
ANNALIST: ANNotation ALIgnment and Scoring Tool

George Demetriou, Robert Gaizauskas, Haotian Sun and Angus Roberts
Department of Computer Science, University of Sheffield

211 Portobello Street, Sheffield S1 4DP, UK 

{G.Demetriou, R.Gaizauskas, H.Sun, A.Roberts}@dcs.shef.ac.uk

Abstract

In this paper we describe ANNALIST (Annotation, Alignment and Scoring Tool), a scoring system for the evaluation of the output of 
semantic annotation systems. ANNALIST has been designed as a system that is easily extensible and configurable for different domains, 
data formats, and evaluation tasks. The system architecture enables data input via the use of plugins and the users can access the system’s 
internal alignment and scoring mechanisms without the need to convert their data to a specified format. Although developed for 
evaluation tasks that involve the scoring of entity mentions and relations primarily, ANNALIST’s generic object representation and the 
availability of a range of criteria for the comparison of annotations enable the system to be tailored to a variety of scoring jobs. The paper 
reports on results from using ANNALIST in real-world situations in comparison to other scorers which are more established in the 
literature. ANNALIST has been used extensively for evaluation tasks within the VIKEF (EU FP6) and CLEF (UK MRC) projects. 

1. Introduction
There has been an explosion of interest in text mining 
systems in intensively researched fields such as 
bioinformatics and the Semantic Web. We use the term 
semantic annotation system to denote any information 
extraction or text mining system that is used to produce 
information, either inline or in a separate file, in the form 
of annotations, i.e. metadata, that are used to describe or 
characterise entities, relations and events in natural 
language texts. 

The increased interest in semantic annotations systems 
brings with it an increased requirement to evaluate such 
systems, both for purposes of system development and for 
assessing the utility of systems for specific applications or 
for comparing competing systems. Existing tools for the 
evaluation of text mining systems are usually available 
either through competitions such as MUC (MUC, 1995) or 
ACE (ACE, 2007) or as part of bigger Natural Language 
Processing (NLP) architectures such as GATE 
(Cunningham et al, 2002) or Alembic (Day et al, 1997).  
With the exception of MUC and ACE scorers developed at 
DARPA and NIST respectively, there is generally a lack of 
available tools for the evaluation of semantic annotations 
of text. However, the MUC and ACE scorers, although 
extremely useful, still have limitations. The MUC scorer, 
developed over 10 years ago, is tailored to the MUC 
information extraction tasks (named entity recognition, 
relation and scenario extraction, coreference resolution). It 
admittedly performs quite well for these tasks, but requires 
input in SGML, and is quite difficult to extend. For tasks 
other than MUC, users have to convert their data to MUC 
scorer’s format which may not be always desirable. The 
ACE scorer is a more recent tool (latest version dated 2006) 
but it also has problems of extensibility and 
maintainability. The use of cost weighting for scoring 
annotations in ACE may be desirable for some tasks, 
although some may argue that the scores produced by 
ACE are less intuitive than and not compatible with the 
more established measures of precision and recall. The 
scorer modules in GATE and Alembic are restricted for 
use within these two architectures and are more difficult to 
adapt for generic system evaluation. 

With the above considerations in mind, we have designed 
ANNALIST (ANNotation ALIgnment and Scoring Tool), 
an evaluation system that is easily extensible and 
configurable for different domains, annotation tasks and 
input formats for both system developers and system users. 
ANNALIST offers a variety of options that allow it to be 
used either as a ‘black box’ system via the input of 
annotations in the form of XML or as a ‘glass box’ system 
via the use of an internal API. 

The different sections of this paper are structured as 
follows: section 2 gives an overview of the software 
architecture of the ANNALIST system and section 3 
describes the system’s internal data representation; section 
4 explains the criteria used for the comparison between 
annotations and section 5 discusses the algorithms for 
annotation alignment; section 6 describes ANNALIST’s 
output in terms of scoring and alignment reports and 
section 7 discusses ANNALIST’s results for a particular 
test collection in relation to results expected by other 
scorers (MUC). 

2. ANNALIST Design

2.1  Scorer requirements
Those wishing to evaluate semantic annotation systems 
are usually one of two types:

Annotation system developers: These are typically 
programmers or software system developers and it is 
reasonable to assume that they may be comfortable 
working with Application Programming Interfaces (APIs). 
Such as a user might find it frustrating to work with a black 
box scoring system such as the MUC scorer (Douthat,
1998) that requires its input (i.e. the output of the 
annotation system) to be coerced into a standard format for 
its data input and which offers limited options for 
configurability; instead, he/she might like to work with a 
highly modular or decomposable system where each 
system component, library or class is easily accessible 
through an API. 

3420



Annotation system users: These typically want to use the 
system in research or commercial applications. These 
users may include experts in their own fields, such as 
linguists or biologists, who may need to produce 
evaluation data but may be not have programming or 
system developing skills necessarily. Thus, it is safe to 
assume that such users may be more comfortable working 
with data files rather than APIs, perhaps generating their 
evaluation data using a text editor or XML tool.

Thus a first requirement for the design of ANNALIST is to 
build a system that allows both API access to core 
components of the architecture (input file parsers, aligner, 
scorer, etc.) and also allows running the system as a 
blackbox, albeit a configurable one.

A second requirement is the need for easy adaptation to 
different file formats, enabling the users integrate their 
own document processors or parsers with the scorer’s 
main functions. 

Finally, experience with a variety of evaluation tasks in 
information extraction projects has emphasized the need 
for flexibility in the criteria for evaluating certain types of 
annotations such as entities or relations. For instance, the 
evaluation of entities à la MUC (named entity task) has 
always assumed that positional information for an entity is 
available in the form of byte-offsets or other kind of 
indices and this information is used during annotation 
matching and alignment. However, there may be situations 
when such positional information is either limited (i.e. it 
may indicate just the document section the entity was 
found in), absent or simply not reliable for processing. 
ANNALIST caters for such cases by providing 

configuration options for the pairing and alignment of 
annotations and a flexible object representation that can be 
used for specifying the role of positional information (see 
section 3).

2.2  System Architecture

The system architecture of ANNALIST is illustrated in Fig. 
1. 

Input is provided in the form of document collections: (1) 
a collection used for the reference data usually created by 
domain experts which is sometimes referred to as the 
gold-standard or answer keys, and (2) a document 
collection with the annotations produced by the annotation 
system which are to be scored against  (1), usually referred 
to as system responses (2). These corpora are processed by 
an Input Reader (3) module that reads their format and 
produces data representations compatible with the scorer’s 
specification.  Two input formats are currently supported
as standard, the MUC format (an SGML variant) and the 
XML annotation specification in the Semantic Web 
VIKEF project1. 

The main drawback to using static document collections of 
keys and responses is that when the annotation format 
changes, it has to be converted to the file format supported 
by the scorer in order to be “parsable”.  This may not be 
always desirable or even possible in certain situations. To 
enable the users extend the capabilities of the scorer for 
different formats and tasks, an architecture based on 
plugins has been developed. The Plugin Engine (4) in Fig. 
1 has the task of dynamically loading a plugin developed 

1 www.vikef.net

Fig. 1: Graphical representation of ANNALIST’s architecture.  

3421



by the user. The purpose of the plugin is similar to that of 
the Input Reader module i.e. to read the user’s keys and 
responses files and convert them to data objects 
compatible with ANNALIST’s internal representation for 
the annotations without having to access the document 
collections directly.  

Information about the document collections of keys and 
responses to be parsed by the specified is specified in a 
configuration file (9). To work with the scorer, the plugin 
needs to be implemented in accordance to the scorer’s API 
and be placed in the system’s directory structure. 

After data input and before scoring the annotations, the 
Alignment Module (5) is accessed to provide mappings
between key and response annotations. The Scoring 
module (6) takes input from the Alignment module (5) and 
produces scores according to the chosen metrics for 
evaluation, i.e. precision, recall and F-measure. Although 
it can be argued that there can be no perfect measure for 
the evaluation of text mining systems (for example, see 
Luo (2005) for likely problems with the F-measure in 
relation to coreference evaluation), these measures have 
been widely adopted since the MUC competitions and this 
fact makes suitable for cross-system comparisons. 

This data is finally passed to and formatted by the Output 
module (7) which is used for dumping the results (10). The 
goal of the Evaluation Core module (8) is to provide an 
API for the internal representation of annotations, and to 
coordinate or synchronise the flow of data from plugins 
and between the other software modules in the 
architecture.

ANNALIST has been developed as an open-source project 
as an open source intended for distribution via 
SourceForge (www.sourceforge.net).

3. Data Representation
The data representation of the scorer was largely 
developed for the evaluation tasks of scoring recognition 
of entity mentions and detection of relations between 
entity mentions.

For the purposes of this evaluation system, an annotation
is a structural unit that comprises a set of attribute-value
pairs. Attributes can be predefined or user supplied. User 
supplied attributes can be unlimited in number and are 
optional. Predefined attributes, which must have their 
values set either via the input of data files or via the API, 
include the annotation type (e.g. “entity”, “relation”, etc.), 
annotation name (e.g. “person”, “organization”, etc.), 
offset information (e.g. “34-39”, “paragraph_1”), the value
(e.g. “B3H 3J5 Halifax Canada”) and an identifier that is 
unique for each annotation and which takes natural 
number values as strings (e.g. “35”). For entities, the 
identifier has a dual role: to differentiate between entities 
and to point to the relative position of entity mentions in 
the document.  When offset information is not available 
the entity identifiers are used by the scorer to align the 
entity annotations by order of occurrence.  

ANNALIST’s generic object representation allows for the 
realization and scoring of a wide range of annotation types 
by varying the settings of predefined and user supplied 
attributes and using a combination of different criteria for 
scoring the annotations. 

4. Criteria for annotation comparisons
The criteria for comparison and scoring of annotation 
attributes offered by ANNALIST are based on practical 
case scenarios for the evaluation tasks in the VIKEF and 
CLEF 2  projects. During the pairing and alignment of 
annotations, an annotation can be classified as correct, 
partially correct, incorrect, missing or spurious. The 
overall score between a key and response annotation is the 
F-measure score between their corresponding attributes.

During entity comparisons, partial matches can occur not 
only due to system’s inability to fully recognise an entity 
mention but also because the annotation system may have 
annotated a single actual mention as two or more distinct 
annotations. For this reason, ANNALIST’s matching 
criteria for entities include options for strict matching 
(only 100% match is allowed) or inclusiveness which 
allows for partial (substring) matching. For instance, 
consider the comparison between the following 
annotations3:

Key:

<location>B3H 3J5 Halifax Canada</location>

 and

Response: 

<location>B3H 3J5 Halifax</location>
<location>Canada</location>

In this example, both response annotations could be 
partially matched against the single key annotation. 
ANNALIST provides options to specify how the first 
match (i.e. “B3H 3J5 Halifax”) and a subsequent partial 
match (i.e. “<location>Canada</location>”) will be 
scored (correct, partially correct, incorrect or spurious). 
The user also has options for specifying the matching 
options in the reverse situation i.e. when partial matches 
occur between multiple key annotations and a single 
response annotation. This differs from the mechanism 
used in the MUC scorer where the partial string 
comparison is based on the removal of a list of 
premodifiers, postmodifiers and corporate designators 
from both the key and response annotations. 

Alignment for relations in ANNALIST presupposes the 
alignment of entity objects pointed to by the relation 
attributes of the annotations. Kehler et al (2001) discuss 
the fact that the lenient strategy for template alignment 
used in MUC (which is based on the pairing and scoring of 
template slots) can produce optimistic results that 
overestimate the annotation system’s performance. 

2 http://www.clinical-escience.org/
3 This is an example from a real annotation system.

3422



ANNALIST provides options for both lenient and strict 
criteria for relation alignment. The lenient criterion 
specifies that any relation attribute can substantiate the 
case for a key and a response annotation to be candidates 
for alignment. In contrast, the strict criterion imposes the 
restriction that only when all relation attributes in the key 
and response match with each other will the two 
annotations be considered candidates for alignment. 

A different set of criteria allows users or annotation system 
developers to get useful insights into the performance of 
the relation algorithm/component independently from the 
system performance for entity recognition and alignment. 
Such criteria introduce more transparency in the results of 
relation scoring especially for cases where the relations 
may point to missing (in the case of key) or spurious (in 
the case of response) annotations and can help the users 
understand the reasons for the possible under-generation 
of relations. ANNALIST deals with such cases by 
allowing relation annotations not to take part in the scoring 
(i.e. to be ‘unscored’).  For example, consider the 
following cases of key and response annotations:

Key:

<Entity-1>: <Relation-1>: 
Name: author         Name: authorOf
Id: 27 Id: 185
Mention: “X”         Arg1: <27>

Arg2: <35>
<Entity-2>:                                     
Name: document
Id: 35
Mention: “Y”

Response:

<Entity-1>:
Name: author
Id: 31
Mention: “X”

Because the entity pointed to by the attribute “Arg2” in the 
key relation <Relation-1> is missing from the response 
(and therefore no response relation was generated), the key 
relation <Relation-1> does not take part in the scoring.  
Information about the missing attribute(s) is recorded 
separately for user assessment at a later stage. This is 
different from the practice used in MUC where any such 
relation would be considered missing.  

Similarly, when the entity pointed to by one of the relation 
attributes has been found to be incorrect, both key and 
response relations remain unscored. In contrast, MUC 
would score the response relation as correct even though 
the misaligned attribute would be scored as incorrect. 

5. Annotation alignment and scoring
The main purpose of the alignment process is the 
generation of mappings between key and response 
annotations.

Entity alignment between the key and response 
annotations can be performed in one of three levels:  

byte-offset level, document section level or order of 
occurrence in the text. Entities are aligned at byte offset 
level when they occur within the same text span. This 
criterion represents a strong constraint and leads to more 
accurate alignment of entities. 

Alignment at document section level is limited to 
annotations found within the same structural unit such as a 
sentence, paragraph or whole document.  This is useful 
when explicit byte-offset information cannot be used for 
the comparison between key and response annotations but 
there is information (in the form of attribute value) that 
indicates which entities are found within the same 
structural unit of the text. 

When no positional information about entities is available, 
the entities will be aligned according to their order of 
occurrence as specified by the identifier attribute.

Two alignment algorithms have been implemented: (1) a 
greedy search algorithm based on the MUC style of 
alignment as described in Douthat (1998), and (2) an 
alignment algorithm based on dynamic programming. 

In the MUC-style alignment, the algorithm combines all 
key and response annotations pairwise in accordance to 
the chosen criterion (i.e. byte-offset level, document 
section level or order of occurrence) and produces 
alignment scores for each pair based on the F-score of their 
attributes. The list of key-response pairs is sorted by score 
and is traversed from the top. A key annotation is aligned 
with a response annotation under the condition that both of 
them are still not aligned. A key or response annotation 
that remains unaligned at the end of all the traversals will 
be considered missing or spurious respectively.

This heuristic type of search has been found to be quite 
accurate when alignment is performed at byte-offset level. 
However, when alignment is done at section level or order 
of occurrence, this heuristic kind of search may not be 
globally optimal as there is no guarantee that the local 
F-score computed for a key-response pair in the list 
optimises the overall score for all aligned pairs. 

ANNALIST includes a second option for annotation 
alignment based on Dynamic Programming (DP). DP has 
been widely used for applications such as biological 
sequence matching or dynamic time warping in voice 
recognition. The basic idea is to build an optimal 
alignment between two data sets using the already 
established alignments of smaller subsets of these sets. For 
example, consider the following annotations:

Key:

<person>John McCain</person> said 
<date>Tuesday</date> that he and <person>Barack 
Obama</person> were "moving on" after having a "nice 
discussion." In a letter to Sen.<person>Obama</person> 
on <date>Monday</date>,<person>McCain</person> --
upset by his colleague's support …

and

3423



Response: 

<person>John McCain</person> said 
<date>Tuesday</date> that he and Barack 
<person>Obama</person> were "moving on" after having 
a "nice discussion." In a letter to Sen.Obama on 
<date>Monday</date>, <person>McCain</person> --
upset by his colleague's support …

If no byte-offset information is taken into account, the 
MUC-style alignment algorithm would align the key 
person annotation “<Obama>” with the response 
annotation “Obama” because the F-score between them is 
higher than the score between the key “<Barack Obama>” 
and the response “<Obama>”.  The end result would be 
one correct and one missing annotation but this would be 
in disagreement with the true score as the correct
alignment would generate one partially correct annotation 
in the response (“Obama”) and one missing annotation 
(“Obama”) in the key. Although such problematic cases 
may be rare in actual evaluation tasks, the potential for 
them to exist is real and the score differences may get large 
especially if alignment errors cascade in large annotation 
sets.

We use a variation of the DP algorithm by Gotoh (1982) to 
align the key with the response annotations. The algorithm 
is applied with two constraints: (a) the key and response 
annotations should be of the same type e.g. “entity” etc., 
and (b) the annotations should refer to the same entity 
name e.g. “person”.  

A matrix S(mxn) with m and n the indexes for each set Key
and Response respectively is built recursively with the 
value at each cell S(i,j) of the matrix being the overall 
score of the best alignment between the subsets Key1…i and 
Response1…j.. By traversing the paths from points (i-1, j-1), 
(i, j-1) and (i-1,j) to (i,j)  the best score for S(i,j) is 
computed as the maximum of three options: (i) the score at 
S(i-1,j) minus  a penalty P for aligning Keyi to a gap (i.e. a 

spurious response), (ii) the score at S(i,j-1) minus P for 
aligning Responsej to a gap (i.e. a missing key), or (iii) the 
score at S(i-1,j-1) plus a score M computed by comparing 
Keyi with Responsej (correct, partially correct or incorrect). 
An example of an alignment path found by DP is shown in 
Fig. 24. 

A restriction in the use of the DP-based alignment 
algorithm which does not apply for the MUC-style 
algorithm is that it requires annotations with their order of 
occurrence in the text preserved. 

6. Evaluation reports
ANNALIST produces two kinds of reports: a report of the 
scores for individual documents as well as the collection as 
a whole (scores report) and a report that provides 
alignment and scoring details of all annotations during the 
evaluation (alignment report). 

The scores report provides the document scores in three 
sections, one for entities, one for relations and one for
relation attributes. The scores are shown in tabular form 
and include figures for the correct, partially correct, 
incorrect, missing and spurious instances of each type as 
well as recall, precision and F-measure figures for all 
entities, relations and attributes. A small fragment of such 
a report is shown in Fig. 3.

The alignment report gives a full account of the alignment 
results between key and response annotations. For entities, 
all annotations that are correct, incorrect, missing or 
spurious are displayed with relevant information such as 
the annotation identifier, the entity mention which was 
used to generate the annotation, the start and end offsets in 
the key and response documents etc. For relations, 
information about the correctness of an annotation is 
accompanied with information about which relation 
attributes were found to be correct, incorrect, missing or 
spurious for this annotation. Finally, any ‘unscored’ 
relation annotations are reported in a separate part of the 
same report with extra information given about why the 
annotation was not scored i.e. which attribute was judged 
to be missing/incorrect in the annotation. 

The added-value of the alignment report is that the user 
can easily apply simple text processing commands to find 
answers to questions such as  “which entities are spurious”, 
or “how many relations were unscored due to missing 
arg1” etc. and collect statistics on system performance.

7. Comparison with other scorers

ANNALIST has been used for evaluation exercises within 
the VIKEF and CLEF projects. For CLEF, ANNALIST 
was used for the evaluation of inter-annotator agreement 
exercise during the production of gold-standard 
annotations of CLEF’s medical reports (13 annotators in 
total). For VIKEF, ANNALIST was used to evaluate 
VIKEF’s semantic annotation performance on scientific 
articles.

4 For the sake of simplicity in this example, we assume 
single-mention entities.

S

M C, P, I

Fig. 2: Illustrated example of DP alignment.
Alignment path is shown by the filled boxes.

C = correct, P = partially correct,
I = incorrect, M = missing, S = spurious.

Response
→ 

Key ↓ 

“John 
McCain” 

“Obama” “McCain” 

“John 
McCain” C   

“Barack 
Obama”  P  

“Obama”  M  
“McCain”   C 
 

3424



In this section we report ANNALIST results from the 
VIKEF evaluation exercise that highlight some of the 
differences in the scores produced by this scorer with 
respect to scores which would have been expected from 
MUC.  
 
 The evaluation collection included 50 medical abstracts 
about Parkinson’s disease from which a set of 7 entity 
types (document, title, person, organisation, location, date, 
url) and 11 relation types (firstname_of, firstname2_of, 
lastname_of, title_of, ptitle_of, author_of, member_of, 
location_of, part_of, url_of, coref) were extracted by 
VIKEF’s annotation system and was scored against a 
human generated gold standard. To compare the 
ANNALIST’s evaluation results with those expected from 
MUC we used ANNALIST with and without the MUC 
scorer’s options for string matching. 
 
On entity evaluation, MUC’s strict criterion for partial 
string matching, which is based on the removal of 
premodifiers, postmodifiers and corporate designators 
from annotation stringfills, was found to be quite 
inflexible in practice as there is no fixed list of tokens that 
can be used to cover all cases. For example, when 
comparing the key: “Jovin, T. M.” with the response: 
“Jovin T.”, the initial “M.” should be specified as 
postmodifier in MUC in order to account for partial 
matching. However, specifying such tokens for removal 
during string matching increases the risk that two 
unrelated entities (e.g. persons with the same last name but 
different first names) match with each other. On the other 

hand, if no removal of tokens is specified in MUC no 
partial credit is given.  
 
In practical terms, it is quite hard to make an accurate 
assessment of the differences in the scores expected by 
ANNALIST and MUC based on their options for partial 
matching as the user would be required to constantly 
update the MUC token lists and search for possible 
conflicts in order to simulate the ANNALIST’s option for 
partial matches. However, it was found experimentally 
that ANNALIST’s partial matching option5 can result in 
an increase of about 3% in both precision and recall scores 
for this collection.  
   
On relation evaluation, a comparison was made between 
the results obtained with the strict alignment criterion used 
in ANNALIST (that requires all relation attributes to 
match in order a key and a response relation to be 
candidates for alignment) and the results generated with 
the more lenient criterion used in MUC. It was found that 
the lenient alignment criterion generates somewhat 
optimistic precision and recall scores when compared to 
the corresponding scores produced with the strict criterion. 
Precision goes up from 77% (strict criterion) to 80% 
(lenient criterion) and recall goes up from 60% (strict 
criterion) to 62% (lenient criterion).  

                                                           
5 A perfect configuration of premodifiers, postmodifiers 
and corporate designators would be required to simulate 
the same functionality in MUC. 

Fig. 3: A fragment of a scores report for the evaluation of relations.   
 

3425



8. Conclusions and future work 
This paper described ANNALIST, a new evaluation tool 
for the alignment and scoring of semantic annotations of 
text.  
 
 
Compared to other, more established evaluations tools, 
such as the MUC scorer, ANNALIST offers some 
advantages:   

• A plugin facility for seamless integration of 
ANNALIST’s alignment and scoring 
mechanisms with external modules that can be 
used to load the annotation data dynamically 
from document collections. 

• Configuration options for the better treatment of 
partial matching between entities and strict 
criteria for relation matching.  

• More transparency for the evaluation of relations 
by specifying criteria that can be used for 
excluding annotations from scoring. 

• A new DP-based alignment algorithm for entity 
evaluation. 

 
Tools like the MUC and ACE scorers still include a range 
of facilities that are missing from ANNALIST, such as the 
evaluation of coreference and scenario templates6 and the 
specification of weights for entity and relation types 
amongst others so that ANNALIST should be considered 
as complementary tool rather than as a complete 
replacement for these scorers.  
 
Future work includes the development of a graphical user 
interface for visual access to ANNALIST’s plugin facility 
and the results of evaluation. Features of this interface 
include the setting of configuration options and the easy 
comparison of alignment and scoring results on screen.  
 
Finally, we aim to extend the DP-style alignment 
algorithm in order to cover the evaluation of relations and 
types of annotation. We also aim to identify possible cases 
where ANNALIST’s DP-based alignment algorithm 
differs from the MUC-style in order to gain more insight 
into the working differences between the two.       

9. Acknowledgements 
This work was supported by the VIKEF (EU FP6 - IST- 
2002-507173) and CLEF (UK MRC - G0100852) projects. 
We would like to thank our partners in these projects for 
their comments and suggestions during the development 
of ANNALIST. 

10. References 
ACE - Automatic Content Extraction (2007). At 

http://www.nist.gov/speech/tests/ace/index.htm. 

                                                           
6 ANNALIST’s object representation can be configured to 
allow evaluation in such cases. 

Chatley R., Eisenbach S., Kramer J., Magee J. and Uchitel 
S. (2004). Predictable Dynamic Plugin Systems. In 
Fundamental Approaches to Software Engineering, 
Lecture Notes in Computer Science, vol. 2984/2004, pp. 
129--143, Springer Berlin / Heidelberg. 

Cunningham H., Maynard D., Bontcheva K., Tablan V. 
(2002). GATE: A Framework and Graphical 
Development Environment for Robust NLP Tools and 
Applications. Proceedings of the 40th Anniversary 
Meeting of the Association for Computational 
Linguistics (ACL'02), pp. 168--175, Philadelphia, 
U.S.A. 

Day D., Aberdeen J., Hirschman L., Kozierok R., 
Robinson P. and Vilain M. (1997). Mixed-Initiative 
Development of Language Processing Systems. 
Proceedings of 5th Conference on Applied Natural 
Language Processing, 31 March -3 April, Washington 
D.C., U. S. A, pp. 348--355. 

Douthat A. (1998). The Message Understanding 
Conference Scoring Software User's Manual. In 
Proceedings of the 7th Message Understanding 
Conference (MUC-7), Fairfax, Virginia, U.S.A. 

Gotoh O. (1982). An improved algorithm for matching 
biological sequences. Journal of Molecular Biology, 
162, pp. 705--708. 

Kehler A., Bear J., Appelt D. E. (2001). The Need for 
Accurate Alignment in Natural Language System 
Evaluation. Computational Linguistics, vol. 27, no. 2, 
pp. 231-248. 

Luo X. (2005). On coreference Resolution Performance 
Metrics. Proceedings of Human Language Technology 
Conference and Conference on Empirical Methods in 
NLP, (HLT/EMNLP), pp 25--32, Vancouver, Canada. 

Message Understanding Conference (1995).  Proceedings 
of Sixth Message Understanding Conference (MUC-6) 
6-8 November, Columbia, MD, Morgan Kaufmann.  

 
 
 
 
 
 

3426


