
ODL: An Object Description Language for Lexical Information

Michael Rosner

Department of Artificial Intelligence
University of Malta

Msida MSD 2080, Malta
mike.rosner@um.edu.mt

Abstract
This paper describes ODL, a description language for lexical information that is being developed within the context of a national project
called MLRS (Maltese Language Resource Server) whose goal is to create a national corpus and computational lexicon for the Maltese
language. The main aim of ODL is to make the task of the lexicographer easier by allowing lexical specifications to be set out formally so
that actual entries will conform to them. The paper describes some of the background motivation, the ODL language itself, and concludes
with a short example of how lexical values expressed in ODL can be mapped to an existing tagset together with some speculations about
future work.

1. Introduction
This paper introduces ODL 1.0, a description language
for lexical information that has been developed for
MaltiLex, the computational lexicon originally conceived
in 1998 (Rosner et al., 1998) and now being further devel-
oped within the scope of MLRS (Rosner et al., November
2006), a national project aimed at developing a server for
Maltese language resources.

2. Goal of the paper
The main goal of this paper is to present the ODL language
as a viable description language for lexical information.
This is done in section 5.. Subsidiary goals are (i) to situate
the work within the general context of research in the area
of computational lexicography (section 3. (ii) to show how
the system can be used for the description of Maltese lex-
ical values (section 6.) and (iii) to illustrate the connection
between that system of lexical values and the tagset that is
being developed for Maltese. This last goal, described in
section 7. is work in progress.

3. Computational Lexicography
Computational lexicography has a long history which is
almost as old as electronic computers. Previous research
most relevant to the task of creating machine-tractable lex-
icons falls into three broad categories:

• Work on extracting entries from machine-readable
dictionaries. Much of the early work was structured
around different aspects of machine readable dictio-
naries including research on the taxonomic structure
of existing dictionaries by Amsler (1980), the syntac-
tic structure of entries by newciteMichiels:1982 and
on algorithms for the automatic extraction of infor-
mation from that dictionary (Boguraev et al., 1987).
A development of this approach, directed towards the
automated construction of dictionary entries for a ma-
chine translation system using LDOCE as a source, is
described by Farwell et al. (1992).

• Work on word-senses and semantic relationships
between them. The key system here is the WordNet

project (Fellbaum, 1998) and dervatives such as Eu-
rowordnet (Vossen, 1997). Any WordNet is less a dic-
tionary of words than a database system for handling
the definition of word sensessynsetsand the relation-
ships between them.

• Work on lexicon editors and support for lexicog-
raphers. Lexicography support tools include early
systems like Shoebox, still available from the Sum-
mer Institute of Linguisitics1 that help field linguists
and anthropologists integrate various lexical, cultural,
grammatical information, to more more modern tools
which help the lexicographer analyse word behaviour
within corpora. A good example of such a tool is the
Sketch Engine (Kilgarriff et al., 2004) which provides
one-page summaries of a word’s grammatical and col-
locational behaviour.

Tsalidis and his colleagues (Tsalidis et al., 2004) have
been working on a large-scale electronic lexicon for
Greek and have developedLexEdit , a lightweight
lexicon editor which was used for the initial definition
of the lexicon entries.

Finally LEXUS (Marc et al., 2006) is a recent addition
to the set of lexicographic tools being developed at
the Max-Planck Institute. It is regarded by its authors
as an implementation of the LMF, the lexical markup
framework model that is being developed under the
ISO TC37SC42 and in many ways comes closest to
the work described in this paper in so far as it provides
a web-based tool for developing lexical entries under
the control of a formal specification.

4. Maltilex
MaltiLex is a computational lexicon for the Maltese lan-
guage with the following charactistics:

• Full form: Maltese is a language with a highly com-
plex and rich morphology. There is some disagree-
ment about the best way to handle morphology from a

1http://www.sil.org/computing/shoebox/
2www.tc37sc4.org

3435

computational perspective. We have therefore decided
to sidestep the issue by first defining a full-form core
lexicon.

• Wide coverage: being part of a national project,
MaltiLex is intended to cover a reasonably large sub-
set of the language. In practical terms, we are allowing
for the possibility of several million entries, and hence,
efficiency of representation is an important considera-
tion.

• Expert content provision: although large numbers of
potential entries can be harvested from the internet and
other sources by automatic means, we believe that the
quality of content still depends largely on input from
those having expert linguistic knowledge. We there-
fore wish to design an interface that facilitates interac-
tion with such experts.

• Efficient lookup: Amongst the tasks carried out by
linguists is search for words according to complex
boolean criteria. We wish to make sure that this kind
of search is performed as efficiently as possible.

4.1. Implementating MaltiLex

The heart of MaltiLex is actually an SQL database which
implements a relation betweenlexical forms, which is sim-
ply a string that might be a word form or part of a word,
and lexical informationin the form of a set of attribute-
value pairs. For example, the Maltese wordklieb (books)
is a plural noun. This could be expressed by associating
the attributescat andnum with the valuesN andplur
respectively.
More formally, we can say that a lexicon is an N-tuple<
L, A, V, R > whereL is a set of lexical forms,A is a set
of attributes,V is a set of atomic values,R ⊆ L × F is a
relation which pairs lexical forms to functionF ⊆ A ⇒ V .
Hence the lexical information associated withklieb can
be regarded as thefunction {(num,plur),(cat,N) }
which maps the attributescat, num to the valuesplur ,
andN respectively. This view of the lexicon has a long tra-
dition as reflected in FUG (Kay, 1984), LFG (Kaplan and
Bresnan, 1982) HPSG (Pollard and Sag, 1987) and more
recent developments.
Given our desire to support wide coverage of the language
and efficient search, MaltiLex has been implemented using
a relational database in which lexical information is rep-
resented using a fixed length bit-field. This makes it very
easy for a linguist to specify boolean search criteria and for
queries about words to be efficiently executed. However, it
does lead to certain built-in limitations.
One is that the number of attribute-value pairs cannot ex-
ceed a certain fixed value. This has not turned out to be
a problem so far given the special tagset for Maltese that
we have developed (Gatt et al., 2003). Another, poten-
tially more serious problem is that the values themselves
are atomic, so that the system cannot support recursive fea-
ture structures as used within frameworks such as HPSG
(Pollard and Sag, 1987), LFG (Kaplan and Bresnan, 1982)
and TFS (Emele, 1994).

Figure 1: Screenshot of LEd editor

Our view is that recursive feature structures do not belong
in the database, which is primarily designed as a reposi-
tory for primitive lexical data. Recursive feature structures
will be constructed in a subsequent, morpho-syntactic layer
of the system that is designed for dealing with phenomena
such as morphological analysis, compound words, and syn-
tax.

4.2. LEd

To address the goal of interacting with linguists, MaltiLex
includes LEd, a lexicon editor. This is a client program op-
erating over the internet which allows the linguist to create
and maintain lexical entries. A key feature of LEd is that in
order to minimise the amount of information that has to be
supplied, the form displayed for collecting lexical informa-
tion is generated dynamically on the basis of a previously
declared system of lexical values.
Figure 1 shows a screen-shot of the lexical entry for the
wordkantin(cellar) being updated with lexical information.

The exact set of attributes and values that appear in the tem-
plate for accepting values is a consequence of certain inher-
ent dependencies between the values. So, for example, an
entry with syntactic category noun will have case and num-
ber but not tense, whilst a verb will have number but not
case.
To describe these dependencies we have developed a lan-
guage called ODL (Object Description Language) as briefly
described in the next section.

5. ODL
Given the onerous nature of hand crafting lexical entries,
ODL is designed, first and foremost, to help the linguist by
allowing redundancy of expression: the linguist writes less,
and the machine, thanks to the ODL description, fills in
the gaps. Although in some ways ODL shares assumptions
with constraint-based linguistic formalisms not purport to
have the same expressive power. The primary aim is to pro-
vide a descriptively efficient mechanism for basic linguistic
information.

3436

It is important to point out that although ODL is used to
create descriptions that are clearly language-specific, ODL
itself is language-independent. It could thus easily be used
with languages other than Maltese, though to date no such
undertaking has been carried out.
An ODL script comprises a set of declarations of different
types. The three most important types of declaration are
Enumeration, Class, and Rule.

5.1. Enumeration Declarations

The purpose of an enumeration declaration is to create a
named type and associate it with a set of possible values.
So for example

enum number = {sing, plur, dual}
gender = {masc, fem, neuter}
cat = {N,V,A}

creates the typenumber and associates it with the possible
valuessing, plur anddual .

5.2. Class Declarations

Classes correspond to specific collections of attributes that
(i) can be represednted as a string of bits and (ii) can be
used to drive the user interface by generating exactly the
right attrbutes/values to be filled in.
A class groups together a set of attributes and assigns a set
of possible values to them. The values assigned must be
consistent with the type definitions.
For example, we can create the class Noun having category
N with

class Noun
{ cat = N; }

Note that we cannot assign, for example,fem since this
would contradict the type declaration. We can also assign
disjunctionsof value which are consistent with the type.
For example, below we defineCS.

class CS
{ type = common;

number = *;
gender = masc|fem; }

Here thetype attribute is common, which is fully spec-
ified. Thenumber attribute is completely unspecified as
indicated by the asterisk. Thegender attribute is either
masculine or feminine which, the reader should note,
is not fully specified but nevertheless more specified than
the bare enumeration.
The first value, in this casemasc is called adefault values
which is assigned when an object in that class is first cre-
ated. Of course, this value can be be changed tofem since
that is licenced by the class declaration.

5.3. Special Values: Unspecified, Undefined, and
None

Sometimes, we wish to express that a value may be un-
specified. In English, for example, an article like “their”
is unspecified for gender. Similarly, in Maltese, the word
“intelli ġenti” (intelligent) is fully underspecified for gender

and number, and can combine with singular, plural, mascu-
line and feminine nouns. In ODL, this is handled using the
valueunspecified .
A related notion is that of being undefined, meaning that
the attribute in question isnot applicableto this item. For
example, plural nouns in Maltese are not defined for gender,
i.e. cannot have a grammatical gender specification. From
the perspective of the user interface, this means that as soon
as a noun is specified as plural, the text box denoting gender
should become inactive by greying it out. It also means that
gender will not figure as a attribute in any higher constituent
that involves a plural noun. In ODL, this is handled with the
valueundefined .
Some attributes in words refers to optional elements/values,
mainly clitics like the “-u” in “rasu” (his head), or the “-na”
in “rana” (our head). These can be present or absent in a
word. If they are absent, we use the valuenone .

5.4. Inheritance

We also allownormal and multiple inheritancebetween
classes, so that with

class NCS: Noun, CS;

we can defineNCSas a subclass of Noun and CS i.e. the
class of common nouns. Attributes and values are inher-
ited from both classes. There is no limit to the number of
possible superclasses in the list. The order, however, is im-
portant, since conflicts are dealt with using order-dependent
precedence rules.

5.5. Labels

Labels can be thought of as ready-made class templates that
can be chosen by a user and applied to a class. They ere
convenient for defining prearranged collections of attribute-
value and are in fact used for defining tagsets.
For example, a typical tag might be NMSG, meaning mas-
culine singular common noun. Given the class declaration
above, we would declare this with respect to the classN as
follows:

define NNSM on NCS {
number=sing; gender=masc }

It is important to distinguish between a class declaration
and a label definition. The former yields an internal struc-
ture which is capable of supportinginstances. Such in-
stances not only control the interface, but also generate the
internal representation of lexical values.
In contrast, the latter is just shorthand for a lexical value,
and as a consequence, can be used to provide values for
every tag in the tagset. Some further examples are shown
in section 7..

5.6. Rules

Rule declarations can express dependencies between com-
binations of attributes and values. In Maltese a noun that
is plural does not carry gender. We can express this rule as
follows:

if (Number == plur) { !Gender }

3437

The effect of this rule, when executed, is to prevent gen-
der ever being assigned to an instance of any class whose
Number attribute isplur . Under these conditions the op-
tion to assign gender would never appear in the user inter-
face.

6. Lexical Information for Maltese
This section describes a system of lexical information for
Maltese3, which is intended to serve three purposes. First
of all, it must capture our linguistic intuitions regarding the
subject matter at hand as faithfully as possible. Secondly, it
should cause the user interface to behave in a way that min-
imises user effort. Finally, it should include definitions for
all the tags employed by the tagger, to allow for the future
possibility of automatic creation of new lexical entries as a
by product of text-tagging.

6.1. Basic Attributes and Values

Lexical information is expressed in terms of the attributes
category, type, person, number, gender, and attachment.
The basic value domains for each of these the attributes are
declared using the following enumeration declarations.

enum Category {
noun, verb, pseudo_predicate,
modifier, participle, determiner,
pronoun, conjunction, numeral,
interjection, other }

These are followed by allowable subtypes within those cat-
egories, as follows.

enum Type {
common, proper, indicative,
imperative, adjective, adverb,
active, passive, quantifier,
indefinite, demonstrative, subject,
object, interrogative, coordinating,
subordinating, cardinal_transitive,
cardinal_intransitive, ordinal,
interjection, negative_marker,
preposition, reflexive, article,
aspectual_marker }

enum Attachment {
none, bound_t, clitic1, clitic2,
bound_t_clitic1, clitic1_clitic2,
plus_article, negative }

Finally, there is the following set of agreement features.

enum Person {
first, second, third }

enum Number {
sing, plural, dual,
collective, unspecified }

enum Gender {
masc, fem, unspecified }

3the linguistic content of this informtion is due to Ray Fabri

6.2. Classes

With the basic attributes and their values in place, we can
now define the entry classes which, besides corresponding
to types of lexical entry, also control the appearance of the
user interface.

class Noun {
Category = noun;
Type =

common | proper;
Number =

sing | plural | dual |
collective | unspecified;

Gender =
masc | fem | unspecified;

Attachment =
none | bound_t | clitic1 |
bound_t_clitic1 | undefined ;

}

class Verb {
Category = verb;
Type = indicative | imperative;
Person = first | second | third;
Number = sing | plural;
Gender =

masc | fem | undefined;
Attachment =

none | clitic1 | clitic2
| clitic1_clitic2 | negative;

}

class Pseudo_Predicate {
Category = pseudo_predicate;
Attachment = clitic1 | negative;

}

class Modifier {
Category = modifier;
Type = adjective | adverb;
Number = sing | plural

| unspecified | undefined;
Gender = masc | fem

| unspecified | undefined;
}

class Participle {
Category = participle;
Type = active | passive;
Number = sing | plural;
Gender = masc | fem;

}

class Determiner {
Category = determiner;
Type = quantifier| indefinite

| demonstrative;
Number = sing | plural

| undefined;
Gender = masc | fem

3438

| undefined;
Attachment =

none | plus_Article
| undefined;

}

class Pronoun {
Category = pronoun;
Type = subject | object | demonstrative

| interrogative | indefinite;
Person = first | second | third

| undefined;
Number = sing | plural

| undefined;
Gender = masc | fem

| unspecified | undefined;
}

class Conjunction {
Category = conjunction;
Type = coordinating | subordinating;

}

class Numeral
{

Category = numeral;
Type = cardinal_transitive

| cardinal_intransitive
| ordinal;

}

class Interjection {
Category = interjection;
Type = interjection;

}

class Other {
Category = other;
Type =

negative_marker | preposition
| reflexive | article
| aspectual_marker;

Person =
first | second | third | undefined;

Number =
sing | plural | undefined;

Gender =
masc | fem | undefined;

Attachment =
none | plus_article
| clitic1 | undefined;

}

class CommonNoun: Noun; {
Type = common }

class ProperNoun: Noun; {
Type = proper }

7. Work in Progress: Tagset

The Maltese tagset was orginally developed by Gatt et al.
(2003) for the purpose of tagging texts and with the aim
of training an automatic tagger. This setting is somewhat
different from that which gave rise to the lexical value sys-
tem described in section 6. which has been designed for the
purpose of adequately characterising the lexical properties
of the Maltese language. In addition, these two pieces of
developement work took place at geographically separated
sites.
Separate development of these two elements has led to
some incompatibilities, and we are currently in the process
of bringing the two strands of work together. We are mak-
ing use of the label declarations described above to bring
this about. Below we give an example of how this will be
done, restricting our attention to nouns.

define NNSM on CommonNoun {
Number = sing; Gender = masc }

define NNSF on CommonNoun {
Number = sing; Gender = fem }

define NND on CommonNoun {
Number = dual; Gender = unspecified }

define NNP on CommonNoun {
Number = plur; }

define NNSMC1 on CommonNoun {
Number=sing; Gender=masc
Attachment=clitic1 }

define NNSFC1 on CommonNoun {
Number=sing; Gender=fem
Attachment=clitic1 }

define NNPC1 on CommonNoun {
Number=plur;
Attachment=clitic1 }

define NNSF-G on CommonNoun
{Number=sing; Gender=fem;

Attachment = bound_t }

define NP on ProperNoun;

8. Conclusion and Future Work

We expect to have completed the mapping between the
tagset and the lexical value system in the near future. Two
main lines of development are then foreseen. Once the
tagset issue is resolved, our next priority is the training of
an accurate tagger, since we are convinced that the avail-
ability of large quantities of tagged text will open the way
to a number of useful applications such as named entitiy
extraction, automated text classification etc. A tagger and a
lexicon that agree with each other also open the door to the
possibility of automated extraction of lexical entries from
corpora.

3439

A second cycle of developement concerns syntax, which so
far has been largely ignored. In order to develop a convinc-
ing syntactic description of Maltese, we plan to use HPSG,
extending the analysis of a preliminary fragment of Maltese
that has already been undertaken by (Müller, 2007). In this
respect, it is of prime importance to investigate the possi-
bilities of interfacing the HPSG lexicon with MaltiLex.

9. Acknowledgements

The work reported in this paper has been carried out in col-
laboration with colleagues from the University of Malta in-
cluding in particular Ray Fabri, Duncan Attard, Mike Spag-
nol, and Albert Gatt. I am also indebted to the Malta Coun-
cil for Science and Technology for supporting the MLRS
project.

10. References
R.A Amsler. 1980. The structure of the merriam-webster

pocket dictionary. Technical report, University of Texas
at Austin.

B.K. Boguraev, T. Briscoe, J. Carroll, D. Carter, and
C. Grover. 1987. The derivation of a gramaticaly in-
dexed lexicon from the longman dictionary of contempo-
rary english. InProceedings of the 25th Annual Meeting
of the ACL, Stanford University, pages 193–200.

Martin C. Emele. 1994. The typed feature structure rep-
resentation formalism.Proceedings of the International
Workshop on Sharable Natural Language Resources.

David Farwell, Louise Guthrie, and Yorick Wilks. 1992.
The automatic creation of lexical entries for a multilin-
gual mt system. InProceedings of the 14th conference
on Computational linguistics, pages 532–538, Morris-
town, NJ, USA. Association for Computational Linguis-
tics.

C. Fellbaum, editor. 1998.Wordnet, an Electronic Lexical
Database. MIT Press.

A. Gatt, A. Vella, and J. Caruana. 2003. Annotating textual
and speech data in maltese. InTechnical Note ISO/TC
37/SC 4. International Standards Organisation - Lan-
guage Resource Management.

Ronald M. Kaplan and Joan Bresnan. 1982. Lexical-
functional grammar: A formal system for grammatical
representation. InJoan Bresnan, editor, The Mental Rep-
resentation of Grammatical Relations, pages 173–281.
MIT Press.

M. Kay. 1984. Functional Unification Grammar: A for-
malism for Machine Translation. InProceedings of Col-
ing, pages 75–78, Stanford University.

Adam Kilgarriff, Pavel Rychly, Pavel Smrz, and David
Tugwell. 2004. The sketch engine. Technical Report
ITRI-04-08, Information Technology Research Institute,
University of Brighton. Also published in Proceedings
of Euralex, Lorient, France, July 2004, pp. 105-116.

Kemps-Snijders Marc, Mark-Jan Nederhof, and Peter Wit-
tenburg. 2006. Lexus, a web-based tool for manipu-
lating lexical resources. Technical report, Max-Planck-
Institute for Psycholinguistics Wundtlaan1, 6525 XD Ni-
jmegen, The Netherlands.

Stefan M̈uller. 2007. The Grammix CD Rom. a software
collection for developing typed feature structure gram-
mars. In Tracy Holloway King and Emily M. Bender, ed-
itors, Grammar Engineering across Frameworks 2007,
Studies in Computational Linguistics ONLINE, pages
259–266. CSLI Publications, Stanford.

C. J. Pollard and I. A. 1987 Sag. 1987.Information-Based
Syntax and Semantics: Volume I, Fundamentals, volume
Volume 13 of CSLI Lecture Notes. Center for the Study
of Language and Information.

M. Rosner, J. Caruana, and R. Fabri. 1998. Maltilex: A
computational lexicon for maltese. In M. Rosner, editor,
Computational Approaches to Semitic Languages: Pro-
ceedings of the Workshop held at COLING-ACL98, Uni-
versit́e de Montŕeal, Canada, pages 97–105.

M. Rosner, R. Fabri, D. Attard, and Albert Gatt. November
2006. Maltese Language Resource Server. InProceed-
ings of CSAW06, University of Malta, pages 90–98.

C. Tsalidis, A. Vagelatos, and G. Orphanos. 2004. An elec-
tronic dictionary as a basis for nlp tools: The greek case.
In Proceedings Traitement Automatique du Langage Na-
turel (TALN), Fès, Maroc.

P. Vossen. 1997. Eurowordnet: a multilingual database for
information retrieval.

3440

