Causal Relation Extraction

Eduardo Blanco, Nuria Castell, Dan Moldovan

HLT Research Institute, TALP Research Centre, Lymba Corporation

LREC 2008, Marrakech

Introduction

The automatic detection and extraction of Semantic Relations is a crucial step to improve the performance of several NLP applications (QA, IE, ...)

Example:

- □ Why do babies cry?
- Hunger is the most common cause of crying in a young baby.

This work is focused on Causal Relations

Causal Relations

- Relation between two events: cause and effect
 - **cause** is the **producer** of the effect
 - effect is the result of the cause
- CAUSATION and other Semantic Relations
 - □ INFLUENCE(e1, e2) if e1 affects the manner or intensity of e2, but not the occurrence.
 - Targeting skin cancer relatives improves screening
 - CAUSATION(e1, e2) => TMP_BEFORE(e1, e2)

Causal Relations

- Three subtypes:
 - CONDITION if the cause is hypothetical
 - If he were handsome, he would be married
 - CONSEQUENCE if the effect is indirect or unintended
 - His resignation caused regret among all classes
 - REASON if it is a causation of decision, belief, feeling or acting
 - I went because I thought it would be interesting

Causal Relations

Encoding

- Marked or unmarked
 - [marked] I bought it because I read a good review
 - □ [unmarked] *Be careful. It's unstable*

Ambiguity

- because always signals a causation
- since sometimes signals a causation

Explicit or implicit

- [explicit] She was thrown out of the hotel after she had run naked through its halls
- □ [implicit] *John killed Bob*

Syntactic patterns

- Based on the use of syntactic patterns that may encode causation. We redefine the problem as a binary classification: causation or ¬causation.
- Manual classification of 1270 sentences from TREC5 corpus, 170 causations found
- Manual clustering of the causations into syntactic patterns:

no.	Pattern	Productivity	Example
1	[VP rel C], [rel C, VP]	63.75%	We didn't go because it was raining
2	[NP VP NP]	13.75%	The speech sparked a controversy
3	[VP rel NP], [rel NP, VP]	8.12%	More than a million Americans die of heart attack every year
4	other	14.38%	The lighting caused the workers to fall

Syntactic patterns

- Since pattern 1 comprises more than half of the causations found, we focused this pattern
- The four most common relators encoding causation are after, as, because and since
- Example:
 - \square He, too, [was subjected]_{VP} to anonymous calls [after]_{rel} [he [scheduled]_{VPc} the election]_C
- An instance not always encodes a causation:
 - □ The executions took place a few hours **after** they announced their conviction
 - □ It has a fixed time, **as** collectors well known
 - □ It was the first time any of us had laughed **since** the morning began

- We found 1068 instances in the SemCor 2.1 copus, 517 of which encoded a causation (i.e. the baseline is 0.516)
- Statistics depending on the relator:

Relator	Occurences encoding causation	Causations signaled	
after	15.35 %	6.85 %	
as	11.21 %	7.34 %	
because	98.43 %	73.39 %	
since	49.61 %	12.52 %	

- relator = {after, as, because, since}
- relatorLeftModification = {POS tag}
- relatorRightModification = {POS tag}
- semanticClassVCause = {WordNet 2.1 sense number}
- verbCauseIsPotentiallyCausal = {yes, no}
 - □ A verb is potentially causal if its gloss or any of its subsumers' glosses contains the words *change* or *cause to*
- semanticClassVEffect = {WordNet 2.1 sense number}
- verbEffectIsPotentiallyCausal = {yes, no}

Features

- For both VP, verb tense = {present, past, modal, perfective, progressive, passive}
- lexicalClue = {yes, no}
 - \Box yes if there is a ',', 'and' or another relator between the relator and VP_c
 - He went as a tourist and ended up living there
 - City planners do not always use this boundary as effectively as they might

Feature Selection

- relator = {after, as, because, since}
- relatorLeftModification = {POS tag}
- relatorRightModification = {POS tag}
- semanticClassVCause = {WordNet 2.1 sense number}
- verbCauselsPotentiallyCausal = {yes, no}
- semanticClassVEffect = {WordNet 2.1 sense number}
- verbEffectIsPotentiallyCausal = {yes, no}
- For both VP, verb tense = {present, past, modal, perfective, progressive, passive}
- lexicalClue = {yes, no}

Results

 As a Machine Learning algorithm, we used Bagging with C4.5 decision trees

Results:

Class	Precision	Recall	F-Measure
causation	0.955	0.842	0.895
¬causation	0.869	0.964	0.914

Error Analysis

- Most of the causation are signaled by because and since (85.91%)
- The model learned is only able to classify the instances encoded by because and since
 - ☐ The results are good even though we discard all the causations signaled by *after* and *as*
- We can find examples belonging to different classes and with exactly the same values except for the semantic ones:
 - \square [causation]: They [arrested]_{VP} him after [he [assaulted]_{VP} them]_C
 - \square [¬causation]: He [left]_{VP} after [she [had left]_{VPc}]_C

Error Analysis

- Paraphrasing doesn't seem to be a solution:
 - □ He left after she had left
 - □ He left because she had left
- Results obtained with the examples signaled by since:

Class	Precision	Recall	F-Measure
causation	0.957	0.846	0.898
¬causation	0.878	0.966	0.920

Conclusions and Further Work

- System for the detection of marked and explicit causations between a VP and a subordinate clause
- Simple and high performance
- Combine CAUSATION and other semantic relations:
 - □ CAUSATION(e1,e2), SUBSUMED_BY(e3,e1)=>CAUSATION(e3,e2)
 - CAUSATION(e1,e2), ENTAIL(e2,e3)=>CAUSATION(e1,e3)
- Causal chains and intricate Causal Relations
 - It is lined primarily by industrial developments and concrete-block walls because the constant traffic and emissions do not make it an attractive neighborhood

Questions?