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Introduction & Motivation

Corpora with semantic annotation are increasingly relevant
in natural language processing
I See: Baker et al. (1998); Palmer et al. (2005); Burchardt

et al. (2006); Taulé et al. (2005)

Semantic role labeling
I used for tasks such as:

I information extraction (Surdeanu et al. 2003)
I machine translation (Komachi et al. 2006)
I question answering (Narayanan and Harabagiu 2004)

I requires corpora annotated with predicate-argument
structure for training and testing data

I Gildea and Jurafsky (2002); Xue and Palmer (2004);
Toutanova et al. (2005); Pradhan et al. (2005), ...

Semantically-annotated corpora also have potential as
sources of linguistic data for theoretical research
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Exploring semantic annotation

Need feedback on annotation schemes:
I difficult to select an underlying theory (see, e.g.,

Burchardt et al. 2006)
I difficult to determine certain relations, e.g., modifiers

(ArgM) in PropBank (Palmer et al. 2005)

Need to detect annotation errors, which can:
I harmfully affect training (e.g., van Halteren et al. 2001;

Dickinson and Meurers 2005b)
I harmfully affect evaluation (Padro and Marquez 1998;

Květǒn and Oliva 2002)

Little work on automatically detecting errors in
semantically-annotated corpora
I Mainly POS and syntactically-annotated corpora (see

Dickinson 2005, ch. 1)
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Background: the variation n-gram method
Dickinson and Meurers (2003a)

Variation: material occurs multiple times in corpus
with different annotations

Dickinson and Meurers (2003a) introduces the notions

I variation nucleus: recurring word with different annotation
I variation n-gram: variation nucleus with identical context

and provides an efficient algorithm to compute them.

Example: 12-gram with variation nucleus off

(1) to ward off a hostile takeover attempt by two
European shipping concerns

In the two occurrences of this 12-gram in the WSJ, off is
I once annotated as a preposition (IN), and
I once as a particle (RP).
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Heuristics for disambigutation

Variation can result from:

I ambiguity: different possible labels occur in different
corpus occurrences

I error: labeling of a string is inconsistent across
comparable occurrences

Non-fringe heuristic to detect annotation errors:
I Nuclei found at fringe of n-gram more likely to be

genuine ambiguities (Dickinson 2005)
I Natural languages favor the use of local dependencies

over non-local ones
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Error detection for syntactic annotation
Dickinson and Meurers (2003b)

For syntactic annotation, decompose variation nucleus
detection into series of runs for all relevant string lengths

I one-to-one mapping: string→
syntactic category label
(or special label NIL=non-constituent)

I perform runs for strings from length 1 to longest
constituent in corpus

⇒ High error detection precision for both POS and syntactic
annotation

6 / 17



Detecting Errors in
Semantic

Annotation

Introduction &
Motivation

Background

Detecting semantic
annotation errors
Argument labeling variation

Argument identification
variation

Heuristics for disambiguating
strings

Evaluation
Results

Insights

Summary & Outlook

References

Error detection for syntactic annotation
Dickinson and Meurers (2003b)

For syntactic annotation, decompose variation nucleus
detection into series of runs for all relevant string lengths

I one-to-one mapping: string→
syntactic category label
(or special label NIL=non-constituent)

I perform runs for strings from length 1 to longest
constituent in corpus

⇒ High error detection precision for both POS and syntactic
annotation

6 / 17



Detecting Errors in
Semantic

Annotation

Introduction &
Motivation

Background

Detecting semantic
annotation errors
Argument labeling variation

Argument identification
variation

Heuristics for disambiguating
strings

Evaluation
Results

Insights

Summary & Outlook

References

Error detection for syntactic annotation
Dickinson and Meurers (2003b)

For syntactic annotation, decompose variation nucleus
detection into series of runs for all relevant string lengths

I one-to-one mapping: string→
syntactic category label
(or special label NIL=non-constituent)

I perform runs for strings from length 1 to longest
constituent in corpus

⇒ High error detection precision for both POS and syntactic
annotation

6 / 17



Detecting Errors in
Semantic

Annotation

Introduction &
Motivation

Background

Detecting semantic
annotation errors
Argument labeling variation

Argument identification
variation

Heuristics for disambiguating
strings

Evaluation
Results

Insights

Summary & Outlook

References

Error detection for syntactic annotation
Dickinson and Meurers (2003b)

For syntactic annotation, decompose variation nucleus
detection into series of runs for all relevant string lengths

I one-to-one mapping: string→
syntactic category label
(or special label NIL=non-constituent)

I perform runs for strings from length 1 to longest
constituent in corpus

⇒ High error detection precision for both POS and syntactic
annotation

6 / 17



Detecting Errors in
Semantic

Annotation

Introduction &
Motivation

Background

Detecting semantic
annotation errors
Argument labeling variation

Argument identification
variation

Heuristics for disambiguating
strings

Evaluation
Results

Insights

Summary & Outlook

References

Detecting semantic annotation errors

Method relies on single mapping between text and
annotation, but semantic annotation is non-uniform:

(2) [Arg1 lending practices] vary/vary.01 [Arg2−EXT widely]
[ArgM−MNR by location]

1. the verb sense

2. the span of each argument

3. argument label names

Split predicate-argument & verb sense annotation (cf.
semantic role labeling, Morante and van den Bosch 2007)
I We focus on argument identification (2) & labeling (3),

as these are generally determined by local context
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Argument labeling variation

We can view annotation as multiple pairwise relations
between a verb & a single argument

I While the various arguments are not completely
independent, they often have no bearing on each other

I The manner adverbial by location above, for example,
does not affect the annotation of lending practices

We define a nucleus as consisting of verb & single argument
I e.g., nuclei for previous sentence: lending practices

vary, vary widely, and vary by location
I Semantic annotation involves potentially discontinuous

elements (e.g., vary by location)
I use variation n-gram algorithm developed for

discontinuous syntactic constituency annotation
(Dickinson and Meurers 2005a)
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Defining a nucleus

Question: What is the label of a nucleus?

I The argument label, e.g., Arg0?
I Not sufficient: could have the same label, but identify

arguments differently
I Include position of verb in the nucleus

I e.g., the label of the nucleus vary widely is ArgM-MNR-0

Can now find errors in argument labeling (e.g., Arg0 vs.
Arg1), and in verb identification
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Argument identification variation

To find where an argument is unidentified or covers a
different stretch of comparable text:
I assign the label NIL to a string not labeled as an

argument (cf. Dickinson and Meurers 2005a)

(3) a. [Arg1 net income in its first half] rose 59 %

b. [Arg1 net income] in its first half rose 8.9 %

net income in its first half rose:
I In (3a), assigned label Arg1-6
I In (3b), assigned label NIL

NB: We also recode phrasal verbs as PV relations, to
identify variation in phrasal verb identification.
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Heuristics for disambiguating strings

Need context to find inconsistent nuclei. Some options:

I Require no identical context of nuclei
→ this lack of heuristic gives many false positives

I Require one word of identical context around every
word in nucleus (Dickinson and Meurers 2005a)
→ this “shortest non-fringe” heuristic is very strict

We explore another heuristic, in order to increase recall:
I The argument context heuristic requires context only

around the argument
I Two main ways that something can be erroneous

I an error in the labeling (or non-labeling) of the argument
I an error in the identification of the argument
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→ this lack of heuristic gives many false positives

I Require one word of identical context around every
word in nucleus (Dickinson and Meurers 2005a)
→ this “shortest non-fringe” heuristic is very strict

We explore another heuristic, in order to increase recall:
I The argument context heuristic requires context only

around the argument
I Two main ways that something can be erroneous

I an error in the labeling (or non-labeling) of the argument
I an error in the identification of the argument

11 / 17



Detecting Errors in
Semantic

Annotation

Introduction &
Motivation

Background

Detecting semantic
annotation errors
Argument labeling variation

Argument identification
variation

Heuristics for disambiguating
strings

Evaluation
Results

Insights

Summary & Outlook

References

Argument context vs. Verb context

I For argument identification, context matters:
I In (4a), officials has no modifier
I In (4b) officials has a modifier

(4) a. Finnair would receive SAS shares valued * at
the same amount , [Arg0 officials] said 0 *T* .

b. ... [Arg0 government officials] said ...

I For verbs, context seems less critical:
I substantially reduce does not depend on what follows

(5) a. That could [Arg2−MNR substantially] reduce the
value of the television assets .

b. the proposed acquisition could [ArgM−MNR

substantially] reduce competition ...
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Results

We use PropBank as a case study for error detection

Without null element nuclei (cf. Dickinson and Meurers
2003b), we find 43,825 variation nuclei
I 369 shortest non-fringe variation nuclei
I 947 variation nuclei with argument context

I 835 cases involve argument identification variation, i.e.,
variation with NIL

I 127 feature variation between labels

From this set of 947 variations, we sampled 100 cases
I 69% point to inconsistencies, or errors

Argument context heuristic successfully increases error
detection recall, using only very simple information
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POS & Syntactic errors

Overwhelming number of inconsistencies arise from
lower-layer annotation errors propagating to PropBank

I 42% (29/69) of inconsistencies due to POS errors, as
only verbs are annotated in PropBank

(6) a. coming/VBG [Arg1 months] ,

b. coming/JJ months ,

I 19% (13/69) of inconsistencies due to syntactic errors

(7) a. The following ... are tentatively scheduled *
[Arg2−for [PP for sale]] this week

b. The following ... are tentatively scheduled *
[Arg2−for [PP for [NP sale this week]]]

I Complements inconsistency detection between
syntactic & semantic layers (Babko-Malaya et al. 2006)
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Variation in the verb

Also can turn up variation in identifying the verb:

(8) a. the dollar ’s [ArgM−MNR continued] strengthening
reduced world-wide sales growth ...

b. the dollar ’s continued [Arg1 strengthening] reduced
world-wide sales growth ...

Only example we found, occurring for the same tokens

I Assuming only one element is the head, these cases
highlight non-traditional aspects of annotation scheme
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Limitations

I Some verbs are ambiguous in whether they take
arguments and what type of arguments they take

(9) a. [Arg1 Analysts] had mixed responses

b. [Arg1 Analysts] had expected Consolidated to
post a slim profit ...

I Much argument identification ambiguity rooted in
difficulties resolving syntactic ambiguity

(10) a. seeking [Arg1 a buyer] [PP for several months]

b. seeking [Arg1 a buyer for only its shares]

I Some argument relations depend upon the sense of the
verb, which depends upon other arguments of verb

(11) a. [Arg0 he] will return Kidder to prominence
b. [Arg1 he] will return to his old bench
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Summary and Outlook

Summary:
I Explored applying the variation n-gram error detection

method to semantic annotation
I Defined appropriate units of comparison
I Relaxed the context definition, using the argument

context heuristic

I Found lower layer errors to be primary problem

Outlook:
I Test on additional corpora with potentially more

fine-grained labels, e.g., FrameNet
I Increase recall further (cf. Boyd et al. 2007)
I Explore using only heads of arguments for determining

label, to sidestep ambiguous argument identification
I Such a more general representation potentially more

useful for identifying variation in sense annotation
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