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Abstract 

This paper introduces a new architecture that aims at combining molecular biology data with information automatically extracted from 
relevant scientific literature (using text mining techniques on PubMed abstracts and fulltext papers) to help biomedical experts to 
interpret experimental results in hand. The infrastructural level bears on semantic-web technologies and standards that facilitate the 
actual fusion of the multi-source knowledge. 

 

1. Introduction 
A microarray (or a gene chip/array) is a collection of 
microscopic spots on a solid surface which enables 
monitoring expressions of thousands genes (virtually the 
entire genome) simultaneously. The term “gene 
expression” refers to turning on and off the production of 
proteins by which a given organism responds to 
environmental and biological situations. Microarrays play 
a significant role in today’s biomedicine. They have been 
successfully used in diagnoses and prognoses for various 
diseases, to plan treatment, to design new drugs, etc. 
The amount of data produced by microarray analysis is 
large and it is not possible to analyze it manually. The 
gene expression matrix can contain a lot of noise, missing 
values or other irregular variations. Advanced statistical 
or machine learning methods are applied to normalize 
data and to identify and correct unacceptable expression 
values (see, e.g., (Yang et al., 2002, Hershey et al., 2008) 
for approaches to microarray data normalization and 
(Yoon et al., 2007, Wang et al., 2006) for missing value 
estimation). There is also a need for management of the 
huge amount of diverse data. The heterogeneity can 
present the major obstacle for the fusion mechanism as 
data from different laboratories are produced by widely 
varying experimental techniques and can be incomplete in 
many respects. 
The next step in the automatic processing of microarray 
data consists in grouping genes with similar behavior (and, 
usually, filtering out the rest). Various clustering 
algorithms have been applied for identifying biologically 
relevant groups of genes and samples. A survey of the 
clustering methods used for gene expression data can be 
found in (Jiang et al., 2004). 
The mentioned processes form the general part of present 
standard microarray data processing which is common for 
various experiments run by laboratories all over the world. 
Many biologists work directly with the output of the 
employed clustering techniques and try to find a 
connection between the current measurements and their 
knowledge on the domain. Advanced visualization 
techniques can be called for to support the interpretation 
process. Nevertheless, it is usually extremely difficult to 
find the proper links between the potentially significant 
genes from the produced clusters and to formulate and 
verify correct hypotheses on the results. Even the experts 

with a long experience in the field often miss significant 
clues that would support the interpretation. They can fail 
to remember an article on the topic presenting the 
evidence in another context, not be aware of the latest 
results studying another organism, miss a paper on a 
discovered protein interaction patterns etc. Without a help 
of information technologies, the interpretation presents a 
tedious work with many potential obstacles. 
The aim of our research is to reduce the workload as much 
as possible and let biologists focus on the interpretation of 
the particular pieces of knowledge the system can 
automatically infer from available data. Even though the 
deep biological knowledge will be probably always 
necessary to uncover new principles of the processes in 
living organisms, today’s computers can significantly 
reduce the need for manual search of relevant scientific 
literature, the evidence from previous experiments and 
additional information. 
As there are potentially many sources of relevant 
biological knowledge, one has to think about general 
ways to integrate the different views provided by the 
different databases. The actual fusion mechanism we 
apply in our work takes advantage of the latest 
semantic-web technologies and standards that facilitate 
the definition of the data-integration semantics. 
KnoFusius benefits from RDF/OWL-based data 
communication and interchange and defines open 
interfaces for later extensions. In this respect, we continue 
the work of Ruttenberg et al. (2007), Badea (2006) and 
many others that show the significance of the semantic 
web vision for the biomedical research. An important 
trend that helps us to speed up the development of the tool 
is “the opening” of the large biomedical databases. More 
and more sites are changing from former data silos to fully 
interoperable services and they can be therefore easily 
plugged into the semantics-aware platforms. 

2. System architecture 
A schema of the KnoFusius system is given in Figure 1. 
The process starts with experimental data prepared with 
the help of advanced biomedical methods and tools. The 
user can provide a normalized description of the 
experimental setup which can be then used to retrieve 
additional data from various databases. The quality of 
metadata is crucial for the success of subsequent 
processing steps. 
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Figure 1. Processing schema of KnoFusius 

 
 

Array express databases containing the results of other 
groups around the world are searched next. As it is 
extremely difficult (if not impossible) to compare the 
primary expression data across various experimental 
settings, arrays used etc., the system counts upon 
metainformation, provided by the original experimenters 
and stored together with the primary data in the array 
expression databases. We are currently trying to provide 
wrapper components that should enable combining data 
from two most populated databases – ArrayExpress 
(www.arrayexpress.com) and STNK (www.stanford.edu). 
The fusion on this level is rather problematic as the two 
databases differ significantly in their content as well as the 
functions supported. 
The experimental data are then combined with relevant 
information from biomedical knowledge bases. They 
include various ontologies such as GO – the Gene 
Ontology (www.geneontology.org) or OBI – the Ontology 
for Biomedical Investigations (obi.sourceforge.net), 

pathway maps (representing the knowledge on the 
molecular interaction and reaction networks) such as 
KEGG – the Kyoto Encyclopedia of Genes and Genomes 
Pathway collection (www.genome.jp/kegg/pathway.html), 
Biocarta (biocarta.com) or the BioCyc collection 
(biocyc.org), protein knowledge bases such as UniProt – 
the Universal Protein Resource (uniprot.org) and many 
other resources.  
Even though the biomedical knowledge bases try to scan 
journals and conference proceedings regularly to embrace 
as much information as possible, one still cannot rely on 
their full coverage. This is partially due to the shallow text 
analysis techniques employed and also due to the limited 
scope of the primary resources. Moreover, those 
knowledge bases that are “curated” by an individual or a 
small group of people have to tackle the issues of 
subjectivity and availability of the curators. On the other 
hand, the approach followed in our work reduces the work 
of personal judges to the definition of a declarative set of 
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extraction patterns for particular pieces of knowledge, and, 
if necessary, to semi-automatic evaluation of the source 
reliability. The text mining is applied not only to the 
content of the PubMed database, but also to the additional 
sources of scientific publications that can be stored locally 
(recent conference proceedings, various reports with 
restricted access rights…). An important point of the 
direct analysis of the scientific articles and papers (instead 
of taking benefit just from the pre-processed biomedical 
databases) is our ability to consider different weights 
(influence, reliability) of various pieces of information 
from various sources. The reasoning within the 
knowledge fusion system deals with explicitly 
represented uncertainty (see (Novacek & Smrz, 2006) for 
the details of our approach) and the source reliability is 
one of the important factors participating in the process. 
As mentioned above, we employ rather deep text 
processing to extract as much relevant information as 
possible. After the standard preprocessing steps – 
transformation of the input formats, tokenization and 
sentence boundary detection, we employ POS tagging, 
syntactic analysis and pronominal anaphora resolution. 
We benefit from the available domain-specific 
terminological thesauri and ontologies to define particular 
categories of interest. The results form an input for our 
pattern-based semantic-relation extractor. It takes 
advantage of general-purpose language resources, namely 
WordNet, to expand pre-defined knowledge patterns (and 
transfer terms to concepts in general). The set of extracted 
relations (such as “protein-A inhibits protein-B”) is then 
merged with the related information from biomedical 
knowledge bases and the output is used to filter and 
interpret the experimental data in hand. 
A significant attention has been recently paid to the 
aggregation and integration of data drawn from diverse 
sources in the field of life sciences. A unifying view on 
these activities can be provided by the vision of the 
semantic web – an extension of the current web that 
enables automatic processing of the various resources. It 
is based on common formats (RDF, OWL, RIF…) and 
related technologies. For example, the above-mentioned 
knowledge bases have been recently transformed from 
many proprietary formats (often focusing on the visual 
representation suitable for humans) into RDF/OWL 
appropriate for machine processing. 
There are many limitations of the current semantic web 
technologies due to their immaturity. The major issue 
connected to the huge knowledge bases and complex 
ontologies typical for the biomedical field is the low 
performance and limited scalability of the available 
automatic reasoners. That is why we currently employ 
ad-hoc mechanisms for the interpretation of experimental 
data based on a simple fuzzy-rule chaining. However, as 
the overall architecture is modular enough to allow easy 
replacement of the inferring engine, we plan to evaluate 
various recently proposed solutions (Stracia, 2001, Simou 
& Kollias, 2007) in terms of their performance and 
scalability and to integrate the module that will best meet 
our needs. 

3. Experiments and results 

It is always difficult to evaluate systems aiming at finding 
new, potentially interesting links among given pieces of 

knowledge that should help to understand a complex 
problem. To evaluate the functionality of KnoFusius, we 
defined two tasks that are described in the following text. 

The first set of input data consists of two lists of gene 
identifiers – 22 genes that showed to be up-regulated and 
29 down-regulated in an experiment. No additional 
knowledge on the disease in question, experimental 
settings or other characteristics has been provided to the 
system. The test should show whether the system is able 
to find appropriate hints to identify the type of disease. 
KnoFusius calls FABLE (Fast Automated Biomedical 
Literature Extraction – fable.chop.edu) to locate papers 
dealing with the particular genes. The service returns 
PubMed identifiers. A local copy of the PubMed archive 
indexed by Lucene (lucene.apache.org) is called next. 
This configuration allows us to evaluate even complex 
queries in a short time. The system tries to identify articles 
containing one or more genes from the given sets. Table 1 
shows an excerpt of such an output. 
 

set(['TCF7', 'ZAP70']) – 15325098 
Different gene expression in immunoglobulin-mutated and 
immunoglobulin-unmutated forms of chronic lymphocytic 
leukemia. 

set(['EGR1', 'TNFRSF1A']) – 14735464 
Antisense abrogation of DENN expression induces 
apoptosis of leukemia cells in vitro, causes tumor 
regression in vivo and alters the transcription of genes 
involved in apoptosis and the cell cycle. 

set(['ABCA6', 'FMOD']) – 12651908 
Identification of a global gene expression signature of 
B-chronic lymphocytic leukemia. 

 
Table 1: A list of papers containing combinations of genes 

from the first dataset. 

Next, KnoFusius extracts the relevant GeneRIFs (Gene 
Reference Into Function) from NCBI (ncbi.nlm.nih.gov). 
It computes an intersection of the functional annotation 
and the most frequent terms from the articles obtained in 
the previous step.  

Table 2 shows an example of the resulting list for our 
testing data. The most relevant terms include “leukemia” 
– the disease that was really confirmed in the examined 
patients. It shows that KnoFusius is potentially able to 
provide hints for the expert interpretation of the 
microarray measurement based on the term extraction.  

The second test set deals with human diabetes. It comes 
from http://www.broad.mit.edu/mpg/oxphos and contains 
43 microarray samples containing 22,283 genes taken in 
skeletal muscle biopsy from males (17 with normal 
glucose tolerance (NGT), 8 with impaired glucose 
tolerance (IGT) and 18 with type 2 diabetes mellitus 
(DM2)). GEPAS (Gene Expression Profile Analysis Suite 
– gepas.bioinfo.cipf.es/) has been used to preprocess data.  
KnoFusius is called to help biologists find the best match 
between their measurements and knowledge stored in the 
form of published pathway databases.  The pathways are 
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Likelihood OBO terms 

32.283984 Leukemia, Lymphocytic, Chronic 
26.351238 Leukemia of unspecified cell type 
18.497584 Leukemia 
12.519245 Precursor Lymphoblastic Lymphoma 
8.417293 Megakaryocytic leukemia 
7.956313 Urticaria 
7.031021 Multiple Sclerosis 
6.549814 Demyelinating Diseases 

 
Table 2: The most relevant terms for the first dataset. 

 
taken as graphs (see Figure 2) stored in a local database 
which combines data from KEGG and Biocarta sites 
mentioned above. Results are presented in the form of 
pathway lists ordered according to their estimated 
relevance to the experimental data on input. 

 

Figure 1: Type II Diabetes Mellitus Pathway from KEGG 
 
 
Table 3 demonstrates a part of the results on the second set. 
Biological assessment confirmed that such an output can 
significantly improve the interpretability of microarray 
data and potentially lead to finding new facts on various 
diseases. 

Pathway name From Score 

Phosphatidylinositol signaling 
system 

KEGG 0.3966 

Insulin signaling pathway Biocarta 0.3121 
Melanogenesis KEGG 0.2895 
Maturity onset diabetes of the 
young 

KEGG 0.1374 

Table 3: A list of pathways related to the second dataset. 
 

4. Conclusions and Future Directions 
Despite recent efforts to overcome the fragmented nature 
of biomedical knowledge on the current web, the problem 
of information fusion from various resources has not been 
solved to a sufficient extent till now. The presented work 
can be seen as our contribution to this research. The 
modular architecture enables easy integration of various 
components and methods and the semantic web context 
simplifies the data integration procedures. 
A lot of work needs to be done to realize the full potential 
of KnoFusius. We will focus on “opening” all the tools by 
means of web services that will make them available to a 
broad community of interested users. We will also pay 
attention to the input part of the system that currently 
suffers from a relatively high number of unidentified gene 
IDs. Last but not least, we are going to improve the user 
interface of the system accordingly to the feedback from 
its real use. 
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