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Statistical parsing

Supervised Parsing - Schema

@ Problem: Ambiguity of
natural language sentences

Labeled examples

Treebank i
@ Common approach: Train a
% parser/model on a treebank.
l N Apply to new input.
@ Variations:
Parser
(Passing Model) phrase/dependency structure,
formal grammar, statistical
T - applypaser - model and estimator.
GTU dig sucoesd in fisding 115 0peration .|
New unlabeled
sentences

Parsed sentences
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Motivation

Is there more in a treebank that we might exploit?

@ We view a treebank as a mixture of subdomains, each
addressing certain concepts more than others
"politics, stock market, financial news etc. can be
found in the WSJ* (Kneser and Peters, 1997)
@ The parsing statistics gathered from the treebank are
averages over different subdomains,

@ Averages smooth out the differences between
subdomains and weaken the biases

@ Do subdomains matter?

@ How to incorporate subdomain sensitivity into an
existing state-of-the-art parser?
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Motivation - Our Approach

Subdomains {¢;} as hidden features
P(s,t) = > _P(s,ci)P(tls, ci) (1)
i
This work: approximate it by creating an ensemble of parsers

Assumptions:
@ We know a set of subdomains {c;,...,ck}

@ Approximate ) . by combining predictions of
subdomains parsers
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Overview and Problem Statement

Sub-domain driven parsing - Schema

Barbara Plank &
Khalil Sima’an

Introduction and
Motivation Labeled examples
Treebank
(1) How to create
domain-dependent parsers? L

Subdomain Sensitive e ———

Parsers

Parser Combination

Techniques

Experiments and Parser ; Parser Parser .
Results

Conclusions and Joha iR

Future Work “Th Aol morket suored

New unlabeled
sentences Parsed sentences Parsed sentences Parsed sentences
(Parser ;) (Parser ) (Parser 1)
(2) How to combine them? Parsed sentences
(combined)
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Creating subdomain-specific parsers

Weight the trees in treebank TB with subdomain statistics

@ Use domain-dependent raw corpus C (flat sentences)
@ Induce statistical Language Model (LM) 6 from C
@ Assign a count f to every tree ; € TB such that:

f = average per-word “count” of yield y[,; under LM 6

—
Raw 1. Estimate Language Model §
Corpus \
Language Model &

2. Apply LIM 6 to weight TB

Original Tresbank (TE) Weighted Treebank (TBg)

Retrain parser on subdomain-weighted TBjy.

21
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Overview of our approach - Details

Tree weighting
(exploit raw corpora)

Train parsers

Apply parsers

Combine output

Corpus
Financiall

Corpus
Politics

Labeled examples
Penn Treebank WS}

( Parser Sports)

Parser Financial

[Parser Pol mcs}

(Pa rser Baseline}
I

[
v

12

v

i

Parsed sentences
(Parser Sports)

Parsed sentences
(Parser Financial)

Parsed sentences
(Parser Politics)

Parsed sentences
(Parser Baseline)

T

Parsed sentences
(combined)

New, unlabeled
test sentences
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Parser Combination Techniques

How to combine them?

Parser pre-sdection

Test sentence s

Parser,

| —
——

Parsers
—_—
Parser

N
o

Parsery

Parser post-selection

Parse tree m(s)



Parser Combination Techniques

How to combine them?

Introduction and Parser pre-sdection Parser, Parser post-selection
Motivation
R —
Subdomain 0y
Sensitive
Statistical Parsing Parsers
Slitaietn Saneive Test sentences Parse tree n(s)
—_—
Experiments and Parser .
Results
Conclusions and ( \
Future Work
Parsery
Parser Pre-selection: Parser Post-selection:
selecting a parser selecting a parser after
up-front (given: s) parsing (given: s, t)



Pre-selection: Divergence Model (DVM)

We measure for every word how well it discriminates
[T between the subdomains using the notion of divergence.

Motivation

T The divergence of a word w in a subdomain i € [1...k],
Sensitive from all other (k — 1) subdomains (j € [1...k],j # i):

Statistical Parsing

Subdomain Sensitive

Parsers
. Zﬁﬁ' log Po (W)’

Experiments and dlvergence,'(W) = 1 + (2)

Results (k - 1)

Conclusions and n

Future Work . d/ver ence;(w.
divergence_sent;j(wy') = L= gencei(ws) (3)

n

Boundary issues:

@ if p@i(w) = 0 then divergence;(w) = 1, and

@ if pej,(w) =0, then pgj.(w) = 10715 (constant).
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Pre-selection: Divergence Model (DVM) - Example

For example, 'multi-million-dollar’ (score FINANCIAL

domain: 5.5), 'equal’ (score all domains from 1.6 to 1.9)
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Post-Selection: Node Welghtlng + DVM (NW—DVM)

For parse tree m; with 1 </ < k and sentence wy'":

score( [ 25[C ﬂ,]] (4)

E score

) | +Axdivergence_sent;(wy')
i &

(5)
where || is the size of the constituent set, and 0 < A < 1
an interpolation factor.

score(m;) = (1—-X) [

@ How well does the parse tree 7; fit the domain?

@ How well does wy' fit the domain?

12 /21
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First Experiment: Variance among Parsers

@ Are subdomain parsers complementary?

@ Optimal decision procedure - an oracle:

T best_oracle = argmax; fF_score(ﬂ-f)

(6)
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First Experiment: Variance among Parsers

@ Are subdomain parsers complementary?

@ Optimal decision procedure - an oracle:

T best_oracle = argmax; fF_score(ﬂ'i) (6)
3 F <40
S TE SR Parser LR LP | F-score
Techmiauss Section 00 (development set)
Baseline 80.44 89.63 [ 89.53
Sports 88.95  88.83 88.89
Financial 89.01 88.84 88.92
Politics 88.86  88.70 88.78
Oracle combination 90.59  90.66 90.62

Improvement over baseline || +1.15 +1.03 +1.09
Section 23 (test set)
Baseline 88.77 88.87 | 88.82

Oracle combination 90.11 90.11 90.11
Improvement over baseline || +1.34 +1.24 +1.29
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Effect Using Domain-awareness - Example

Sent#90: South Korea registered a trade deficit of $ 101 million in

October, reflecting the country’s economic sluggishness, according to
government figures released Wednesday.

VP
VP
VED NP PP
VBD NP
| N —_
registered /\ registered in October
NP PP NP PP
a trade deficit /\ a trade deficit 4 NP
IN NP | |
| of QP
of
NP PP $ 101 million
| —_
QP in October
$ 101 million
Parsergaseuine  F-score: 87.80%; in-  Oracle prediction F-score: 100%

correct PP-attachment (Parsefpivancian,  or Parserporyrics)

14 /21



Short Recap

@ The example illustrates that a domain-specifically
trained parser may find a correct or better result than
Paraara o Sensitive the baseline parser.

Parser Combination
Techniques

@ Our first experiment shows that our subdomain

sensitive parsing instantiation in general has potential.

@ We presented parser combination techniques that aim
at achieving this potential.
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Results of Parser Combination Techniques

< 40
Parser LR LP ‘ F-score
Section 00 (development set)

Baseline 89.44 89.63 89.53
Parser Pre-selection:

Divergence Model (DVM) 89.50 89.68 89.59
Parser Post-selection:

Node Weighting incl. DVM, A\ = 0.6 || 89.53 89.71 89.62

Parser Post-selection NW-DVM highest F-score: 89.62%,

i.e. +0.09% over baseline.

21
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Results of Parser Combination Techniques
Result of Node Weighting incl. DVM (NW-DVM)

Node Weighting including DVM on the Sentence Level

90.5
| ‘ ‘ WSJ-40 (§entLeveI) —_
WSJ-100 (SentLevel) ---%---
Baseline WSJ-40 --
Baseline WSJ-100 -------
90 |
895 [ ,,*//”"A‘“F44+—4—4—+“__‘47_444i
IS
=}
?
* 89 L |
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IR
T
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0 02 0.4 06 0B
Lambda
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Results of Parser Combination Techniques

Summary

@ Post-selection that considers both the parse tree and
sentence performs best

@ Nevertheless, it is closely followed by Parser
Pre-selection based on the sentence only

@ Results are confirmed on the test set (section 23):

@ Node Weighting incl. DVM with A = 0.6 (+0.08%
F-score)

© Divergence Model (+0.03%)

18/21
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@ Our first instantiation of subdomain sensitive parsing
has indeed demonstrated to have potential

@ However, combining the parsers to obtain a
substantially better result is not an easy task

@ Our approach leaves space open to extend, refine or
improve various parts:

@ Other ways of instantiating domain-dependent parsers

(e.g. self-training)

@ More sophisticated notion of domain

o Further explore parser combination techniques

o Explore to what extent n-best parsing might benefit
from subdomain information
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Treebank Weighting

Weight the trees in treebank TB with subdomain statistics
and retrain parser.
@ Use domain-dependent raw corpus C (flat sentences)
o C € {sports, financial, politics}
@ Induce statistical Language Model (LM) 6 from C

TSEiiE @ Assign a count? f to every tree m; € TB:

fo(mi) = fo(¥m) = — 108 Po(¥ixg)/n (7)

o Let f,7® be the maximum count of a tree in TB
according to 6. The weight w; assigned to 7; is defined

as: fmax a
()]

where a > 1 is a scaling constant. In the default setting
a=1.

>arser Combination
Techniques

?f = average per-word “count” of the yield y(,; under LM 6
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