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Abstract 
Traditional Authorship Attribution models extract normalized counts of lexical elements such as nouns, common words and punctuation 

and use these normalized counts or ratios as features for author fingerprinting.  The text is viewed as a �bag-of-words� and the order of 
words and their position relative to other words is largely ignored.  We propose a new method of feature extraction which quantifies the 
distribution of lexical elements within the text using Kolmogorov complexity estimates.  Testing carried out on blog corpora indicates that 
such measures outperform ratios when used as features in an SVM authorship attribution model.  Moreover, by adding complexity 
estimates to a model using ratios, we were able to increase the F-measure by 5.2-11.8%   

 
 

1.  Introduction 
Determining the author of a text is an important 

problem in computational linguistics.  It has applications 
to plagiarism, copyright infringement and the analysis of 
anonymously written texts.  Normally a machine learning 
system for authorship attribution extracts features which 
represent the counts of a variety of lexical elements which 
are normalized over the length of the text.  For example 
the number of nouns, verbs, common words or 
punctuation characters may be counted.  This is done to 
fingerprint an author.  A model is created based on these 
features and texts of unknown origin are classified using 
the model.   

The problem with extracting counts of elements 
is that information is lost.  The text is viewed as a �bag-
of-words� and the distribution of elements within the text 
is ignored.  It would be useful to have a method of 
quantifying the distribution of lexical elements within a 
text.  For example, are most of the common words 
clustered in one part of the text or are they distributed in a 
near random fashion throughout the text?  If one could 
quantify the distribution of lexical elements then the 
question still remains as to whether this is a useful feature 
for authorship attribution and if so is it as good as or 
better than using only the counts of lexical elements.   

This paper proposes a method of quantifying the 
distribution of lexical elements by using compression.  
The set of tokens is represented by a binary string.  The 
Kolmogorov complexity of a binary string is the length of 
the shortest program which can output the string on a 
universal Turing machine and then stop (Li, 1997).  It can 
be approximated using any lossless compression 
algorithm.  The degree of compression of the string gives 
an upper bound on the Kolmogorov complexity (Li, 
1997).  

In this paper, we use a set of blogs as a 
training/test corpus and a Support vector machine, or 
SVM, is used to develop models which predict the author.  
For each blog, nouns, verbs, pronouns, conjunctions, 
common words, unique words, internet slang words and 
punctuation characters were identified.  Both normalized 
counts and complexity estimates were extracted for each 
lexical element.  Thus we have 10 features which are 
based on traditional normalized counts and 10 features 
which are based on complexity.   

We show that the complexity of lexical elements 
is a better indictor of style then the normalized count of 
such elements.  In addition because ratio and complexity 
contain different information, both can be used in an 
authorship attribution model to boost performance 
without over fitting. 
 

2.  Authorship Attribution 
Stylometry is concerned with analyzing the 

linguistic style of text to determine authorship or genre.  
If one assumes that an author has a consistent style, then 
one can assume that the author of a text can be identified 
by analyzing its style. 

In order to analyze the style of text, various 
features are extracted and analyzed.  The first attempts at 
feature extraction focused on treating text as sets of 
tokens arranged into sentences (Stamatatos, 2000).  The 
extracted features included sentence count, words per 
sentence, and characters per word.  Usually these features 
were also normalized to the length of the text.  These 
features are still used for classification today. 

One can also analyze syntactic features by using 
a Parts-of-Speech or POS tagger (Stamatatos, 2000).  
Then the average number of noun phrases, verb phrases, 
prepositional phrases etc. can then be extracted. 
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Measures of vocabulary richness are also very 
important features or style markers (Stamatatos, 2000).  
One can count the number of words which are very 
common or the number of words which occur only once 
or twice.  It has been shown that the style of a text can be 
more easily defined using the presence of common 
features rather than uncommon features (Uzuner, 2005).   

Most work done in authorship attribution and 
indeed text classification, treat the text as a �bag-of-
words�, that is order does not matter.  Aside from 
research into n-gram models, the placing of words within 
the text and the location of some words relative to others 
is ignored.  Obviously this results in a loss of information 
as we are throwing away structure.  Traditionally, this has 
been considered of no importance. 
 

3.  Kolmogorov Complexity 
 

3.1   Introduction to Kolmogorov Complexity 
Kolmogorov complexity, also known as 

algorithmic entropy, stochastic complexity, descriptive 
complexity, Kolmogorov-Chaitin complexity and 
program-size complexity, is used to describe the 
complexity or degree of randomness of a binary string.  It 
was independently developed by Andrey N. Kolmogorov, 
Ray Solomonoff and Gregory Chaitin in the late 1960�s 
(Li, 1997). 

In computer science, all objects can be viewed as 
binary strings.  Thus we will refer to objects and strings 
interchangeably in this discussion.  The Kolmogorov 
complexity of a binary string is the length of the shortest 
program which can output the string on a universal Turing 
machine and then stop (Li, 1997).  

Turing showed in his famous work on the halting 
problem that it is impossible to write a computer program 
which is able to predict if some other program will halt 
(Li, 1997).  It follows then that even if we find a short 
program which outputs a particular string there are always 
other shorter programs and we can never know if one of 
those programs will halt and if so whether or not they will 
output the string.  Thus it is impossible to compute the 
Kolmogorov complexity of a binary string.  However 
there have been methods developed to approximate it. 

The Kolmogorov complexity of a string x, 
denoted as K(x), can be approximated using any lossless 
compression algorithm (Li, 1997).  A compression 
algorithm is one which transforms a string A, to another 
shorter string, B.  The associated decompression 
algorithm transforms B back into A or a string very close 
to A.  A lossless compression algorithm is one in which 
the decompression algorithm exactly computes A from B 
and a lossy compression algorithm is one in which A can 
be approximated given B.  When Kolmogorov 
Complexity, or K(x), is approximated, this approximation 
corresponds to an upper-bound of K(x) (Li, 1997).  Let C 
be any compression algorithm and let C(x) be the results 
of compressing x using C.  The approximate Kolmogorov 

complexity of x, using C as a compression algorithm, 
denoted Kc(x), can be defined as follows: 
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where q is the length in bits of the program 

which implements C.  In practice, q is usually ignored as 
it is not useful in comparing complexity approximations 
and it varies according to which programming language 
implements C.  If C was able to compress x a great deal 
then Kc(x) is low and thus x has low complexity.  
Likewise if C could not compress x very much then Kc(x) 
is high and x has high complexity. 
 
3.2   Using Kolmogorov Complexity Estimates to 
Classify Objects 

Suppose an object can be viewed as an ordered 
collection of n items and each item belongs to a class {ci | 
i = 1, 2, �k}.  We can then map the object to a string 
representation which represents the distribution of item 
classes within the object. Kolmogorov complexity can be 
used to classify the object by compression this mapping 
then comparing the degree of compression with the 
expected compression of different categories of objects.  
This gives a quantitative measure of the complexity of the 
distribution if item classes within the object. 

It seems intuitive that this can be used for text 
classification as we can tokenize a text sample and then 
assign classes to tokens.  The Kolmogorov complexity 
estimate of that distribution can then be used as a feature 
in machine learning.   

One must decide which classes will be used for 
the Kolmogorov complexity estimates.  There is a great 
deal of flexibility in this but it seems clear that one should 
consider the meaningfulness of the class and whether or 
not the distribution of that class is likely to vary among 
object categories. 

Any lossless compression algorithm will 
estimate Kolmogorov complexity.  However, it seems 
intuitive that when the strings are short, simple 
compression algorithms will give the best estimate of the 
complexity.  This is because if the string is short, a 
particular algorithm may compress it a great deal simply 
by chance.  Larger data sets will likely benefit more from 
efficient compression algorithms as there is a much lower 
chance that the degree of compression may be an 
anomaly.  Generally, it would not be useful to compute 
the Kolmogorov complexity of very short strings such as 
those with length less than 15. 

 
3.3   Filtering Spam using Kolmogorov 
Complexity Measures 

This method of object classification was 
originally developed for use in spam filters (Seaward, 
2007).  A common ploy of someone who sends spam or a 
spammer is to append a segment of text or a list of 
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keywords at the end of the spam to try to fool the filter 
into allowing it through.  For example, a spammer might 
send the following message: 
 
Buy your Rolexes here!!!!!!!!! 
 
Mary put her purse by the door because she knew she would be 
leaving again. 
Suddenly the phone rang and she wondered if Carlos was 
calling. 
 
 

A human can look at such an email and 
immediately discern the disparity in style and semantics 
and declare it spam.  However, a filter which views an 
email as a �bags-of-words� can be easily fooled into 
thinking this is a legitimate email. 

In order to use Kolmogorov complexity to 
classify email, we first train the filter to recognize which 
tokens or words are associated with spam and which are 
associated with non-spam or ham.  Then each email to be 
classified is tokenized into an ordered set of tokens each 
of which belongs to the class spam or ham.  If we 
represent ham as �0� and spam as �1� then we may map 
the email to a string of zero�s and one�s.  The complexity 
measure is computed by compressing the string using run-
length compression, 

 
)*2,1min(

length
runsComplexity =  

   
Each set of consecutive 1�s is a run as is each 

consecutive set of 0�s.  The runs are counted to determine 
how much the string could be compressed if one was to 
encode it as runs of 0�s and 1�s.  For example 11101000 
could be encoded as a run of three 1�s, followed by a run 
of one 0, followed by a run of one 1, followed by a run of 
three 0�s.   

The complexity of the string is compared to a 
threshold t and if it is greater than t then the email is 
classified as spam otherwise it is classified as ham.  This 
method was used to classify email with accuracy of 81-
96% (Seaward, 2007). 

 
3.5   Attributing Authorship using Kolmogorov 
Complexity Measures 

Authorship attribution is an interesting problem 
for Kolmogorov Complexity measures.  Tokens or words 
in a text sample can be divided into many different 
meaningful classes such as lexical type (noun, verb, 
preposition etc.); length (short, medium or long); common 
or uncommon; slang word or proper word etc.  It is 
obvious that the distribution of such measures within the 
text is a meaningful measure of the style of such a text.   

Indeed, Zipf�s law states that in any corpus, the 
frequency of any word is inversely proportional to its rank 
in the frequency table (Manning, 1999).  Linguists agree 

that most language consists of a great many common and 
possibly ambiguous words with a small number of 
relatively uncommon and unambiguous words thrown in 
(Manning, 1999).  This is to reduce the burden on the 
speaker and listener to know and understand many 
different words and ensure the listener understands the 
message clearly.  However, it is intuitive that this mix of 
words would be a good way to fingerprint an author as it 
seems logical that the distribution of such 
common/uncommon words will vary by author.   

The main question that arises is whether the 
complexity of a feature�s distribution is more meaningful 
then the count of such a feature.  For example is it more 
meaningful to say the complexity of common words was 
0.32 or to say that out of 1000 words, 700 were common.  
Either measure loses information.  Complexity measures 
lose magnitude.  For example, consider the following two 
strings and suppose �1� represents a common word and 
�0� represents all other words.  The second string has 
twice as many common words but they have the same 
complexity. 

 
String Complexity Ratio 
00001000010000 0.714 0.143 
01111011110000 0.714 0.571 

 
 

Likewise, if we use ratios, we lose information 
about how the common words were distributed.  For 
example, the following two strings have the same ratio of 
0.5 but very different distributions. 
 

String Complexity Ratio 
11111110000000 0.143 0.500 
10101010101010 1.000 0.500 

 
As we will see in the results section, both 

measures can be used without overfitting as the both 
contain information which is useful in fingerprinting an 
author.  Surprisingly however, the complexity of a 
feature�s distribution performs better than the ratio of that 
feature when performing authorship attribution.  The best 
results are obtained when both ratio and complexity 
measures are used. 

 
4.  The Blog Corpus 

All blogs were taken from Moshe Koppel�s blog corpus 
which is a collection of 681,288 blogs from 19,320 

authors or bloggers (Schler, 2006).  Blog is a combination 
of the words �web� and �log� and is thus a weblog or 
internet diary.  Generally blogs are posted frequently 

through a website which supports such postings.  Koppel 
obtained all the files in the blog corpus from 

www.blogger.com.  The files are annotated with the 
bloggers purported age, gender, industry and astrological 

sign. 
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Koppel et al. obtained good results using almost 
the entire corpus for author attribution (Koppel, 2006).  
Using only those posts with over 200 words, he obtained 
18,000 blogs for testing/training.  He extracted weighted 
measures of words that would be representative of topic, 
function words and unique non-numeric non-
alphanumeric words (such as smileys).  He used 
information retrieval techniques instead of a machine 
learning model and in 66.0% � 79.5% of cases his system 
could make no conclusions and returned �I don�t know�, 
otherwise his system was over 80% accurate. 

Schler et al. also used this corpus to build a 
model which predicts gender and age with over 80% 
accuracy (Koppel, 2006). 

Since the corpus contained far too many blogs 
and bloggers for a machine learning author attribution 
model, I selected a subset of bloggers to work with.  By 
analyzing length of posts, I obtained a set of 19 authors 
each of which had over 37 blogs of length over 1000 
words.  Generally this is the minimum length required for 
accurate authorship attribution (Stamatatos, 2000).  I 
divided these authors into 2 sets.  Data set A is a balanced 
data set in which most authors have the same number of 
large (length > 1000) blogs.  The mean is 43.40 blogs and 
the standard deviation is 3.31.  Data set B is less balanced 
and the mean number of blogs is 60.56 and the standard 
deviation is 28.87.  There were other blogs by each of 
these 19 authors but only posts of length greater than 
1000 were used.  Note that I refer to bloggers and authors 
interchangeably in this report. 
 
Table 4.1 Details of Authors and their blogs in Data 

Set A. 
Author Gender Age Posts of Length > 1000 
a1 male 24 46 
a2 male 24 40 
a3 male 47 44 
a4 male 41 42 
a5 male 17 36 
a6 female 26 47 
a7 male 36 45 
a8 male 25 46 
a9 female 47 44 
a10 male 25 44 

 
Table 4.2 Details of Authors and their blogs in Data 

Set B. 
Author Gender Age Posts of Length > 1000 
b1 male 25 89 
b2 male 27 62 
b3 male 33 112 
b4 female 25 38 
b5 male 15 76 
b6 male 44 54 
b7 male 37 37 
b8 female 43 39 

b9 female 14 38 
 
 

5.  Weka 
Weka is a collection of machine learning 

algorithms and data processing tools (Witten, 2005).  It is 
available for free download  and it is very easy to use.  It 
was developed at the University of Waikato in New 
Zealand.  There are a great deal of machine learning tools 
included in the Weka package such as trees, linear 
regression, neural networks, naïve Bayes and support  
vector machines.   A support vector machine was used in 
our experiments. 

 
6.  Support Vector Machines 

A support vector machine or SVM is a 
supervised learning method used to classify data (Witten, 
2005).  Each instance in the training set is represented as a 
set of n features which correlates with an n-dimensional 
data point.  The entire set of training examples if viewed 
as a set of data points in n-dimensional space and the 
SVM attempts to find the hyperplanes which best divide 
the space between each pair of classes such that the 
largest possible number of data points are on the same 
side and the distance between each class and the 
hyperplane is maximized (Witten, 2005).  The optimal 
hyperplane is one which minimizes the risk of 
misclassifying a data point.  The data points which are 
closest to the maximum margin hyperplane are known as 
support vectors (Witten, 2005). 

Thus for our problem there are 20 dimensions 
and 9 or 10 classes or authors thus the SVM will find a 
maximal margin hyperplane which separates each 
possible pair of classes of which there are 34 or 43.  
Suppose we label the features f1, f2, �f20, then the SVM 
finds a vector of the form x = w0 + w1f2 + w2f2 + � + 
w20f20 to divide each possible pair of classes.  This will be 
done for each pair of classes and each fold in 10-cross 
validation.   

For this project the SMO or sequential minimal 
optimization implementation of an SVM in Weka was 
used.  By default the SMO uses polynomial of Gaussian 
kernels, transforms nominal vales into binary ones and 
normalizes attributes (Witten, 2005).  Other machine 
learning tools in Weka were also tested but SVM proved 
to be very competitive and seemed a natural fit for the 
problem. 
 

7.  Methodology 
7.1   Overview 

In order to build an authorship attribution 
machine learning model there are several steps which 
must be followed.  In the table below, we outline each 
step and detail how the step was completed 
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Table 7.1 Steps in building an SVM model for 

Authorship Attribution 
Step Description Details 
1 Obtain corpus Moshe Koppel�s blog 

corpus which is available 
for free download was 
used. 

2 Pre-process 
corpus 

I reduced corpus to 19 
authors and removed all 
blogs less than 1000 
words. 

3 Extract features This was done using 
Python scripts.  The main 
scripts are given in 
appendix B and C. 

4 Place features 
in format for 
machine 
learning toolkit 

An ARFF file was created 
for each data set. 

5 Normalize 
features 

Done automatically by 
Weka. 

6 Create models Done by selectively 
removing features from 
set of 20 in Weka. 

7 Prune features Weka�s attribute 
evaluator function was 
used to identify the 
possible candidates for 
pruning.  I tested each 
model for each data set 
with the two bottom 
ranked features removed.  
Those features were 
pruned if this improved 
performance. 

8 Evaluate 
Results 

Precision, recall, F-
measure and confusion 
matrix are given for 10-
fold cross validation by 
Weka.  Full results are in 
appendix A. 

 
 
7.2   Feature Extraction 

We started with the 20 features listed below.  In 
order to identify slang words, the internet dictionary from 
www.noslang.com was used (www.noslang.com).  
Whether or not a word was unique or common was based 
on token frequency analysis for the entire blog corpus.   

Parts of Speech tagging was done using a simple 
python tagger developed by Jason Wiener (2006) and 
based on the work of Eric Brill (Brill, 1996).  It is a rule-
based system which uses transformations and is error-
driven.  The algorithm has been implemented in many 
platforms and is known as the Brill Tagger. 

For the features below, all counts were 
normalized to the number of words/tags in the text or in 
the case of punctuation the number of characters in the 
text.  The method of constructing the string mapping for 
complexity estimates is given below.  After the string is 
constructed run-length compression was then applied to 
get an estimate of the Kolmogorov complexity of the 
mapping. 
 

Table 7.2.1 Features and their Descriptions. 
Attribute Description 
commoncount Count all words which 

occur more than 1000 
times in the entire blog 
corpus. 

commoncomplexity If a word occurs more 
than 1000 times in the 
entire blog corpus then 
count as �1� otherwise 
count as �0�. 

uniquecount Count all words which 
occur less than 3 times in 
the entire blog corpus. 

uniquecomplexity If a word occurs less than 
3 times in the entire blog 
corpus then count as �1� 
otherwise count as �0�. 

slangcount Count all words which 
appear in dictionary from 
www.noslang.com and 
divide by the total number 
of tokens. 

slangcomplexity If word is in no-slang 
dictionary than count as 
�1� otherwise count as �0�. 

nouncount Count all tokens which 
are tagged as noun 
phrases and divide by the 
total number of tags. 

nouncomplexity If a token is a noun phrase 
then count as �1�, 
otherwise count as �0�. 

verbcount Count all tokens which 
are tagged as verb phrases 
and divide by the total 
number of tags. 

verbcomplexity If a token is a verb phrase 
then count as �1�, 
otherwise count as �0�. 

adverbcount Count all tokens which 
are tagged as adverbs and 
divide by the total number 
of tags. 

adverbcomplexity 
 

If a token is an adverb 
then count as �1�, 
otherwise count as �0�. 

adjectivecount Count all tokens which 
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are tagged as adjectives 
and divide by the total 
number of tags. 

adjectivecomplexity If a token is an adjective 
then count as �1�, 
otherwise count as �0�. 

conjunctioncount Count all tokens which 
are tagged as conjunctions 
and divide by the total 
number of tags. 

conjunctioncomplexity If a token is a conjunction 
then count as �1�, 
otherwise count as �0�. 

punctuationcount Count all characters 
which are punctuation and 
divide by the total number 
of characters. 

puncuationcomplexity If a token is a adjective 
then count as �1�, 
otherwise count as �0�. 

averagewordlength Sum all word lengths and 
divide by the total number 
of words. 

wordlengthcomplexity If a word is less than or 
equal to 4 characters then 
count it as �0�.  If it is 
greater than or equal to 6 
characters then count it as 
�1�.  Otherwise ignore the 
word. 

 
 
7.3   Pruning Features 

Using Weka�s SVM attribute evaluator, the 
following rankings were obtained.  In using an SVM, 
feature selection is very important.  Since there are 20 
features, there are 220-1 or 1048575 possible combinations 
of features.  Thus it is impossible to try all combinations 
of features to determine which combination results in the 
best performance.  This tool was very useful for providing 
an idea as to which features may be likely candidates for 
pruning.  The bottom two ranked features were pruned 
both individually and separately to determine if this 
increased accuracy.  

  
Table 7.3.1 Features Pruned for each Model and 

Data Set. 
Data 
Set 

Model Features Pruned 

A Complexity-Ratio slangcount 
A Complexity commoncomplexity 
A Ratio - 
B Complexity-Ratio - 
B Complexity - 
B Ratio - 

 

8.  Results 
When evaluating a machine learning system 

there are three commonly used measures of performance.  
They are precision, recall and F-measure.  Recall is the 
proportion of spam messages which were correctly 
identified as spam.  Precision is the proportion of emails 
which are identified as spam and which are actually spam.  
The F-measure is a combined measure which equally 
weights recall and precision 

  
FN = False negatives  
FP = False positives  
S = Total number of samples of the class or author 
 
          

,Re
S
FNScall −=  

,Pr
FPFNS

FNSecision
+−

−=    

callecision
callecisionmeasureF

RePr
)Re(Pr2

+
∗=− , 

 
 

Here are the results for all six experiments.  All 
these results are based on 10-fold cross validation.  
Detailed data on each class and confusion matrices are in 
appendix A.   
 
Table 8.1 Precision, Recall and F-measures for each 

Model and Data Set 
Model Data 

Set 
Precision Recall F-

measure 
Ratio  
Model A 0.651 0.651 0.651 
Complexity 
Model A 0.665 0.665 0.665 
Complexity-
Ratio Model A 0.703 0.704 0.704 

Ratio  
Model B 0.741 0.741 0.741 
Complexity 
Model B 0.787 0.787 0.787 
Complexity-
Ratio Model B 0.859 0.859 0.859 
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Figure 8.1  F-measures for each Model and Data 
Set. 

 
The results are better for data set B then data set 

A for two reasons.  Firstly B is bigger than A.   This 
generally always increases accuracy.  Also if you view the 
confusion matrices for data set A (table A2, A4 and A6 in 
appendix A), there was a great deal of confusion between 
authors a1 and a2.  In fact a2 was never classified 
correctly for any of the instances for any of the models 
and in fact was always classified as a1.  What is also 
interesting is that both a1 and a2 are 24 year old men.  
There are two possibilities.  Schler et al. show that in 
blogging, gender and age have an affect on the use of 
lexical features (Koppel, 2006).  It is also possible that 
they were both written by the same person.  On the 
internet no one is ever who they say they are.  I chose not 
to remove a2 from the training set as we did not want to 
run the risk of cherry-picking data.  

 
9.  Conclusion 

It has been shown that the addition of 
Kolmogorov complexity measures of lexical features 
increases the accuracy of a feature-based author 
attribution SVM model by 5.2%-11.8%.  In fact the 
Kolmogorov complexity estimate of a feature is a better 
measure of style than the normalized count of such a 
feature.  This is an important result because this means we 
can boost accuracy with the addition of very little extra 
computation.  If a system is already extracting features 
and counting them then it is trivial to also compute the 
complexity measure for that feature as well.  Our results 
also show that some information about style is lost when 
we view text as a �bag-of-words� and it is possible to add 
some of this information back into an natural language 
processing model through the use of feature complexity 
estimates. 
 

10.  Future Work 
There are several things that can be done to 

expand this method.  Firstly, one could experiment with 
the Kolmogorov complexity estimates of different 

features then the ones used in this project.  One could also 
experiment with the complexity estimates of non-binary 
classes.  For example what about it we counted nouns as 0 
and verbs as 1 and all others as three and then computed 
complexity.  It would also be interesting to use other 
compression algorithms than run-length compression. 
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