
Induction of Treebank-Aligned
Lexical Resources

LREC 2008
Tejaswini Deoskar, Mats Rooth

Department of Linguistics

Cornell University

Induction of Treebank-Aligned Lexical Resources – p. 1/29



Overview

• Goal: Induction of probabilistic treebank-aligned lexical
resources.

• Treebank-Aligned Lexicon: a systematic correspondence between
features of a probabilistic lexicon and structural annotation in a
treebank.

• Features:
♦ complex subcategorization frames for verbs or nouns.
♦ attachment preference of adverbs
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Overview

• Treebank PCFG and lexicon.
♦ Unlexicalised Treebank PCFG : Clear division between

grammar and lexicon.
♦ Good performance (Klein and Manning, 2003)

• Large-scale lexicon: Unsupervised acquisition from unlabeled
data.
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Why another Treebank PCFG?

• PCFGs built from Treebanks are reduced representations.
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Why another Treebank PCFG?

• PCFGs built from Treebanks are reduced representations.
♦ Exports which played a key role in

fueling growth over the last two years
seem to have stalled.

• More expressive formalisms can represent these (LFG, HPSG,
TAG, CCG, Minimalist grammars)

• A sophisticated PCFG that captures the same phenomena as
more expressive formalisms.
♦ Linguistic theory neutral.
♦ Focus on commonly observed phenomenon.
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Treebank Transformation Framework

• Treebank Transformation : Johnson (1999), Klein and Manning
(2003), etc.

• Training of PCFG on transformed treebank.
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Treebank Transformation Framework

• Treebank Transformation : Johnson (1999), Klein and Manning
(2003), etc.

• Training of PCFG on transformed treebank.

• Methodology for transformation based on addition of
linguistically motivated features, and feature-constraint solving.

• Database of Penn Treebank trees annotated with linguistic
features as a resource.

• Components usable for transforming existing PTB-style
treebanks, and building accurate PCFGs from them.
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Feature Constraint Framework

• Bare-bones CFG extracted from Penn Treebank.

• A feature-constraint grammar is built by adding constraints on
CF rules (YAP, Schmid (2000)).

• Each treebank tree converted into a trivial context-free shared
forest.

• Constraints in the shared forest solved by YAP constraint
solver.
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Adding Constraints

Features on auxiliary verbs:
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Relative Clause

..that has been seen.
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Verbal Subcategorization Features

VP → VBD +EI-NP+ S

Induction of Treebank-Aligned Lexical Resources – p. 9/29



Verbal Subcategorization Features

VP → VBD +EI-NP+ S

VP{ Vform = ns;} → VBD { Val = ns;} +EI-NP+ S { }

Induction of Treebank-Aligned Lexical Resources – p. 9/29



Verbal Subcategorization Features

VP → VBD +EI-NP+ S

VP{ Vform = ns;} → VBD { Val = ns;} +EI-NP+ S { }

VP{ Vform = ns;} → VBD { Val=ns;Sbj =x; Vsel =vf; }
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Verbal Subcategorization Features

VP → VBD +EI-NP+ S

VP{ Vform = ns;} → VBD { Val = ns;} +EI-NP+ S { }

VP{ Vform = ns;} → VBD { Val=ns;Sbj =x; Vsel =vf; }

+EI-NP+

S { Sbj=x; Vform = vf; }

VP{Vform = ns; Slash =sl;} → VBD {Val=ns; Sbj=x; Vsel=vf;

Prep=-; Prtcl=-;}

+EI-NP+

S {Sbj=x; Vform=vf; Slash=sl;}
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Verbal Subcategorization

Structural information is projected onto lexical item: verbs,
adverbs, nouns.
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A feature-structure Treebank Tree

The product-design project he heads is
scrapped
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Treebank PCFG

• Frequencies collected from feature-annotated treebank
database.

• Rule frequency table and frequency lexicon that can be used by
a probabilistic parser.
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Treebank grammar and lexicon

29092.0 ROOT → S.fin.-.-.root

14134.0 S.fin.-.-.- → NP-SBJ.nvd.base.-.-.-VP.fin.-.-

13057.0 NP-SBJ.nvd.base.-.-.- → PRP

13050.0 PP.nvd.of.np → IN.of NP.nvd.base.-.-.-.-

tried VBD.s.e.to.- 32.0VBN.s.e.to.- 11.0VBN.n.-.-.- 5.0

VBD.z.-.-.- 1.0VBD.n.-.-.- 1.0VBD.s.e.g.- 1.0

VBN.z.-.-.- 1.0

admired VBD.n.-.- 1.0

admit VB.z.-.- 1.0VB.n.-.- 1.0VB.b.-.- 3.0

VBP.z.-.- 1.0VBP.p.-.- 1.0VBP.b.-.- 2.0

admonishing VBG.s.-.to 1.0
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Treebank PCFG

• PCFG of variable granularity, based on attributes incorporated
into the PCFG symbols.

PTB No Prep. Prep.

Sec 23 Prepositions on verbs on nouns

Labeled Recall 86.5 86.11 85.98

Labeled Precision 86.7 86.50 86.3

Labeled F-score 86.6 86.31 86.14

Number of features on all categories: 19
Some structural features, mostly linguistic features.
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Scarcity of lexical data

In training sections of Penn Treebank,∼45000 sentences

• Total verb types:∼ 7450, tokens∼125000.

• ∼ 2830 verb types with occurrence freq 1:38%of all types,
2.37%of all tokens.

admired VBD.n.-.- 1.0

admit VB.z.-.- 1.0VB.n.-.- 1.0VB.b.-.- 3.0

VBP.z.-.- 1.0VBP.p.-.- 1.0VBP.b.-.- 2.0

admonishing VBG.s.-.to 1.0

adopted VBN.aux.e.fin 2.0VBD.n.-.- 15.0VBD.np.-.- 1.0

VBN.n.-.- 16.0
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Unsupervised Estimation

• Inside-outside estimation over an unlabeled corpus.
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Unsupervised Estimation

• Inside-outside estimation over an unlabeled corpus.

• Treebank PCFG as starting model.

• Focus on learning lexical parameters.
♦ Lexical parameters obtained from re-estimated model and

treebank.
♦ Syntactic parameters obtained from treebank PCFG.

Induction of Treebank-Aligned Lexical Resources – p. 16/29



Inside-outside Re-estimation
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Iterative Re-estimation
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Lexical Transformation

• Constraint on re-estimated lexicons.

• Ensures that re-estimated lexicons are similar to treebank
lexicon.

• Linear interpolation of the treebank and the re-estimated
lexicons.

di(w, τ, ι) = (1 − λ)t(w, τ, ι) + λc̄i(w, τ, ι)(1)

where
w, τ , ι word, POS tag, incorporation sequence

Scale Corpus frequencies:
c̄i(w, τ, ι) = t(τ,ι)

ci(τ,ι)
ci(w, τ, ι)
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Initial Model

• Non-novel words
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Initial Model
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specific distribution.
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Initial Model

• Non-novel words
♦ word-specific treebank distribution is maintained, but small

frequency given to all possible incorporations.

• Novel words:
♦ Average treebank distribution for that tag.
♦ The re-estimation procedure is expected to acquire a word

specific distribution.

• Words in the corpus (both novel and non-novel) get all possible
incorporation values for the POS tag.
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Initial Model

• The unlabelled corpus is tagged with POS tags in Penn
Treebank style (Treetagger) and tokens of words and POS tags
are tabulated to obtain a frequency tableg(w, τ).

• Each frequencyg(w, τ) is split among possible incorporationsι

in proportion to a ratio of marginal frequencies int0

g(w, τ, ι) =
t0(τ, ι)

t0(τ)
g(w, τ)(2)

The tagged corpus is merged with the treebank corpus

t(w, τ, ι) = (1 − λτ,ι)t0(w, τ, ι) + λτ,ιg(w, τ, ι)(3)
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Experimental Setup

• Re-estimation: 4 Million words of unannotated Wall Street
Journal Corpus (year 1994), sentence-length< 25 words

• Each iteration results in a corresponding model.
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Experimental Setup

• Re-estimation: 4 Million words of unannotated Wall Street
Journal Corpus (year 1994), sentence-length< 25 words

• Each iteration results in a corresponding model.

Evaluation: Acquiring subcategorization frames of novel verbs.

• 1360 tokens of 117 verb types: all occurrences heldout from
treebank training data.

• Tokens of test verbs : preterminal (tag + incorporation
sequence) extracted from Viterbi parse.

• Gold standard is the transformed treebank.
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Subcat Frames

• Fine-grained subcategorization frames (81 subcategories)

• Intransitive, transitive, ditransitive, clausal, prepositional, etc.

• For clausal frames, the type and subject of clause.
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Subcat. error % for Novel verbs

Iterationi Interleaved ProcedureStandard Procedure

t0 33.36 33.36

1 *24.40 28.69

2 *23.45 25.56

3 *23.05 27.86

4 *22.89 28.41

5 *22.81 -

6 22.83 -

10.55%absolute improvement and31.6%error reduction
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Evaluation

Overall Error reduction: 8.97% (16.8% overall error)
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Evaluation

Overall Error reduction: 8.97% (16.8% overall error)

Incorporating Prepositions into frame

Iterationi Subcat Error Subcat Error

(No Prep.) (Prep. on verbs)

t0 33.47 34.98

1 24.40 *25.52

2 23.45 *25.04
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Conclusions

• Framework for adding features to Treebank PCFG: features of
interest can be added.

• PCFG formalism simple, and estimation methods well defined.

• Using a Treebank-aligned grammar makes standard and
reliable evaluations of re-estimated grammars possible.

• Lexical information induced for novel items; also useful for
low frequency items.
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Noun Valence

• Three valences s, sbar, p

• NN and NNS (common nouns)

Iterationi Noun valence Error

0 23.13

1 *20.35 (p< 0.0001)

2 21.49

Table 1: Noun Valence errors, with 4M words of training

data.
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Labeled Bracketing Evaluation

Iterationi Interleaved ProcedureStandard Procedure

f-score f-score

t0 86.55 86.55

1 86.83 86.96

2 *86.93 85.93

3 *86.92 84.87

4 *86.92 83.77

5 86.92 -

6 86.86 -
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Larger Training Data

Iterationi Subcat Error Subcat Error

4M words 8 M words

0 33.47 33.47

1 24.40 24.64

2 23.45 *22.26(> 95% conf.)

3 23.05 22.34

4 22.89 23.05

5 22.81 -

6 22.83 -
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