
Identification of Naturally Occurring Numerical Expressio ns in Arabic

Nizar Habash and Ryan Roth

Center for Computational Learning Systems, Columbia University
New York, NY, USA

{habash,ryanr}@ccls.columbia.edu

Abstract
In this paper, we define the task ofNumber Identificationin natural context. We present and validate a language-independent semi-
automatic approach to quickly building a gold standard for evaluating number identification systems by exploiting hand-aligned parallel
data. We also present and extensively evaluate a robust rule-based system for number identification in natural context for Arabic for a
variety of number formats and types. The system is shown to have strong performance, achieving, on a blind test, a 94.8% F-score for
the task of correctly identifying number expression spans in natural text, and a 92.1% F-score for the task of correctly determining the
core numerical value.

1. Introduction

Numerical Expressions (NUMs) permeate throughout text
and speech presenting special challenges to natural lan-
guage processing (NLP) applications. In addition to the
typical issues NLP faces such as word ambiguity or mor-
phological complexity, NUM challenges include: (a) their
representing an infinite set of possible expressions and (b)
their being represented in multiple script forms: digits (e.g.,
168,000), multi-word sequences (e.g.,one hundred and
sixty-eight thousand), or a mix of both (e.g.,168 thousand).
Different NLP applications have different needs when it
comes to NUMs. In machine translation, source language
NUMs may be normalized into a digital form that is used to
generate them appropriately in the target language. How-
ever, speech recognition may expect the use of a language
model that does not contain any digits, or where those dig-
its have been consistently converted to word forms. And
similarly, text-to-speech applications need to convert dig-
its or mixed forms to words. Therefore, to be able to pro-
cess NUMs in real contexts, we need tools to (a) determine
the NUM span, and (b) convert its content into a normal-
ized, digit-based form. Generating NUMs from a normal-
ized form may be also needed but is an easier task by com-
parison.

In this paper, we define the task of Number Identification
(NUM ID) in natural context as including span determina-
tion and number normalization. We discuss the complex-
ities of this task and we present a language-independent
approach to quickly building a gold standard for evaluat-
ing NUM ID by exploiting aligned parallel data. We also
describe and evaluate a rule-based system for NUM ID in
Arabic.

In the next section, we describe previous work on NUM ID.
In Section 3., we describe the linguistic issues particular
to Arabic NUMs. In Section 4., we describe a language-
independent approach to building a gold NUM ID tagged
corpus. Finally, we present a rule-based system for NUM ID
for Arabic and we evaluate its performance in Sections 5.
and 6., respectively.

2. Previous Work

Most of previous work on NUM ID have focused on out-of-
context number conversion from word form to digit form
and vice versa. Such work has been done for many lan-
guages and is exclusively rule-based. Examples include
English (Sproat, 2000), Swedish (Sigurd, 1973), Finnish
(Karttunen, 2006) and, of special relevance here, Arabic
(Al-Anzi, 2001; Dada, 2007). Particularly impressive is
Bringert (2004)’s Numeral Translator, a demo applet which
uses the Grammatical Function (GF) interpreter and nu-
merals grammar to translate word NUMs among over 80
languages. However, in addition to being purely out-of-
context number conversions, these approaches suffer in ro-
bustness: they often do not handle even small variations
of input number format, perhaps because the authors have
chosen to keep their system grammars small. For example,
Bringert (2004)’s Numeral Translator can translatetwenty-
five thousand sixinto [25006], but cannot parsetwenty-five
thousandand six or twenty five thousand six(hyphen re-
moved), which are relatively common variations.

One exception to the above type of research is the MUC
NUMEX effort on identification of number expressions in
natural contexts. However, the NUMEX guidelines on
NUMs are restricted only to monetary expressions and per-
centages (Grishman and Seundheim, 1996) and do not in-
clude normalization into a digit form.

In the work presented here, we extend the definition of
NUMs in natural contexts to include multiple types includ-
ing forms such as ordinals (e.g., [10th]) and plurals (e.g.,
[10s]). We also crucially extend the research on NUM ID
by including an evaluation of this task in naturally occur-
ring contexts. Given the lack of gold standards for the NU-
M ID task, we describe and validate an approach to create
a gold standard using word-aligned parallel data. Finally,
we describe a relatively simple rule-based approach to Ara-
bic NUM ID and evaluate it extensively. Our approach is
designed to be robust in natural contexts by allowing (a)
a mix of digits and words and (b) a wide range of simple
variations in word and mixed NUMs.

3330

3. Arabic Number Expressions
Compared to English, Arabic has a complex number system
that interacts heavily with its complex morphology. Ara-
bic numbers can vary by gender, definiteness and case and
can take on a variety of clitics (prepositions, articles and
even pronouns), e.g.,

�éªJ.� sbςh̄ 1 ‘seven’
�éªJ.�Ë�Alsbςh̄ ‘the

seven’ andÑî �DªJ.�Ëð wlsbςthm ‘and for the seven of them’
are NUMs with the normalized value [7]. Moreover, Arabic
verbs, nouns and adjectives inflect for number in addition
to other features (Habash and Rambow, 2005). Arabic or-
thography usesoptionaldiacritical marks which, if present,
would help in disambiguating some NUMs, e.g.,�Ô 	g xms

can be�Ô �	gxums‘one-fifth’ or �Ô �	gxams‘five’. Al-Anzi

(2001) presents a good description of the word-based car-
dinal number system in Arabic (out of natural context).
Dada (2007) also discusses in more detail issues of Arabic
number-noun agreement, which we will not discuss here as
they primarily pertain to generation, whereas our focus is
on recognition (analysis). In naturally occurring data, we
face additional issues not restricted to Arabic only: (a) am-
biguity of words that can be numbers or non-numbers, e.g.,�éJ
 	K A�K θAnȳh is the noun ‘second (unit of time)’ and the NUM

[2nd] (same ambiguity as in English); (b) use of a mix of
digits and words to construct NUMs; and (c) variation of
forms (orthographic alternatives, spelling errors, dialectal
forms, and ungrammatical constructions). Additionally, we
encounter other forms of numbers besides cardinal numbers
such as ordinals and fractions.
In the work presented here, we address the forms of NUMs
represented in Table 1. We handle some of the issues of
form variations, but we leave part-of-speech (POS) and lex-
ical ambiguity resolution to future work. We do not mark
the morphological number of nouns (singular, dual or plu-
ral). Since our NUM ID task for Arabic is intended for
naturally-occurring text, we do not expect the text to be to-
kenized or diacritized in any way. However, we make use
of some low-level morphological knowledge in our system
(Section 5.).

4. Building a Gold Standard for Number
Identification

A crucial resource to the evaluation of any tagging system
is a gold standardto measure performance against. We
did not have a ready-to-use gold standard for NUM ID. And
since building a gold standard can be a time-consuming ef-
fort, we describe here an approach for semi-automatically
annotating a text corpus with NUM IDs by exploiting par-
allel corpora in the same spirit of work on projection over

1All Arabic transliterations are provided in the Habash-Soudi-
Buckwalter transliteration scheme (Habash et al., 2007). This
scheme extends Buckwalter’s transliteration scheme (Buckwalter,
2002) to increase its readability while maintaining the 1-to-1 cor-
respondence with Arabic orthography as represented in standard
encodings of Arabic, i.e., Unicode, CP-1256, etc. The following
are the only differences from Buckwalter’s scheme (which isindi-

cated in parentheses):̄A
Æ� (|), Â

� (>), ŵ
ð' (&), Ǎ �
 (<), ŷ Zø' (}),

h̄
�è (p), θ �H (v), ð

	X (∗), š �� ($), Ď 	 (Z), ς ¨ (E), γ
	̈

(g),

ý ø (Y), ã �� (F), ũ �� (N), ı̃ �� (K).

alignments (Yarowsky et al., 2001). We use a manually-
aligned corpus of Arabic-English sentences from IBM (IB-
MAC)2 (Ittycheriah and Roukos, 2005) although we be-
lieve the approach can be extended with some added noise
to automatically-aligned data. In our approach, wedo not
include any information about Arabic numbers. The ap-
proach itself is language-pair independent, but the imple-
mentation needs some resources for theotherlanguage – in
our case, English.
In the IBMAC corpus, Arabic punctuation and digits are
mapped into their English equivalents.3 Alif hamzated
forms are normalized and so are Alif-maqsura and Yaa. All
diacritics and tatweel/kashidas are removed. The reported
inter-annotator agreement is around 93%. The data con-
tained no explicit NUM ID information other than marking
the presence of digits. In one subset of the data (afa.align
and treebank.align), digits were identified, e.g., 33.5 is rep-
resented as $num{33.5}. In the rest of the data (anna-
har.align.fw and ummah.align.fw), the digits were replaced
with the token $NUM, and as such were not of use to us.
In the subset of data we use (afa.align and treebank.align),
there were 8818 sentences total, which we divide into test
and devtest in Section 6.. An example of the informa-
tion present in IBMAC is shown in Table 2. The first
two columns specify the word positions (WPos) of words
aligned together in the Arabic and English sentences. The
last two columns show the actual aligned words.
Starting with the aligned data, we mark all adjacent En-
glish NUM words, e.g.,2.8 andmillion in the example in
Table 2. We then use the alignments from English to Arabic
to identify the spans of NUMs in Arabic. We also project
back from Arabic to English, thus expanding the pairs of
adjacent words referring to NUMs in Arabic and English.
Of the identified sequences, we exclude all pairs where the
English span ends up including non-number words. This
ensures that dual nouns in Arabic (among other things)
are excluded. We normalize the English NUM to a digit
form using an English number normalization script we de-
veloped, and assign the normalization as the value of the
Arabic NUM.
After this automatic step, we ran a manual check on all
unique identified Arabic spans and values to verify well-
formedness. The checks for spans and values were done
independently. The manual corrections included correcting
values, redefining spans, and removing incorrect spans re-
sulting from ambiguous English terms, e.g.,half (part of
a football match) in during the first half, which can trans-
late into the Arabic ñ �� šwT(not a number). The manual
changes affected less than 10% of the automatic decisions.
To validate the quality of the gold standard, we manu-
ally corrected a sample of 400 sentences (containing 370
NUMs). Comparing the original sample to the corrected
one, we achieve 100% precision and 98.4% recall (99.2%
F-1). Most of the untagged cases responsible for the re-

2We thank IBM for making their hand-aligned data available
to the research community.

3Eastern Arab countries such as Syria and Egypt use Indo-
Arabic digits01234 01234, while western Arab countries such
as Morocco and Tunisia use Arabic digits01234(same as those
used in the West).

3331

Type Arabic Value
Digits 14 14 14
Decimals 5,5 5,5 5.5
Percentages 82% 82% 82%
Number Words

�éªJ.� sbςh̄ 7

Number Strings 	á�
ªK. P�ð Yg�ðð �é
JÖ �ßC�K θlAθmŷ̄h wwAHd wArbςyn 341
Mixed

	­Ë� 63 63Alf 63000
Mixed 	á�
K
CÓ 6.6 6.6mlAyyn 6600000
Mixed

�é
JÖÏAK. 12 12bAlmŷp 12%
Ordinals 	á�
�J�Ë�ð �IËA�JË � AlθAlθ wAlstyn 63rd
Plurals �HA
JÖÏ� AlmŷAt 100s
Simple Fractions ú
 �æÊ�K θlθy 2/3

Table 1: Examples of common NUM forms in naturally-occurring Arabic.. A 	KñJ
ÊÓ 2,8 È� PA�«B� 	áÓ 	áK
PQå	��JÖÏ� XY« ù
 ¢	m��' Y�̄ð
wqd txTy ςdd AlmtDrryn mn AlAςSAr Al 2,8 mlywnA .
The number of people harmed by the hurricane has surpassed 2.8 million .
Arabic WPos English WPos Arabic Phrase English Phrase

1 9 Y�̄ð wqd has

2 10 ù
 ¢	m��' txTy surpassed

3 1,2,3 XY« ςdd the number of

4 4,5 	áK
PQå	��JÖÏ� AlmtDrryn people harmed

5 6 	áÓ mn by

6 7,8 PA�«B� AlAςSAr the hurricane

7 -1 È� Al e_0
8 11 2,8 2,8 2.8
9 12 A 	KñJ
ÊÓ mlywnA million

10 13 . . .

Table 2: Example of a sentence aligned in the IBM hand-aligned corpus.

call error result from the Arabic number being aligned to a
non-number in English, e.g.Yg�ð I. 	K Ag. jAnb wAHd‘one
side’ is translated as ‘unilaterally.’ This high degree of cor-
rectness makes us feel comfortable that this resource can be
used to evaluate our NUM ID performance.

5. Arabic Number Identification
In this section, we describe our algorithm for Arabic NU-
M ID. The algorithm is divided into two stages: Span
Identification (SpanID) and Number Normalization (Num-
Norm). An example of the NUM ID process is shown in
Figure 1. TheSpanID step identifies word sequences that
refer to NUMs, making sure to split apart any distinct NUMs
that happen to be adjacent to each other. Upon comple-
tion, each of the marked spans is passed to theNumNorm
step, which determines the numerical value associated with
each span. Next, we describe the number lexicon we use.
We follow it with a description of the two NUM ID stages,
SpanID andNumNorm.

5.1. Number Expression Lexicon

Both parts of the algorithm make use of a specially con-
structed lexicon, which lists over 400 forms of Arabic nu-

Type Arabic Value
Numbers

�éªJ.� sbςh̄ [7]
Teens Qå��« �é�J� st̄h ςšr [16]
Plurals �HA 	JK
Qå��« ςšrynAt [20s]
Dual Forms 	àA�J
K AÓ mAŷtAn [200]
Scale Value

	­Ë� Alf [1000]
Scale Value 'A 	KñJ
ÊÓ mlywnA [1000000]
Scale Value �H�PAJ
ÊÓ mlyArAt [1000000000]
Non-numerics

�éÊ�A 	̄ fASl̄h [.]
Non-numerics

�é
JÖÏAK. bAlmŷ̄h [%]
Simple Fractions

	­�	� nSf 1/2

Table 3: Examples of lexicon entries.

merical terms and their associated values. Lexicon entries
may include the definite determiner+È� Al+ ‘the’. How-

ever, we exclude other affixes, namely, the conjunctions+ð
w+ ‘and’ and+ 	¬ f+ ‘so/then’; and the prepositions+ È l+

‘to/for’, +H. b+ ‘in/with’ and +¼ k+ ‘as/such’. The large

3332

Input: AêÊ� 	̄ 	á�
 	J�KB � �ñJ
Ë � AêkA�J�J 	̄ AK. ú
 	G A�JË �ð ÈðB� AîD
Ê� 	̄ ú
 	̄ é�KYîD�� ø
 	YË� 	Q�
Ò�JÖÏ� hAj. 	JË � XYZ
�é»Qå�� É��ñ�K. ðPñK
 	áK
Qå��«ð �é�Ô 	g úÍ� AêÒîD�� Qª� É�J
Ë �é
JÖÏAK. 15 	áÓ Q��» � ¨A 	®�KPAK. ðPñK
 	àñJ
ÊÓ 7.68
�éÒJ
 �®K. �IËA�JË �

twASl šrk̄h XYZ AlnjAH Almtmyz Alðy šhdth fy fSlyhA AlAwl wAlθAny bAfttAHhA Alywm AlAθnyn fSlhA
AlθAlθ bqym̄h 7.68 mlywn ywrw bArtfAς Akθr mn 15 bAlmŷ̄h lySl sςr AshmhA Aly xms̄h wςšryn ywrw .

After Span Identification (SpanID):
twASl šrk̄h XYZ AlnjAH Almtmyz Alðy šhdth fy fSlyhA<num>AlAwl </num> <num>wAlθAny</num>

bAfttAHhA Alywm AlAθnyn fSlhA<num>AlθAlθ</num> bqym̄h <num>7.68 mlywn</num> ywrw
bArtfAς Akθr mn<num>15 bAlmŷh̄</num> lySl sςr AshmhA Aly<num>xms̄h wςšryn</num> ywrw .

After Number Normalization (NumNorm):
twASl šrk̄h XYZ AlnjAH Almtmyz Alðy šhdth fy fSlyhA<num value=“1st”>AlAwl </num>

<num value=“2nd” >wAlθAny</num> bAfttAHhA Alywm AlAθnyn fSlhA
<num value =“3rd” >AlθAlθ</num> bqym̄h <num value=“7680000”>7.68 mlywn</num>

ywrw bArtfAς Akθr mn<num value=“15%” >15 bAlmŷh̄</num> lySl sςr AshmhA Aly
<num value=“25”>xms̄h wςšryn</num> ywrw .

Figure 1: Example of the NUM ID process. Spans identified in theSpanID step are indicated with XML tags withoutvalue.
The output ofNumNorm places the determined values of NUMs inside the XML tags.

number of forms is necessary to accommodate the variety
of ways in which NUMs are expressed in Arabic. Table 3
shows a few example lexicon entries.
We define ascale valueto be a numerical term referring to a
value of thousands, millions, billions, etc. Scale values of-
fer important indications of a NUM ’s total value because of
the grammatical rules which restrict the order in which they
can appear in a NUM. BothSpanID andNumNorm make
use of these indications. Arabic possesses several ways of
expressing scale, including special forms to indicate duals,
few and many, e.g.,	àñJ
ÊÓ mlywn is used with 1, 100 and

1000million(s); 	á�
 	KñJ
ÊÓ mlywnynmeans ‘2 million’; 	á�
K
CÓ
mlAyynis used witha few (3-10)millions; and A 	KñJ
ÊÓ mly-

wnA4 is used withmany (11 to 99)millions. Each of these
forms is represented in the lexicon.
One interestingexclusionfrom our lexicon is the word	á�
 	J�KB � AlAθnynwhich can mean both ‘the+two’ or ‘Mon-
day’. In a preliminary analysis of the kind of errors we
were getting in our devtest, we found that more than half of
the precision errors were due to this word being incorrectly
assigned the value [2], while it was invariably ‘Monday’.
As a result, we removed it from the lexicon. All the results
reported in Section 6. (baselines and our system) use the
same lexicon.

5.2. Span Identification

SpanID is a crucial process for identifying NUMs in con-
text and is implemented here as a two-step procedure. First,
a line of input Arabic text is scanned for numerical terms
which have entries in the lexicon. Any sequence of one or
more consecutive numerical terms is collected into a span.
Terms which are already digital (e.g.,1.234) and ancillary

4This is the singular indefinite accusative form of the word	àñJ
ÊÓ mlywn ‘million’. In Arabic this form is used as part of a

special construction called	Q�
J
Ö �ß tamyiyz‘specification’ with num-
bers between 11 and 99 (Dada, 2007).

terms such as
�éÊ�A 	̄ fASl̄h ‘a decimal point’ are included as

well. At the end of this stage, the algorithm will have gen-
erated a collection of potential NUM spans. We have one
ad hoc rule that deletes a span around the wordYg�ðwAHd
when it is not part of a bigger number span; appearing by
itself, this word is often ambiguous as ‘1’, ‘one/someone’
or the adjective ‘common/unique’. Since this is an ad hoc
rule, it fails in some cases (Section 6.3.).
It is possible that the input text will have two or more NUMs
adjacent to each other. If normalization is attempted on
these cases, the result is that the two NUMs will be com-
bined into a single, erroneous value. For this reason, we
examine each span prior to normalization and split it if nec-
essary. Span splitting is done by sequentially checking each
word (Y) in the span for indicators of its connection with
the preceding word (X); if no such indicator is found, the
word is assumed to start a separate NUM, and the span is
split betweenX andY. The connection indicator rules we
use are:

1. Y has awa+ ‘and’ prefix, e.g., 	á�
�KC�Kð �éJ
 	K AÖ �ß θmAnȳh
wθlAθyn ‘8 and 30’ is [38]. This rule is ignored when
both X and Y are ordinal, e.g., �IËA�JË �ð ÈðB� AlAwl
wAlθAlθ ‘first and+third’ is [1st] [3rd] not [4th].

2. Y is a decimal point or percentage sign (or words re-
ferring to those punctuation symbols), e.g.,

�é
K AÖÏAK. �é�J�
st̄h bAlmAŷ̄h ‘6 %’ is [6%].

3. Y follows a decimal point word, e.g.,�é�KC�K �éÊ�A 	̄ �éª��� tsςh̄ fASl̄h θlAθh̄ ‘9 . 3’ is
[9.3].

4. X andY together refer to a number between11and19
(inclusive), e.g.,Qå��« �éªJ.� sbςh̄ ςšr ‘7 10’ is [17].

5. Y is part of a string of “digit” words that follow a deci-
mal, e.g.,

�éª��� �éªJ.� �éªJ.� �é�KC�K �éÊ�A 	̄ Q 	®� Sfr fASl̄h
θlAθh̄ sbςh̄ sbςh̄ tsςh̄ ‘0 . 3 7 7 9’ is [0.3779].

3333

6. Y is a scale value word, whileX is not,
e.g., A 	KñJ
ÊÓ 	á�
�Ô 	g xmsyn mlywnA‘50 1000000’ is
[50000000].

5.3. Number Normalization
After the spans are determined, they are normalized, i.e.,
translated into digital form. Prior to doing this, however,
the span is examined for the presence of decimal points and
percent words. In the case of decimals, the sections of the
span before and after the decimal will be translated sepa-
rately, and their output combined into single value after-
ward. Note that numbers following the decimal can be ex-
pressed as digits (e.g.,

�é�Ô 	g Yg�ð �éÊ�A 	̄ �é�KC�K θlAθh̄ fASl̄h
wAHd xms̄h [3.15]) or (less commonly) as a regular number
(e.g.,Qå��« �é�Ô 	g �éÊ�A 	̄ �é�KC�K θlAθh̄ fASl̄h xms̄h ςšr [3.15]);
either format can be handled. If the span has a percent sym-
bol or expression, the span is normalized without it, and a
[%] is appended to the final value.
Once decimals and percentages are dealt with, the span can
be translated. Often a span will consist of only one or
two words; one common format is<digits><scale word>
(e.g., A 	KñJ
ÊÓ 33.633.6 mlywnA[33600000]). For such sim-
ple cases, normalization only requires replacing numerical
terms with their numerical values and multiplying/adding
as appropriate. However, we must also consider the (much
rarer) cases where a number is written out expressly, lead-
ing to a potentially large span.

Input: 	á�
 	K AÖ �ßð 	á�
 	J�K �ð A 	®Ë � Qå��« �éªK. P�ð �é
K AÓ
mAŷh̄ wArbςh̄ ςšr AlfA wA θnyn wθmAnyn
Normalization Sequence:
(100) (wa) (4) (10) (1000) (wa) (2) (wa) (80)

Index Number Type Value Stack
Initial — 0 Empty
(100) Number 100 Empty
(wa) wa 0 100
(4) Number 4 100
(10) Number 14 100

(1000) Scale 114000 Empty
(wa) wa 0 114000
(2) Number 2 114000

(wa) wa 0 114000 2
(80) Number 80 114000 2
End End of Sequence 114082 Empty

Table 4: Example of number normalization. TheValue and
Stack columns show the contents of those variables after
each element in the normalized sequence is examined. This
input results in a returned value of [114082].

Table 4 shows an example of how such as span is processed.
The normalization algorithm first replaces each word in the
span with its associated value from the lexicon. Flags are
also inserted into the span wherever the+ð wa+ ‘and’ pre-
fix is used. Note that if any of the words in the span are
ordinal or plural (as in [10s]) in form, the entire span is
assumed to refer to an ordinal or plural value.
After this step, the span consists of a normalized sequence
of numerical values, occasionally separated bywa flags.

The algorithm then initializes two variables: a variable to
hold the output value (Value) and a value stack (Stack).
After initialization, each element of the sequence is exam-
ined in turn. Depending on the type of the element, one of
several actions is taken:

1. If the element is a simple (non-scale) number, the ele-
ment is added toValue.

2. If the element iswa, Value is pushed ontoStack and
Value is set to zero.

3. If the element is a scale value, a value is popped from
Stack (if it isn’t empty) and is added toValue. Value
is then multiplied by the scale value.

4. If the end of the sequence is reached, each element on
Stack is popped and added toValue. The finalValue
is returned.

After the value is determined, it is adjusted as necessary
to include ordinal or plural information if the original span
was in those formats (e.g., [10] is changed to [10th] or [10s]
as needed). Decimal recombination and percent appending
is also performed.

6. Evaluation
We divide the gold data (8818 sentences) created in Sec-
tion 4. into two sets. The first set, devtest, consists of 2,250
sentences containing 2,197 NUMs. The second set, test,
consists of 6,568 sentences containing 6,236 NUMs. We
use devtest to debug our system and do our error analysis.
But test is kept hidden and only evaluated once. We evalu-
ate our system on three tasks:SpanID (how accurately the
system identifies which words form NUMs), Core-Match
value determination (Core-Match), and Full-Match value
determination (Full-Match). Full-Match is the most strict,
in that it requires that the expression returned by the sys-
tem match the gold expression perfectly in value, type and
span. Core-Match only requires that the numerical val-
ues and spans match, and ignores type and other variations
such as ordinal and plural markers, leading zeros, and per-
cent symbols. For example, [3rd] and [3] would not match
underFull-Match , nor would [02] and [2] or [15%] and
[15]. Each of these would be counted as correct matches
under theCore-Match task criteria.
In addition to the evaluation tasks, we define several meth-
ods of NUM span selection. These baselines show the im-
portance of proper span identification. The simplest base-
line (Digits Only) only tags digits as NUMs. One Word
separates every numerical term into its own, one-word span.
Single Spanallows for multiple-word spans, but does not
perform any span splitting to distinguish adjacent NUMs.
Each of these baselines supersedes the previous; that is, a
number expression correctly tagged byDigits Only will be
correctly tagged byOne Word andSingle Span. The full
system (as described in Section 5.) is labeled asOur Sys-
tem.
The precision, recall and F-scores for each combination of
evaluation task and span selection method are shown in Ta-
ble 5 and Table 6 for the devtest and test data sets, respec-
tively.

3334

devtest SpanID Core-Match Full-Match
Span Selection Method P R F P R F P R F
Digits Only 88.4 60.9 72.1 85.5 58.9 69.8 84.8 58.5 69.2
One Word 77.2 86.2 81.5 75.1 83.8 79.2 73.8 82.4 77.8
Single Span 95.6 96.6 96.1 94.7 95.7 95.2 92.6 93.5 93.1
Our System 96.0 97.6 96.8 95.1 96.7 95.9 93.0 94.5 93.8

Table 5:Precision,Recall andF-scores for each evaluation task and method of span selection (devtest set).

test SpanID Core-Match Full-Match
Span Selection Method P R F P R F P R F
Digits Only 92.3 67.4 77.9 90.0 65.8 76.0 86.7 63.4 73.3
One Word 79.3 90.9 84.7 77.5 88.9 82.8 74.1 85.0 79.2
Single Span 92.6 96.0 94.3 90.0 93.3 91.6 86.1 89.3 87.7
Our System 92.7 96.9 94.8 90.2 94.2 92.1 86.2 90.1 88.1

Table 6:Precision,Recall andF-scores for each evaluation task and method of span selection (test set).

6.1. Span Selection Method Comparison

The Digits Only baseline shows that significant percent-
age of the NUMs in both the devtest and test sets were al-
ready digital, and thus need no translation. TheDigits Only
method allows for relatively high precision (it is difficultto
translate NUMs which are already digital incorrectly), but
low recall. Note that the test set has a higher proportion of
purely-digital numbers than the devtest set, and for this rea-
son theDigits Only baseline actually performs better on
test. The F-score steadily increases with each subsequent
baseline, and implies that the types of NUMs encountered
often consist of a single word or number, and that NUM

spans occur next to each other somewhat infrequently.Our
Systemprovides significantly better F-score numbers on
both data sets than any of the baseline span selection meth-
ods.

6.2. Evaluation Task Comparison

The high scores for theSpanID task provide an upper
bound on the performance of the other two evaluation tasks,
since if the span is not correctly identified, its value can-
not be correctly deduced. Likewise,Core-Match is an up-
per bound onFull-Match . ConsideringOur System, the
difference betweenCore-Match and Full-Match perfor-
mance is not very large; this implies that the system does
well in preserving non-digital information such as ordinal-
ity. In every case,Our System has better recall than pre-
cision, which indicates that it is more likely to tag a non-
number expression as a NUM (a false positive) than to miss
an existing NUM (a false negative). This is likely due to
the significant number of Arabic terms which have multi-
ple interpretations, some of which are numerical and some
of which are not.

6.3. Error Analysis

In this section, we present an error analysis of all the er-
rors in the devtestCore-Match evaluation. As shown in
Table 5, our system attains high scores on this task: 95.1
precision (4.9 error) and 96.7 recall (3.3 error). We clas-
sified the errors into two categories by source asgold er-

% of Precision % of Recall
Gold Errors Errors Errors
Total 46.8 78.1
Wrong Value 25.7 38.4
Wrong Span 3.7 2.7
Missed NUM 17.4 -
Added NUM - 37.0

% of Precision % of Recall
System Errors Errors Errors
Total 53.2 21.9
Wrong Value 5.5 6.8
Wrong Span 3.7 5.5
Missed NUM - 9.6
Added NUM 44.0 -

Table 7: Distribution of error types for theCore-Match
task using theBest Systemon devtest. Gold Errors are
caused by problems in the gold standard itself. System Er-
rors are failures of our system. Precision errors indicate
cases where the system predicted a NUM where the gold
did not mark. Recall errors are the reverse.

rors (i.e., resulting from bad gold standard) orsystem errors
(i.e., resulting from bad system performance). Overall error
contributions are presented in Table 7 in the rows marked
Total. Precision errors are almost equally divided between
gold and system (with system slightly larger). The majority
of recall errors are gold based accounting for 2.58% (ab-
solute) error compared with 1.6% recall error obtained in
validation in Section 4.. More precision errors in gold are
seen in the devtest (2.29% absolute) compared with valida-
tion check (none).
We further classify the different errors into four categories:
Wrong Value (but correct span), Wrong Span (over part
of a valid NUM), completelyMissed (valid) NUM and in-
correctlyAdded (invalid) NUM. Detailed error contribu-
tions are in Table 7.
Among gold errors, wrong values were the main culprit for
both precision and recall. Examples of wrong values are

3335

cases where the numbers appearing in the English transla-
tion used to derive the gold standard were simply mistrans-
lated or incorrectly inverted, e.g.,1700 being mapped to
17000or 1973to 3791.
Gold missed and added NUMs are next. Examples of
missed valid NUMs include unhandled roman numerals,
e.g.,II . Examples of added invalid NUMs include cases of
the adjectiveYg�ð wAHd ‘common/unique’ which is com-
monly ambiguous with the number ‘one’. These errors will
feed into a revised version of the gold standard in the future
by adding rules for handling missed cases and incorporat-
ing POS information if possible for added cases. Wrong
spans were present in a very small number of cases.
As for system errors, the largest errors in precision and
recall are added and missed NUMs, respectively. Invalid
added NUMs are over 4 times as common as missed NUMs.
Examples of common incorrectly added NUMs are the
proper namesÈðAK. bAwl ‘Powell’ and ú
 	G A�K θAny ‘Thani’

which are ambiguous with the numbers ‘(in_)first’ and ‘sec-
ond’, respectively. Missed NUMs were primarily the wordYg�ð wAHd, which we do not handle when it appears by
itself since itoftenis not a number but rather a noun mean-
ing ‘someone’ or an adjective meaning ‘common/unique’.
Wrong value errors result from spelling errors in the in-
put data, e.g.,�HC�K θlAt instead of �HC�K θlAθ ‘three’; or

ambiguous cases such as�Ô 	gxmsmeaning ‘five’ or ‘one-
fifth’. POS ambiguity and lexical ambiguity are the main
problems in our current system. We plan to address these
problems by incorporating lexical and POS information in
the future. Wrong span errors were again the smallest con-
tributors to overall errors.

7. Conclusions

In this paper, we defined the task ofNumber Identifica-
tion in natural context. We also presented and validated a
language-independent semi-automatic approach to quickly
building a gold standard for evaluating number identifica-
tion systems by exploiting hand-aligned parallel data. Fi-
nally, we presented and extensively evaluated a robust rule-
based system for number identification in natural context
for Arabic for a variety of number formats and types. The
system is shown to have strong performance, achieving, on
a blind test, a 94.8% F-score for the task of correctly identi-
fying number expression spans in natural text, and a 92.1%
F-score for the task of correctly determining the core nu-
merical value.

8. Future Work

In the future, we plan to improve the process to creating the
gold standard. We will compare automatically aligned data
to hand-aligned data and consider other languages. We also
plan to build more sophisticated number identifiers that ex-
ploit POS and lexical resources to handle ambiguous cases
in a manner similar to work in morphological disambigua-
tion (Habash and Rambow, 2005), named entity recognition
(Farber et al., 2008) and phrase-base chunking (Diab et al.,
2004).

Acknowledgments
This work was funded under the DARPA GALE program,
contract HR0011-06-C-0023.

9. References
Fawaz S. Al-Anzi. 2001. Sentential Count Rules for

Arabic Language. Computers and the Humanities,
35(2):153–166.

Björn Bringert. 2004. Numeral Translator.
http://www.cs.chalmers.se/˜bringert/gf/translate/.

Tim Buckwalter. 2002. Buckwalter Arabic morpho-
logical analyzer version 1.0. Linguistic Data Consor-
tium, University of Pennsylvania. LDC Catalog No.:
LDC2002L49.

Ali Dada. 2007. Implementation of Arabic numerals and
their syntax in GF. InProceedings of the 2007 Workshop
on Computational Approaches to Semitic Languages,
pages 9–16, Prague, Czech Republic.

Mona Diab, Kadri Hacioglu, and Dan Jurafsky. 2004. Au-
tomatic Tagging of Arabic Text: From Raw Text to Base
Phrase Chunks. InProceedings of the North American
Chapter of the Association for Computational Linguis-
tics (NAACL), Boston, MA.

Benjamin Farber, Dayne Freitag, Nizar Habash and Owen
Rambow. 2008. Improving NER in Arabic Using a Mor-
phhological Tagger. InProceedings of Language Re-
sources and Evaluation Conference (LREC), Marrakech,
Morocco.

Ralph Grishman and Beth Seundheim. 1996. Design of the
MUC-6 evaluation. InTIPSTER Text Program Phase II
Workshop, Vienna, VA.

Nizar Habash, Abdelhadi Soudi and Tim Buckwalter.
2007. On Arabic Transliteration. In A. van den Bosch
and A. Soudi, editors.Arabic Computational Mor-
phology: Knowledge-based and Empirical Methods,
Springer, 2007.

Nizar Habash and Owen Rambow. 2005. Tokenization,
Morphological Analysis, and Part-of-Speech Tagging for
Arabic in One Fell Swoop. InProceedings of Associ-
ation for Computational Linguistics (ACL), Ann Arbor,
Michigan.

Abraham Ittycheriah and Salim Roukos. 2005. A maxi-
mum entropy word aligner for Arabic-English machine
translation. InProceedings of Empirical Methods in
Natural Language Processing Conference, pages 89–96,
Vancouver, Canada.

Lauri Karttunen. 2006. Numbers and Finnish Numerals.
SKY Journal of Linguistics, 19:407–421.

Bengt Sigurd. 1973. From numbers to numerals and vice
versa. InProceedings of the International Conference on
Computational Linguistics, Pisa, Italy.

Richard Sproat. 2000. Lextools: a
toolkit for finite-state linguistic analysis.
http://www.research.att.com/˜alb/lextools/synth.pdf.

David Yarowsky, Grace Ngai, and Richard Wicentowski.
2001. Inducing multilingual text analysis tools via robust
projection across aligned corpora. InProceedings of Hu-
man Language Technology Conference, pages 161–168.

3336

