a semandimér
with one of the case roles unspecified and desighas
the query. But representing that places the languaigp
OWL-Full, and prevents the classification of qusrie

4. Reated Work

There is an interesting disconnect between ontolog
construction at the large scale and actual usagenplex
computational systems. Large-scale term taxonostieb

as WordNet (Fellbaum et al., 1998) simply do naivide
the amount of information that our modules neederkEv
slightly smaller and more semantically orientecotogies,
such as Mikrokosmos (Onyshkevych and Nirenberg5199

process of organic growth, starting with more
lexically-oriented term taxonomies such as Wordtken
adding information as required by the various medel
Thus, in many cases, the task and agent modelg driv
ontology development, but their additions are not
considered complete until the NL-related informatio
required both to parse and to generate with theises is
also added. The result is a set of representationst and
interrelations that include a richly diverse set of
information of quite different kinds, supportingaemning

in various spheres of human activity.

This model of organic growth has the disadvanthge it

is never complete; we may at any time encounterm t
that the system does not yet know. But it has tivaatage
that development of our system is more tractabtbtha
precise semantics of the agent model is capturédslithe
drawback that expansion of the domain also requiset®
construct the semantic models rather than useimgxist

Sources. But even with existing sources, we woalklo

ground the semantics in our agent’s world model¢civis

a considerable amount of work.

Our use of generic action templates is similar he t
Parameterized Action Representation (Badler efl@bg;
Bindiganavale et al.,, 2000). The Parameterized ofcti
epresentation is used as a means of communication
etween wusers and the agents. Our underlying
representation is tied to a different agent consgatem,

and the contents of the templates are filled in by

einstantiation from the ontology rather than usguin

The Smartkom Project (Wabhlster, 2006) is inspirslan
its use of an ontology to solve a number of natural
language processing issues for a system includungueal
character and several simple command tasks. Yedove
not know of any other multi-component model of huma
activity comparable to the Virtual Human Projectthwi

which to compare our experience.

5. Conclusions and Future Work
The current ontology gives us several benefitsstFit

Yassures that the knowledge used by the task madkl a

NLU are synchronized, because they share the basic
representation. Second, it forces the author tictlgtr
follow the rules of what constitutes a valid senafiame,
because we can constrain the model to follow our
specification. Third, it allows users to reuse kienige, by
combining existing individuals. Fourth, it providesafer

and FrameNet (Ruppenhofer et al., 2006) base theimechanism for changing data, because knowledge is

semantics purely on linguistic principles. Whilerye

referenced, rather than copied. And finally, it\pdes a
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common user interface for all author related tasks. At present, not all Virtual Human modules have been
There are also drawbacks, though, which we hope tdintegrated with the central ontology. We are busy
address in subsequent versions. Using OWL and d&oté integrating some, such as NLG, and plan to integraire,
introduces an extra learning curve for new devel®pe  most notably SmartBody. This involves extending the
our project, which is especially an issue for nomputer  knowledge base with concepts from the virtual
scientists. In addition, although it allows for ieasand  environment and the development of a rich lexicbine
safer change in some ways by changing certaintass®r  ultimate goal is to tie together all the informatithat
we see that changes that include naming conventiongifferent modules use about a single concept.

require a lot more effort than a simple replacerallld in Including an ontology and suitable knowledge erang

a text file. Lastly, even though Protégé offersiehr representation import/expert functions into an txis
graphical user interface, this interface is notrgda system can be seen as a step on our Virtual Human’s
towards the authoring tasks our system requiresmaturation process from research pilot systemdtopype
Especially for new users, it can be hard to fingsting  to, eventually, a production-level system. In ttaisk we
knowledge. The creation of new authoring tools am af face the challenge of determining the optimal todfde
Protégé is something we have high on our prioisty | point between system simplification and complexity.
One attractive feature of using an ontology as @trak  USC’s Virtual Human Project, the ontology and assted
repository is the potential ease of extension efdystem.  framework provide a rich context for investigatitigs
Whenever needed, we could draw additional terms ang¢hallenge.

relations, as well as additional Upper Model terfnem

the Omega ontology (Philpot et al., 2005), for eglemBy 6. Acknowledgements
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