
Towards Enhanced Interoperability
for Large HLT Systems:

UIMA for NLP

Foreword

The development and incremental modification of large and complex HLT systems has long been
an art rather than a workflow guided by software engineering practices and principles. Therefore, in
the past, interoperability of system components was hard to achieve, exchange of different modules
a pain-staking task due to the low level of abstraction of specifications which described interfaces to
connect with each other, as well as data and control flow inter-dependencies between various
modules.

UIMA, the Unstructured Information Management Architecture, is an open-platform middle-ware
for dealing with unstructured information (text, speech, audio, video data), originally launched by
IBM. In the meantime, the Apache Software Foundation has established an incubator project for
developing UIMA-based software (http://incubator.apache.org/uima/). In addition, the Organization
for the Advancement of Structured Information Standards (OASIS) has installed a Technical
Committee to standardize the UIMA specification. Accordingly, an increasing number of NLP
research institutes as well as HLT companies all over the world are basing their software
development efforts on UIMA specifications to adhere to emerging standards.

As far as NLP proper is concerned, Carnegie Mellon University's Language Technology Institute is
hosting an UIMA Component Repository web site (http://uima.lti.cs.cmu.edu), where developers
can post information about their analytics components and anyone can find out more about free and
commercially available UIMA-compliant analytics. Additionally, free analytic tools that can work
with UIMA include those from the General Architecture for Text Engineering (GATE -
http://gate.ac.uk/) and OpenNLP (http://opennlp.sourceforge.net/) communities, as well as Jena
University's Language & Information Engineering (JULIE) Lab (http://www.julielab.de).
Commercial analytics are available from IBM, as well as from other software vendors such as
Attensity, ClearForest, Temis and Nstein.

We considered LREC to be a particularly apt conference platform for the growing UIMA-inspired
NLP community in order to meet, to exchange ideas and experience, as well as to think about future
plans related to the UIMA framework. Much of these expectations are reflected in the proceedings
of the first international workshop fully dedicated to UIMA topics – “Towards Enhanced
Interoperability for Large HLT Systems: UIMA for NLP” held in conjunction with LREC 2008 in
Marrakech, Morocco, May 31, 2008. From the Call for Papers, we received twelve submissions out
of which five were selected as long papers and another five as short papers. The Organisation
Committee of the workshop wants to thank the members of the Program Committee who reviewed
the papers (each of which received three reviews, non-blind). Especially warm thanks go to Katrin
Tomanek and Ekaterina Buyko from the JULIE Lab in Jena for their invaluable contributions to
setting up and keeping the workshop’s web page up to date, managing much of the communication
with authors and PC members and, finally, assembling the final proceedings. Great job!

The members of the Organisation Committee,

Udo Hahn, Thilo Götz, Eric W. Brown, Hamish Cunningham, Eric Nyberg April 2008

 i

Workshop Programme

Session Time Title

Opening 09:00 – 09:15

Welcome and Opening Session
U. Hahn (JULIE Lab)

Invited 09:15 – 10:15

TBA

10:15 – 10:45

Coffee Break and Poster Session

10:45 – 11:10

ClearTK: A UIMA Toolkit for Statistical Natural Language
Processing
P. V. Ogren, P. G. Wetzler and S. J. Bethard
 Component

Repositories

11:10 – 11:35

An Overview of JCoRe, the JULIE Lab UIMA Component
Repository
U. Hahn, E. Buyko, R. Landefeld, M. Mühlhausen, M. Poprat, K.
Tomanek and J. Wermter

11:35 – 11:55

Integrating a Natural Language Message Pre-Processor with
UIMA
E. Nyberg, E. Riebling, R. C. Wang and R. Frederking

11:55 – 12:15

UIMA for NLP based Researchers’ Workplaces in Medical
Domains
M. Kunze and D. Rösner

Systems I

12:15 – 12:35

UIMA-based Clinical Information Extraction System
G. K. Savova, K. Kipper-Schuler, J. D. Buntrock and C. G. Chute

12:35 – 14:00

Lunch

 ii

14:00 – 14:25

CFE – a system for testing, evaluation and machine learning of
UIMA based applications
I. Sominsky, A. Coden and M. Tanenblatt

14:25 – 14:50

Tools for UIMA Teaching and Development
M. Kunze and D. Rösner

14:50 – 15:15

Shallow, Deep and Hybrid Processing with UIMA and Heart of Gold
U. Schäfer

Diverse

 15:15 – 15:45

Coffee Break and Poster Session

15:45 – 16:05

Experiences with UIMA for online information extraction at
Thomson Corporation
T. Heinze, M. Light and F. Schilder
 Systems II

16:05 – 16:25

Flexible UIMA Components for Information Retrieval Research
C. Müller, T. Zesch, M.-C. Müller, D. Bernhard, K. Ignatova, I.
Gurevych and M. Mühlhäuser

Closing 16:25 – 17:00

Discussion and Closing Session

 iii

Workshop Organisers

Udo Hahn , Jena University, Germany
Thilo Götz, IBM Germany, Germany
Eric W. Brown, IBM T.J. Watson Research Center, USA
Hamish Cunningham, University of Sheffield, UK
Eric Nyberg, Carnegie-Mellon University, USA

Workshop Programme Committee

Eric W. Brown, IBM T.J. Watson Research Center, USA
Ekaterina Buyko, Jena University, Germany
Hamish Cunningham, University of Sheffield, UK
Dave Ferrucci, IBM T.J. Watson Research Center, USA
Stefan Geissler, TEMIS Deutschland, Germany
Thilo Götz, IBM Germany, Germany
Iryna Gurevych, TU Darmstadt, Germany
Udo Hahn, Jena University, Germany
Nancy Ide, Vassar College, USA
Eric Nyberg, Carnegie-Mellon University, USA
Sameer Pradhan, BBN, USA
Dietmar Roesner, University of Magdeburg, Germany
Graham Wilcock, University of Helsinki, Finland

 iv

Table of Contents

An Overview of JCoRe, the JULIE Lab UIMA Component
U. Hahn, E. Buyko, R. Landefeld, M. Mühlhausen, M. Poprat, K. Tomanek and
J. Wermter 1

Experiences with UIMA for online information extraction at Thomson Corporation
T. Heinze, M. Light and F. Schilder 8

Tools for UIMA Teaching and Development
M. Kunze and D. Rösner 12

UIMA for NLP based Researchers’ Workplaces in Medical Domains
M. Kunze and D. Rösner 20

Flexible UIMA Components for Information Retrieval Research
C. Müller, T. Zesch, M.-C. Müller, D. Bernhard, K. Ignatova, I. Gurevych and
M. Mühlhäuser 24

Integrating a Natural Language Message Pre-Processor with UIMA
E. Nyberg, E. Riebling, R. C. Wang and R. Frederking 28

ClearTK: A UIMA Toolkit for Statistical Natural Language Processing
P. V. Ogren, P. G. Wetzler and S. J. Bethard 32

UIMA-based Clinical Information Extraction System
G. K. Savova, K. Kipper-Schuler, J. D. Buntrock and C. G. Chute 39

Shallow, Deep and Hybrid Processing with UIMA and Heart of Gold
U. Schäfer 43

CFE – a system for testing, evaluation and machine learning of UIMA based applications
I. Sominsky, A. Coden and M. Tanenblatt 51

 v

 vi

Author Index

Bernhard, Delphine, 24
Bethard, Steven J., 32
Buntrock, James D., 39
Buyko, Ekaterina, 1
Chute, Christopher G., 39
Coden, Anni, 51
Frederking, Robert, 28
Gurevych, Iryna, 24
Hahn, Udo, 1
Heinze, Terry, 8
Ignatova, Kateryna, 24
Kipper-Schuler, Karin, 39
Kunze, Manuela, 12, 20
Landefeld, Rico, 1
Light, Marc, 8
Mühlhausen, Matthias, 1
Mühlhäuser, Max, 24
Müller, Christof, 24
Müller, Mark-Christoph, 24
Nyberg, Eric, 28
Ogren, Philip V., 32
Poprat, Michael, 1
Riebling, Eric, 28
Rösner, Dietmar, 12, 20
Savova, Guergana K., 39
Schäfer, Ulrich, 43
Schilder, Frank, 8
Sominsky, Igor, 51
Tanenblatt, Michael, 51
Tomanek, Katrin, 1
Wang, Richard C., 28
Wermter, Joachim, 1
Wetzler, Philipp G., 32
Zesch, Torsten, 24

An Overview of JCORE, the JULIE Lab UIMA Component Repository

U. Hahn, E. Buyko, R. Landefeld, M. Mühlhausen, M. Poprat, K. Tomanek, J. Wermter

Jena University Language & Information Engineering (JULIE) Lab
Friedrich-Schiller-Universiẗat Jena

Fürstengraben 30, D-07743 Jena, Germany
{hahn|buyko|landefeld|muehlhausen|poprat|tomanek|wermter}@coling-uni-jena.de

Abstract
We introduce JCORE, a full-fledged UIMA -compliant component repository for complex text analytics developed at the Jena University
Language & Information Engineering (JULIE) Lab. JCORE is based on a comprehensive type system and a variety of document readers,
analysis engines, and CAS consumers. We survey these components and then turn to a discussion of lessons we learnt, with particular
emphasis on managing the underlying type system. We briefly sketch two complex NLP applications which can easily be built from the
components contained in JCORE.

1. Introduction
During the past years, we have witnessed an unmatched
growth of language processing modules such as tokeniz-
ers, stemmers, chunkers, parsers, etc. This software was
usually created in a stand-alone manner, locally at the im-
plementator’s lab, and sometimes made publicly available
on the programmer’s personal or institutional web pages.
In the last couple of years, several repositories have been
set up, including, e.g., those of the Linguistic Data Con-
sortium,1 the Open Language Archives Community,2 the
European Language Resources Association,3 and the Nat-
ural Language Software Registry4. As a common feature,
these repositories just posted software modules but offered
no additional service besides making available the plain re-
sources (i.e., code, with – often fairly limited or even no
– documentation). Hence, reusability was hampered by
various different data exchange formats, let aside depen-
dencies of different programming languages and operating
systems. Any attempt to reuse this software or even cre-
ate composite NLP systems from modules selected from
these repositories created a heavy burden for system de-
velopers to achieve at least a decent level of interoper-
ability. Under these conditions, although substantial col-
lections of code were available, the compilation of NLP
pipelines based on such components was quite inefficient
and time-consuming.
Those Human Language Technologists already involved
in complex system building activities, at that time, ren-
dered rather monolithic and hard-shell pipelines that of-
ten resisted flexible exchange of single, externally devel-
oped components and their easy adaptation. Modification
of these systems’ architecture and basic functionality often
required a major re-design, and, hence, re-programming di-
rectly at the code level.
With the advent of NLP framework architectures this im-
pediment started to be resolved at the design level. GATE

(Cunningham, 2002) and ATLAS (Laprun et al., 2002) were

1http://www.ldc.upenn.edu
2http://linguistlist.org/olac
3http://www.elra.info
4http://registry.dfki.de

among the first ofthosesystems that abstracted away from
nitty-gritty programming details and moved system archi-
tectures to the level of data abstraction. UIMA , the Un-
structured Information Management Architecture, provided
additional abstraction layers, most notably by explicitly re-
quiring a type system which described the underlying data
structures to be specified (Ferrucci and Lally, 2004; Götz
and Suhre, 2004).
Recently, second generation NLP repositories have been
set up such as the one located at Carnegie Mellon Uni-
versity5 or the JULIE Component Repository6 (JCORE),
which we will describe in more depth in the remainder of
this paper. JCORE offers a large variety of NLP compo-
nents for diverse NLP tasks which may range from sen-
tence splitting, tokenization, via chunking and parsing, to
named entity recognition and relation extraction. At the
heart of JCORE lies a comprehensive common type system
for text analytics. Thus, the components in this repository
can easily and flexibly be assembled into a variety of NLP
applications without the need of any format conversion and
re-programming.
After a brief introduction to UIMA in Section 2., in Section
3., we will describe JCORE, the JULIE Component Repos-
itory, including the type system and the different kinds of
readers, analysis engines, and consumers we currently sup-
ply. After that, in Section 4., we will discuss our experience
with management issues related to the type system, in par-
ticular, dealing with type incompatibility and type system
modifications.

2. UIMA In Brief
UIMA is a software framework and a platform for unstruc-
tured information management solutions. While originally
developed by IBM, UIMA is now an Apache-licensed open
source project. In the following we will shortly describe
the basic concepts of UIMA . For more detailed and tech-
nical information we refer the reader to the Apache UIMA

documentation.7

5http://uima.lti.cs.cmu.edu
6http://www.julielab.de
7http://incubator.apache.org/uima/

documentation.html

1

Figure 1: A schematic representation of an NLP pipeline to process unstructured data with UIM A components (Collection
Readers (CR), Analysis Engines (AE), and Common Analysis Structure (CAS) Consumers). Information that is handed
over and enriched or modified from AE to AE is managed within CAS objects that are based on a type system as their data
model.

UIMA is a data-driven architecture which means that sin-
gle components communicate with each other by exchang-
ing (annotated) data. The integration of components in
the UIMA framework thus requires clear interface defini-
tions with respect to the input and the output data. The
Common Analysis Structure(CAS) is UIMA ’s underlying
object-oriented data structure (Götz and Suhre, 2004). The
CAS represents one single item of unstructured data (e.g. a
single document) and consists of one or moreSofas(sub-
ject of analysis, a view of the data item) with the meta data
added by the single UIMA components. UIMA meta data
objects are so called feature structures which are instances
of UIMA types. These types can be arranged in an inheri-
tance hierarchy and thus constitute atype systemvery sim-
ilar to a class model in the object-oriented programming
paradigm. The type system concept is UIMA ’s key feature
to add structure to an unstructured chunk of data. For text
processing purposes, UIMA comes with a predefined basic
type, the annotation type. This annotation type and all its
sub-types determine the particular annotation schema.

In UIMA , three different types of components are distin-
guished in the processing cycle (see also Figure 1):Col-
lection Readers(CR) have different kinds of (typically un-
structured, i.e., textual, audio or video) data as their input,
textual documents in our case. CRs read this data from
the selected source (files, database, etc.) and make it ac-
cessible for further processing steps. The linguistic pro-
cessing proper of the documents is carried out byAnalysis
Engines(AE), each of which adds annotations according to
different levels of analysis (e.g., POS tags, named entities,
etc.). Finally, these annotation-enriched documents can be
handed over toCAS Consumers(CC), which realize dif-
ferent functional requirements such as data conversion to
specific output formats, search engine index construction,
database feed, Web viewers, etc.

Several components, CRs, AEs, and CCs, can then be as-
sembled intopipelinesto build specific UIMA -based appli-
cations. Although UIMA is designed to be used for any kind
of data, we here consider only textual data as our subject of
analysis.

3. JCORE — JULIE Component Repository
JCORE, the JULIE Component Repository, provides all
components to configure NLP analysis pipelines based on
the UIMA framework presented in the previous section. A
comprehensive annotation type definition is provided as the
backbone of the whole system which allows flexible data
exchange between all components involved. Several collec-
tion readers enable users to access markup and annotations
from other projects within the UIMA framework. A con-
tinuously growing collection of text analytics components
incorporates low-level NLP tasks such as sentence segmen-
tation as well as high-end functionality in terms of relation
extraction. Finally, several consumers are supplied to de-
ploy or export the annotations.
All components of the JCORE are written in Java. The
components are available for download fromhttp://
www.julielab.de/ as PEAR packages8 and contain
compiled classes, the source code, and an example model
for components based on machine learning techniques.
Table 1 gives an overview of the components currently con-
tained in JCORE. In the remainder of this section we briefly
describe the single components. For a more detailed expla-
nation of any component, we refer the reader to the doc-
umentation contained in the PEAR packages and the cited
publications.

3.1. Annotation Language: JCORE’s Type System

The data structure backbone of our component repository
is a comprehensive annotation type system (Hahn et al.,
2007; Buyko and Hahn, 2008), which covers major steps
of NLP processing. It consists of several specification lay-
ers which provide (mostly) genre-, language-, and domain-
independent definitions of the respective annotation types.
When applied in specific scenarios, these generic annota-
tion types might be extended by application-specific ones.
The Document Metalayer comprises annotation types for
bibliographical and content information about a document
– such as author, title, or year of publication. There is an
extension to this layer for the biomedical domain allowing

8PEAR (Processing Engine ARchive) is a UIMA standard for
packaging and automatically deploying components.

2

Component Type Comment Source/Reference

JULIE Type System TS – see Hahn et al. (2007), Buyko and Hahn (2008)
MEDLINE Reader CR – –

ACE Reader CR – –
MUC7 Reader CR – –

JULIE Sentence Segmenter AE ML-based, self-developed see Tomanek et al. (2007)
JULIE Token Segmenter AE ML-based, self-developed see Tomanek et al. (2007)

Simple Sentence Segmenter AE rule-based, wrapper for JTokenizerhttp://www.andy-roberts.net/software/
Simple Tokenizer AE rule-based, wrapper for JTokenizerhttp://www.andy-roberts.net/software/

OPENNLP Sentence Segmenter AE ML-based, wrapper http://opennlp.sourceforge.net/
OPENNLP Token Segmenter AE ML-based, wrapper http://opennlp.sourceforge.net/

Stemmer AE rule-based, wrapper for Porter
stemmer

http://snowball.tartarus.org/

OPENNLP POS Tagger AE ML-based, wrapper http://opennlp.sourceforge.net/
OPENNLP Chunker AE ML-based, wrapper http://opennlp.sourceforge.net/

OPENNLP Constituency Parser AE ML-based, wrapper http://opennlp.sourceforge.net/
MST Dependency Parser AE ML-based, wrapped/modified see McDonald et al. (2005)

Acronym Resolution AE rule-based, reimplementation see Schwartz and Hearst (2003)
JULIE Named Entity Tagger AE ML-based, self-developed –

Gazetteer AE dictionary, wrapper for Lingpipe’s
list look-up tool

http://alias-i.com/lingpipe/

JULIE Coordination Resolution AE rule-/ML-based, self-developed see Buyko et al. (2007)
Relation Extractor AE ML-based, self-developed –

Lucene Indexer CC – –
CAS2DB Consumer CC – –

CAS2IOB Consumer CC – –

Table 1: Overview of Components in JCORE, the JULIE Component Repository

to store the meta information exclusively provided for doc-
uments when retrieved from PUBMED,9 such as MESH10

terms, chemicals, and genes referred to in a document.
To incorporate information about the document structure,
such as formal zones typically used in scientific texts (e.g.,
sections and paragraphs), theDocument Structure & Style
layer offers dedicated types. The types from theMorpho-
Syntax & Syntaxlayer refer to linguistic annotations rang-
ing from sentence up to parse annotations. Finally, theSe-
manticslayer offers types for semantic annotations, includ-
ing entities, relations, and events.

3.2. Preprocessing: Collection Readers

Currently, we provide three different exemplars of collec-
tion readers (see Table 1). Two of them import semanti-
cally annotated newswire corpora,viz. the ACE 2005 (Dod-
dington et al., 2004) and the MUC-7 (Hirschman and Chin-
chor, 1998) corpora, and convert the given annotations to
the CAS representation. From the annotated ACE corpus,
the ACE Readerextracts named entities (persons, organi-
zations, values, etc.), coreferences, relations, and events.
From the MUC-7 data set, the MUC7 Readerextracts
named entities and coreferences (event annotations are in-
tentionally ignored). For both corpora, our type system
has been extended with the respective types (Buyko and

9PUBMED (http://www.ncbi.nlm.nih.gov/) is a
bibliographicaldatabase which includes over 17 million citations
from MEDLINE and other life science journals for biomedical ar-
ticles.

10Medical Subject Headings (MESH, http://www.nlm.
nih.gov/mesh) is a high-coverage controlled biomedical ter-
minology.

Hahn, 2008). Once, external annotations are read into the
UIMA framework, this allows for further processing of the
documents making immediate use of this annotated data.
Moreover, such annotations might serve as input material
for training and testing NLP components, such as named
entities recognizers, coreference resolvers, and relation ex-
tractors.
The MEDLINE Readerparses MEDLINE records that come
in an XML encoded format. They not only contain the plain
text but also various meta data such as information about
the authors and their affiliations, the publication date, infor-
mation about the journal the article appeared in, manually
assigned descriptors (mainly MESH terms), etc. In sum-
mary, all our readers extract the originally encoded (meta)
data and map this information to the types and features of
JCORE’s type system.

3.3. Text Processing: Analysis Engines
JCORE contains text analytics components for different
processing levels including linguistic preprocessing and se-
mantic processing up to relation extraction at the time of
this writing.
Depending on the task to be served, NLP component de-
velopers may either choose rule-based approaches or make
use of machine learning (ML) methods (Hahn and Wermter,
2006). While, e.g., for the recognition of city names a sim-
ple gazetteer look-up might be sufficient, entity recogni-
tion in the biomedical domain is usually better performed
by ML-based approaches due to complex and inconsis-
tent naming conventions, ambiguities, etc. (Park and Kim,
2006).
JCORE contains both rule-based and ML-based compo-
nents for language processing. For the ML-based compo-

3

nents, we also provide some pre-trained models for down-
load in case training material was freely available. Of
course, these components can be retrained for usage in dif-
ferent domains or with different semantic types given the
respective training material.
While some of our text processing components are entirely
self-developed, others are based on already existing third
party libraries or tools for which we wrotewrappersso that
they could be used as a component inside the UIMA frame-
work. Mostly, wrapping only meant to call the respective
methods from within the analysis engine class and to con-
vert and write the tool’s output to the CAS. In some cases,
however, wrapping required somemodificationsof the orig-
inal tool to let it fit into the UIMA framework.

Linguistic Processing JCORE contains three compo-
nents for both sentence and token segmentation. First,
there are rule-based components which provide an UIMA

wrapper for the JTokenizer,11 a third party package mainly
based on regular expression segmentation. The segmen-
tation rules for these components can be flexibly defined
by the user. Second, there are UIMA wrappers of the seg-
menter tools from the OPENNLP tool suite.12 These are
based on Maximum Entropy (ME) models (Berger et al.,
1996). To address special intricacies of scientific subdo-
mains such as biomedicine we have developed our own
segmentation tools (Tomanek et al., 2007) based on Con-
ditional Random Fields (CRF) (Lafferty et al., 2001) and a
rich set of features.
To handle morphological variation of words (deletion of in-
flection suffixes, in particular) we have created a wrapper
for the Java version of the SNOWBALL stemmers,13 includ-
ing the original Porter stemmer for English and additional
versions for many other languages.
For syntactic analysis, we provide UIMA wrappers for the
POS tagger, the phrase chunker, and the constituency-based
parser from the OPENNLP tool suite. These are also
based on ME models and have proven to work well on sci-
entific documents when retrained on appropriate training
data (Buyko et al., 2006). Further, we have integrated the
MSTPARSER (McDonald et al., 2005), a parser for non-
projective dependency structures, also based on ML meth-
ods. Writing an UIMA wrapper here also meant to slightly
modify the MSTPARSER’s source code so that the model
needs to be loaded only once during the initialization phase.

Semantic Processing For acronym resolution, we reim-
plemented a simple, but well-performing algorithm origi-
nally presented by Schwartz and Hearst (2003): For each
locally introduced acronym (some upper-case letters in
brackets, such as “WHO”), the full form is searched to the
left of this acronym until each letter from the acronym is
found in the proper order of appearance. All occurrences
of an acronym in a document are annotated with the identi-
fied full form.
Our repository comprises two tools for named entity recog-
nition. One is based on Lingpipe’s14 list look-up tool. Pro-

11http://www.andy-roberts.net/software/
12http://opennlp.sourceforge.net/
13http://snowball.tartarus.org/
14http://alias-i.com/lingpipe/

vided with alist of names, these are searched for in the
document. Both exact and approximate matching (based
on weighted edit distance) are possible. Second, we have
developed an entity tagger based on CRFs, which is similar
in spirit to the one proposed by Settles (2004). Given appro-
priate training material, our ML-based entity tagger can be
used for arbitrary domains and entity classes. It comprises
a rich set of features which can be configured according to
the respective scenario. Further, it allows for acronyms be-
ing expanded to their full forms during tagging (given they
were marked before as such) to avoid erroneous tagging es-
pecially of ambiguous acronyms.
The repository also contains a component to resolve ellip-
tical entity mentions in coordinations, such as normalizing
“Mr. and Mrs. Miller” to “Mr. Miller” and“Mrs. Miller”
(Buyko et al., 2007). Our coordination resolver can be con-
figured either for the use of a set of rules considering POS
information only, or for the use of an ML model with a
variety of lexical, morpho-syntactic and even semantic fea-
tures.
Finally, there is a component for relation extraction based
on supervised ML. Here, an ME classifier is applied to de-
termine for any ordered pair of two entities in a document
whether these are in a specific relation. Relation extraction
is currently the top level analysis component as it is based
on the analysis results of many other components including,
e.g., POS tagging, parsing, and entity recognition.

3.4. Postprocessing: CAS Consumers

The processing results of our text analysis components can
be deployed by CAS Consumers. These components con-
stitute an interface to arbitrary applications which use the
UIMA annotations. A consumer that is a default part of
UIMA allows to store the UIMA analysis results in the XMI
(XML Metadata Interchange) format which is an OMG15

standard for exchanging meta data based on XML (Exten-
sible Markup Language). In many scenarios, however, con-
sumers tailored to the specific needs of an application will
be required. We here present three consumers which were
created in the context of different NLP applications and in-
formation extraction research projects.

CAS2IOB Consumer The IOB format (inside, outside,
begin) is a common exchange format for segmentation-
based, non-nesting annotations (e.g., chunking (Ramshaw
and Marcus, 1995)). Many publicly available corpora are
annotated in this format (e.g., for the CONLL 2003 (Tjong
Kim Sang and De Meulder, 2003) or the CONLL 2004
(Carreras and M̀arquez, 2004) shared tasks). Furthermore,
training, testing, and evaluation software that is based on
this format has been developed for several competitions
(e.g., CoNLL) and is widely accepted. TheCAS2IOB
Consumerextracts specified annotations from the CAS
to the IOB format, following simple heuristics to resolve
nested and overlapping annotations (e.g., preference for the
longest annotation).

Lucene Indexer Apache Lucene16 is an open source text
retrieval software which can efficiently manage millions of

15http://www.omg.org/
16http://lucene.apache.org

4

documents. Our Lucene Indexer automatically creates a
Lucene search engine index by mappingthe CAS annota-
tions to particular Lucene index fields. This allows us to
retrieve documents not only by the information contained
directly in the (unstructured) text itself but also by their
meta data that is given by the documents’ provider (e.g.,
author names, publication data, etc.) as well as the anno-
tations added by the UIMA components. It can flexibly be
used for any kinds of annotations. Mapping rules define
the assignment of annotation types or their attribute to the
particular fields in the Lucene index.

CAS2DB Consumer Whereas the Lucene Indexer makes
feasible efficient search within the annotated documents,
for further processing (such as displaying retrieved docu-
ments with all their annotations) the annotated documents
must be stored in a way which allows fast access. This can
be accomplished by ourCAS2DB Consumer, which feeds
the annotations derived from and assigned to the documents
into a relational database. The CAS2DB Consumer is based
on an abstract database schema which is independent of
any particular annotation type system and thus allows flex-
ible reuse. Once stored in the database, the data can be
optimized and re-arranged according to the particular ap-
plication’s needs. Currently the database schema and the
CAS2DB Consumer are implemented for the PostgreSQL17

database management system, but it can easily be adapted
to any other relational database system.

4. Lessons Learnt: Type System
Management

Most difficulties we faced when extending our component
repository and using the UIMA framework in our daily
work are related to the management of the type system. In
the following we discuss two of these problems together
with a possible solution.

4.1. Type System Incompatibility

Although UIMA , in theory, allows for easy interoperability
between UIMA components, this idea is only realized di-
rectly if all components are based on the same type system.
Since, however, the NLP community has not yet agreed on
a common NLP type system for UIMA , there are several
home-grown, possibly very specific type systems in use for
different components resulting in impaired interoperability.
Assume the following example: Given a component
A from the JCORE repository, e.g., a sentence split-
ter which writes its analysis output to the annotation
type de.julielab.types.sentence, and a third party com-
ponent B, e.g., a tokenizer which assumes as in-
put sentence annotations stored in the annotation type
org.mylab.types.sentence. Without further synchroniza-
tion these two components cannot be linked in the same
pipeline.
Now, we could of course modify componentB to work on
the sentence annotations of componentA (or vice versa),
given the source code were available. Yet, to avoid such
source code modification, the following workaround seems

17http://www.postgresql.org

helpful:18 Write a small preprocessing AEwhich copies
the relevant annotations from componentA to the types
componentB expects. In a postprocessing AE, annotations
created by componentB will be copied and transferred to
annotation types expected by the other components of a
pipeline.

4.2. Type System Modification

Another problematic issue in the UIMA framework pops up
when a type system used by several components of a repos-
itory is changed. Monotonicextensionsof a type system,
i.e., adding new types or extending the attributes of already
existing types, is not really problematic. However,modifi-
cationsof whole types or attributes (even if only names of
types or attributes are changed), might lead to severe con-
flicts.
Why do type systems change? Although we have attempted
to design a comprehensive and linguistically motivated type
system before we started to implement the UIMA compo-
nents, we continuously face the following two reasons for
ubiquitous change:

• At the “borders” of a type system new subtypes are
constantly required due to specific application scenar-
ios. For example, for the semantics layer this could
mean that we need special types inheriting from the
general entity mention annotation type.

• But also the “core” of our type system is not immune
to changes. This is mostly due to new findings regard-
ing the design of specific annotation types.

The first issue can easily be solved by designing the type
system as a domain- and application-independent core
where application-specific types should not be integrated.
Rather, specific requirements would be integrated into
application-dependent extensions.
We have further split the “core” type system into several
logical partitions, i.e., the layers addressed in Section 3.1.
Each such layer is realized by a separate UIMA type system
descriptor, possibly including other layers in case of de-
pendencies between UIMA types. The availability of single
logical units also adds to the clarity because our type sys-
tem altogether contains several dozens of annotation types,
partly arranged in a multi-level type hierarchy. Application-
specific extensions can then be realized for the respective
unit.
The second issue, i.e., modifications in the core type sys-
tem, is more serious since components based on different
versions of the type system might probably not be inte-
grable into one pipeline due to conflicting annotation types.
As we have organized all of our UIMA components as sep-
arate Java projects, managed by the build management tool
Maven,19 the modification of the type system currently im-
plies lot of manual work because we need to go through all
of these projects, exchange the type system (or at least the

18Thanks to Olivier Terrier fromTemis for fruitful discussions
and the idea for this solution.

19http://maven.apache.org/

5

respective layer if it has changed), see whether the compo-
nent’s source code needs to beupdated with respect to the
type modifications, and finally deploy the updated versions.
This problem could be solved semi-automatically with the
following labor-saving workflow. Once we have changed
the type system in a way that it could impair the functional-
ity of one of our UIMA components, and provided that for
each component there is a (reasonable) functionality test
(such as a JUnit20 test), then, in a first step, all type sys-
tem descriptors in every component will be replaced by the
modified version and the Java classes of type system will
be updated automatically. In a next step, the functionality
test of each component will be executed. If the test runs
successfully, the component will be marked as successfully
type-system-updated. Otherwise, the developer in charge
has to modify this particular component with respect to the
new type system. Finally, only if the functionality tests of
all components are passed without functional deviations,
all components can be updated in a version control system
(e.g., SVN21), be deployed as a Java project, and PEARs
can be build in order to exchange the components easily. In
particular by the last constraint which accepts only updated
and fully functional components as part of the component
repository, we can compile pipelines in a convenient way
without running into errors caused by inconsistent type sys-
tem versions.
The workflow proposed here has not been tested yet, but
we are about to implement it as a repository management
procedure in our lab.

5. Conclusion
We gave an overview of the JULIE Component Repository
(JCORE). This work is motivated by our goal to develop
complex NLP software in a disciplined and flexible way.
We have implemented, up until now, two particular applica-
tion systems both of which are fully set up by components
from our UIMA component repository.
The STEMNET project22 aims at building a semantic search
engine for the biomedical subdomain of immunology. For
this scenario, we set up an NLP pipeline which reads MED-
LINE abstracts using the MEDLINE Reader and then pro-
cesses these documents by means of linguistic preprocess-
ing (sentence and token segmentation, POS tagging) and
recognition of various entity types. The data sink here is
the Lucene Indexer which stores the annotations in a search
engine index which can then be queried by users searching
for relevant scientific documents.
Our second application accounts for the automatic synthe-
sis of a biomedical fact database as done in the BOOT-
STREPproject.23 To identify interactions between proteins
described in scientific documents, we set up a pipeline pass-
ing through all levels of linguistic and semantic process-
ing, including especially relation extraction. Finally, the
CAS2DB Consumer is used to store the identified relations
as facts in a database.

20http://junit.org/
21http://subversion.tigris.org/
22http://www.stemnet.de
23http://www.bootstrep.eu

Besides these lab-internal uses, our downloadstatistics in-
dicate that JCORE resources are of high interest to and used
by many visitors of our web site. The Open Source policy
we support allows external users to integrate our work in a
flexible way in their application frameworks.
This is certainly an advantage over Web services often con-
sidered as an alternative. Relying on Web services, users
have to turn to the developers of the code and negotiate
with them changes they are after. With Open Source ma-
terial they can do it on their own. Also Web services have
certainly performance deficits when large amounts of data
have to be shuffled across the WWW. Web services might
be useful for testing but they might not really be competi-
tive for large-scale production systems.
Finally, we hope that JCORE resources, the type system
in particular, might stimulate discussions about emerging
standards for NLP. It offers an appropriate level of abstrac-
tion to talk about the essential parameters of our research
and development work.

Acknowledgements
This research was funded by the EC within the BOOT-
STREPproject (FP6-028099), and by the German Ministry
of Education and Research within the STEMNET project
(01DS001A-C). The first author is recipient of theUIMA
Innovation Award 2007and holds an award grant from
IBM.

6. References
Adam L. Berger, Stephen A. Della Pietra, and Vincent J.

Della Pietra. 1996. A maximum entropy approach to
natural language processing.Computational Linguistics,
22(1):39–71.

Ekaterina Buyko and Udo Hahn. 2008. Fully embedded
type systems for the semantic annotation layer. InICGL
2008 – Proceedings of the 1st International Confer-
ence on Global Interoperability for Language Resources,
pages 26–33. Hong Kong, SAR, January 9-11, 2008.
City University of Hong Kong.

Ekaterina Buyko, Joachim Wermter, Michael Poprat, and
Udo Hahn. 2006. Automatically adapting an NLP
core engine to the biology domain. In Hagit Shatkay,
Lynette Hirschman, Alfonso Valencia, and Christian
Blaschke, editors,Proceedings of the Joint BioLINK-
Bio-Ontologies Meeting. A Joint Meeting of the ISMB
Special Interest Group on Bio-Ontologies and the Bi-
oLINK Special Interest Group on Text Data Mining in
Association with ISMB, pages 65–68. Fortaleza, Brazil,
August 5, 2006.

Ekaterina Buyko, Katrin Tomanek, and Udo Hahn. 2007.
Resolution of coordination ellipses in biological named
entities using conditional random fields. InPACLING
2007 - Proceedings of the 10th Conference of the Pa-
cific Association for Computational Linguistics, pages
163–171. Melbourne, Australia, September 19-21, 2007.
Melbourne: Pacific Association for Computational Lin-
guistics.

Xavier Carreras and Luı́s Màrquez. 2004. Introduction to
the CONLL-2004 shared task: Semantic role labeling.
In Hwee Tou Ng and Ellen Riloff, editors,CoNLL-2004

6

– Proceedings of the 8th Conference on Computational
Natural Language Learning atHLT-NAACL 2004, pages
89–97. Boston, MA, USA, 2004. Association for Com-
putational Linguistics.

Hamish Cunningham. 2002. GATE, a general architecture
for text engineering.Computers and the Humanities,
36:223–254.

George Doddington, Alexis Mitchell, Mark Przybocki,
Lance Ramshaw, Stephanie Strassel, and Ralph
Weischedel. 2004. The Automatic Content Extraction
(ACE) Program: Tasks, data, & evaluation. InLREC
2004 – Proceedings of the 4th International Conference
on Language Resources and Evaluation. In Memory
of Antonio Zampolli. Vol. 3, pages 837–840. Lisbon,
Portugal, 26-28 May 2004. Paris: European Language
Resources Association (ELRA).

David Ferrucci and Adam Lally. 2004. UIMA : An archi-
tectural approach to unstructured information process-
ing in the corporate research environment.Natural Lan-
guage Engineering, 10(3-4):327–348.

Thilo Götz and Oliver Suhre. 2004. Design and implemen-
tation of the UIMA Common Analysis System.IBM Sys-
tems Journal, 43(3):476–489.

Udo Hahn and Joachim Wermter. 2006. Levels of natural
language processing for text mining. In Sophia Anani-
adou and John McNaught, editors,Text Mining for Bi-
ology and Biomedicine, pages 13–41. Norwood, MA:
Artech House.

Udo Hahn, Ekaterina Buyko, Katrin Tomanek, Scott Piao,
John McNaught, Yoshimasa Tsuruoka, and Sophia Ana-
niadou. 2007. An annotation type system for a data-
driven NLP pipeline. InThe LAW at ACL 2007 – Pro-
ceedings of the Linguistic Annotation Workshop, pages
33–40. Prague, Czech Republic, June 28-29, 2007.
Stroudsburg, PA: Association for Computational Lin-
guistics.

Lynette Hirschman and Nancy Chinchor. 1998. Muc-7
coreference task definition (version 3.0). InProceedings
of the MUC-7, Message Understanding Conference,
http://www.itl.nist.gov/iad/894.02/
related projects/muc/proceedings/
co task.html.

John D. Lafferty, AndrewMcCallum, and Fernando C. N.
Pereira. 2001. Conditional random fields: Probabilistic
models for segmenting and labeling sequence data. In
ICML-2001 – Proceedings of the 18th International Con-
ference on Machine Learning, pages 282–289. Williams
College, MA, USA, June 28 - July 1, 2001. San Fran-
cisco, CA: Morgan Kaufmann.

Christophe Laprun, Jonathan G. Fiscus, John Garofolo, and
Sylvain Pajot. 2002. A practical introduction to ATLAS.
In M.G. Rodriguez and C. Paz Suarez Araujo, editors,
LREC 2002 – Proceedings of the 3rd International Con-
ference on Language Resources and Evaluation, pages
1928–1932. Las Palmas de Gran Canaria, Spain, 29-31
May, 2002. Paris: European Language Resources Asso-
ciation (ELRA).

Ryan McDonald, Fernando Pereira, and Jan Hajič. 2005.
Non-projective dependency parsing using spanning tree

algorithms. InHLT-EMNLP’05 – Proceedings of the
5th Human Language Technology Conference and 2005
Conference on Empirical Methods in Natural Language
Processing, pages 523–530. Vancouver, B.C., Canada,
October 6-8, 2005. East Stroudsburg, PA: Association
for Computational Linguistics.

Jong C. Park and Jung-Jae Kim. 2006. Named entity
recognition. In Sophia Ananiadou and John McNaught,
editors,Text Mining for Biology and Biomedicine, pages
121–142. Norwood, MA: Artech House.

Lance Ramshaw and Mitchell P. Marcus. 1995. Text
chunking using transformation-based learning. InPro-
ceedings of the 3rd ACL Workshop on Very Large Cor-
pora, pages 82–94. Cambridge, MA, USA, June 30,
1995. Association for Computational Linguistics.

Ariel S. Schwartz and Marti A. Hearst. 2003. A sim-
ple algorithm for identifying abbreviation definitions in
biomedical text. In Russ B. Altman, A. Keith Dunker,
Lawrence Hunter, Tiffany A. Jung, and Teri E. Klein, ed-
itors,PSB 2003 – Proceedings of the Pacific Symposium
on Biocomputing 2003, pages 451–462. Kauai, Hawaii,
USA, January 3-7, 2003. Singapore: World Scientific
Publishing.

Burr Settles. 2004. Biomedical named entity recognition
using conditional random fields and rich feature sets. In
Nigel Collier, Patrick Ruch, and Adeline Nazarenko, ed-
itors,JNLPBA – Proceedings of the COLING 2004 Inter-
national Joint Workshop on Natural Language Process-
ing in Biomedicine and its Applications, pages 107–110.
Geneva, Switzerland, August 28-29, 2004.

Erik F. Tjong Kim Sang and Fien De Meulder. 2003. In-
troduction to the CONLL-2003 shared task: Language-
independent named entity recognition. In Walter Daele-
mans and Miles Osborne, editors,CoNLL-2003 – Pro-
ceedings of the 7th Conference on Computational Nat-
ural Language Learning, pages 142–147. Edmonton,
Canada, 2003. Association for Computational Linguis-
tics.

Katrin Tomanek, Joachim Wermter, and Udo Hahn. 2007.
Sentence and token splitting based on conditional ran-
dom fields. InPACLING 2007 - Proceedings of the 10th
Conference of the Pacific Association for Computational
Linguistics, pages 49–57. Melbourne, Australia, Septem-
ber 19-21, 2007. Melbourne: Pacific Association for
Computational Linguistics.

7

Experiences with UIMA for online information extraction at
Thomson Corporation

Terry Heinze, Marc Light, Frank Schilder

Thomson Corp.
R&D

610 Opperman Drive, Eagan, MN 55123, USA
FirstName.LastName@Thomson.com

Abstract
We have built a pair of information extraction systems using UIMA (Unstructured Information Management Architecture). These systems
have very low latency and run on financial news. We outline the implementation of these systems and report on our web service injection
process, our type system, and an ANTLR (ANother Tool for Language Recognition) wrapper we implemented. We conclude with a list
of UIMA strengths from our perspective and a wish list for future releases.

1. Overview
This paper reports on experiments at Thomson Corpora-
tion1 R&D using UIMA2 (Ferrucci and Lally, 2004) for
the design and implementation of an information extrac-
tion system for processing financial news in an online (vs.
batch) mode.
We have built a number of human language processing so-
lutions most of which are part of one or more production
systems. We often reuse code but not as systematically
as we would like. We have experimented with the GATE
framework (Cunningham et al., 2002) and have worked on
a homegrown text processing framework. However, we de-
cided to work with UIMA because we believed that it would
support high throughput and low latency and because the
APIs were intuitive for us.
In this paper we discuss a UIMA pipeline for identifying
and linking entities (persons, locations, companies, money
amounts, and percentages) and for extracting relations and
events between these entities. The entities are linked to rel-
evant authority files. The pipeline is being applied to finan-
cial newswire.
There are three highlights that we wish to present: (i) We
developed a web service that wraps around the named entity
recognizer implemented as an UIMA Analysis Engine. (ii)
We added a new type system to the CAS type system repre-
senting the actual entities (not the text span in the text), re-
lations and events. (iii) We interfaced UIMA with ANTLR
in order to run parsers tagging money, time expressions etc.

2. Short System description
This section provides a high-level overview of our systems.

1The Thomson Corporation provides information-based so-
lutions for lawyers, business people, nurses, doctors, scientists,
and other professionals. Many of these solutions involve tex-
tual sources in combination with more structured sources such as
databases of numeric and nominal information. Part of the “intel-
ligent information” that Thomson products use is the identification
of entities, relations, and events in textual sources and links from
these mentions to database records that contain further informa-
tion.

2http://incubator.apache.org/uima/

2.1. The named entity tagger and resolver
We use a pipeline of UIMA components that is con-
structed to process a single document at a time. The in-
put documents may be XML, HTML, or plain text. The
pipeline consists of multiple readers, our named entity tag-
ger, our authority resolver, and finally multiple, optional
consumers. A controller module receives the input doc-
ument and a related metadata property file that contains
processing options for the specific document. The con-
troller instantiates the UIMA components described by a
XML configuration file (similar to a Collection Process-
ing Engine (CPE) descriptor, but allows for dynamic re-
configuration of the component descriptors) and creates the
Common Analysis System (CAS) pool.
The original document is inserted into a SOFA (subject of
annotation) by the controller. It also inserts any xpath in-
structions from the metadata into a secondary SOFA. Based
on the document type specified in the metadata, a reader
component is executed. The reader will parse the docu-
ment (using the metadata SOFA instructions), create a plain
text SOFA, insert the extracted plain text into that SOFA,
and additionally store the information (in the form of fea-
ture structures) needed to re-construct the orginal document
with inlined annotations in the source document SOFA.
The named entity tagger and resolver analysis engines are
executed next. These engines create annotations on the
plain text SOFA.
Finally, the controller calls in succession the requested con-
sumers (enumerated in the metadata). We have written con-
sumers for inlined annotated XML, HTML, and plain text.
We also have a consumer that creates just a report of the
standalone annotations. There is also a consumer that pro-
duces XMI. In each case, the consumer creates a separate
SOFA and inserts the resulting document. Upon comple-
tion of the pipeline execution, the controller extracts each
consumer document and returns them in an array.

2.2. Fact and event extraction
We are also using UIMA for the extraction of relations and
events. Building on the extracted named entities, we iden-
tify relations and events that encompass multiple entities or

8

money or time expressions. Our current focus is on finan-
cial events, but we are also exploring legal events or events
described in the scientific literature (e.g., protein-protein in-
teraction).
The standard pipeline for relation and event extraction con-
tains three Analysis Engines (AEs):

Named entity recognizer extracts organizations, person
names, locations as well as money, percent and time
expressions. We reused the same recognizer, as de-
scribed in the previous section.

Sentence classifier decides whether a sentence potentially
contains the desired relation or event patterns to be ex-
tracted.

Slot filler determines the entities that fill the slots of a pre-
determined template.

The type system for the financial domain covers events such
as Merger & Acquisition and Earning announcements. The
type system is a sub system of our Master type system de-
scribed in section 3.2.
The input data are news wire text represented in XML and
HTML. A first AE extracts the text and possibly useful
metadata from the XML file and write this information into
the CAS. Then the pipeline of the three AEs mentioned
above is run resulting in an index of relations and events
found in the document. Different CASConsumers produce
outputs in tabular ASCII text format or in RDF output.

3. Highlights
3.1. Web service injection process

We have a web service that wraps our pipeline controller.
The web service module instantiates our pipleine controller
object and implements a single method. The method ac-
cepts two string parameters: the document itself, and a
string with the metadata procssing instructions. The ser-
vice method returns an array of strings, each corresponding
to the output of the requested consumer(s).
The service has been implemented using open source
AXIS23 (implemented using both simple Java beans and
xml binding) within Tomcat.4 The instantiation of the con-
troller object occurs during service startup. This is typically
an expensive operation, requiring several minutes to create
in memory our requisite data structures for named entity
tagging.
Once started, the service is capable of processing typically
sized documents in the range of 50ms. We have an over-
head of appoximately 25ms for network transmission and
document decomposition (StAX parsing5) and reconstruc-
tion. An input document of 30k takes about 25ms to an-
notate and resolve. The time required by the named entity
tagger is linear. Documents longer than our average 30k
size take correspondingly longer to annotate.

3http://ws.apache.org/axis2/
4http://tomcat.apache.org/
5http://stax.codehaus.org/

3.2. Type System
While developing complex NLP systems that annotate, re-
solve and relate named entities, we saw the need for an
internal representation of the described entity or relation.
Representing a unique entity one can refer to as Fred Cen-
ter, Mr. Center or he in the text has several advantages:
(a) information about this person can be collected in one
object, (b) relations can be represented between the actual
entity and not between the annotated text string, and (c) an
output routine can simply print a list of entities mentioned
by the article. A natural place for storing such an abstract
data structure that represents the entity and can refer back
to all the mentions of the entity in the text would be the
CAS.
The APACHE UIMA documentation 2.3.2. discussing the
CAS system alludes to the possibility of resolving several
mentions in a text (e.g., Fred Center, Mr. Center, he) to the
same entity. An annotator could link the different mentions
of the same person to an internal representation of the en-
tity. However, no more details are provided and we are not
aware of any AE that implements this concept of having
an entity type that refers to the occurrence of an entity and
links the annotations that refer to this entity together.
In order to utilize such a representation in the CAS, we de-
veloped a type system (cf. figure 1) that introduces a new
type in parallel to the annotation type that represents en-
tities, relations and events. We call this type Element.
This type is a sub-type of TOP and hence does not inherit
the begin and attribute from the Annotation type. The
Annotation type has three sub-types for named enti-
ties such as organization, person and location names (i.e.,
ENAMEX), descriptions such as job titles, product names
(i.e., Descr), and value expressions such as money, per-
cent and time expressions (i.e., Val)

TOP

Annotation Element

ENAMEX Descr Val Entity Relation Event

Figure 1: The top layers of the type system

On the other side, the Element type has three sub-types,
too. Entity represents the entities that are annotated by
an ENAMEX annotation and Relation represents the rela-
tions between descriptions (e.g., job title) and an entity. The
type Event covers the most complex type that has entities,
values and possibly other relations as attributes. ENAMEX
and Descr, on the one hand, have attributes that reference
the entities and the relations, and Entity and Relation
reference the occurrences of the the entities and relations in
the text (e.g., the mention of Fred Center and Mr. Center).
Consider the following example sentences that contains two
persons and two job title relations even though the job title
(i.e., CEO) is only mentioned once.

9

(1) In 2000 Gates transferred the title of CEO to
Ballmer.

The elements generated for this sentence are listed in fig-
ure 2. Each element accumulates information from other
parts of the document (e.g., first name) and refers back to
all mentions of this element in the text via the attribute
occurences.
The top layer of the type system can easily be extended
with specialized sub types (e.g., financial events or events
from the biomedical domain). The proposed type system
could be plugged into the type system proposed by Hahn
et al. (2007). They developed a multi-layered type system
that covers different types covering document meta infor-
mation, syntax, document structure as well as semantics.
Our type system can be seen as an extension of the seman-
tics layer.

3.3. ANTLR wrapper
ANTLR, ANother Tool for Language Recognition, devel-
oped by Terence Parr is a parser generator mainly used
for computer languages.6 However, it can also be used for
recognizing smaller fragments of natural language such as
money, percent or time expressions. We are using ANTLR
for tagging such sub-languages because (a) a rule-based ap-
proach is for those expressions more appropriate than a sta-
tistical approach due to the regularity of these expressions,
(b) the EBNF formalism is easier to maintain than (Java)
regular extractions, and (c) ANTLR grammars are easily
translatable into Java code.
ANTLR version 3 uses a flexible parsing strategy LL(*)
which is more powerful than a standard LL(k) parser, be-
cause k does not have to be determined before running the
parser. Still, the runtime complexity of a parser generated
by ANTLR is linear.
A typical ANTLR grammar is divided into a lexer and a
parser. The lexer takes a character stream and generates
a token stream according to a lexer grammar. Such a lexer
grammar could define simple token or complex expressions
such as temporal expressions.
The token stream is then fed to the parser which parses the
tokens according to the rules defined in the grammar. We
utilized the ANTLR parser generator for parsing money,
percent and time expressions as well as the parsing of edu-
cational background sentences in SEC filings.
Different interfaces we explored:

• UIMA-ANTLR Lexer takes a character stream (e.g.,
a sentence) and passes it to the lexer. The lexer gives
back the offset information of tokens such as money
or percent expressions. ANTLR can be run in a scan-
ning mode that simply skips expressions that are not
defined by the lexer.

This interface can be easily integrated into a UIMA
AE, because ANTLR generates a lexer java class that
reads in a string and returns the offset information for
the tokens. Additional information about the tokens
can be collected, too. The ANTLR grammar formal-
ism allows for inserting Java code within the rules.

6www.antlr.org

Hence, the normalization of money amounts, for ex-
ample, can be carried out on the fly.

• UIMA-ANTLR Parser uses the ANTLR token stream
manipulating the stream by introducing UIMA anno-
tations. This interface comes in two flavors: (a) creat-
ing you own ANTLR token stream from UIMA anno-
tations or (b) only change the token classes for tokens
that have annotations in UIMA.

Integrating an ANTLR parser requires an additional
step, because an ANTLR token stream has to be gen-
erated. Iterating over entity annotations derived from
other UIMA AEs, an ANTLR token source stream can
be created that then can be fed into the parser for more
complex analysis.

Figure 3 shows two example rules for temporal expres-
sions. Note that non-terminals of the rules can be identified
via a variable (e.g., d) which then has access to the actual
value of the terminals covering this non terminal. The non-
terminal DAY could, for example, cover the string ’29th’
or ’twenty-ninth’ which will be normalized to the integer
29. This number will then be used to create an ISO time
expressions such as 2008-02-29.

TIMEX
: ((d=DAY WS m=MONTH’,’? (WS? y=YEAR)?)|

(s=SEASON WS ’of’ WS y=YEAR)|
[...]

YEAR : ((’1’..’2’)(’0’|’9’|’8’))
NUMBER NUMBER;

NUMBER : (’0’..’9’);

Figure 3: Example ANTLR grammar rules

The lexer will provide the offset information and the nor-
malized values for the time expressions. As a next step the
annotations for the temporal expressions and verb and noun
chunks of the sentence could be merged into a token source
stream that can be read by another ANTLR grammar that
contains rules about attaching the temporal expressions to
a noun or verb chunk (e.g., he left at 3pm, the report for
2006).
We used ANTLR for different sub-langages and found the
generated Java code fast and reliable. Our previous experi-
ence with interfacing GATE with UIMA showed that GATE
required a lot of memory and was generally slower than
grammars written in ANTLR.

4. UIMA experience and a wish list
4.1. UIMA strengths
Our experience with using UIMA was generally positive.
Here are three aspects we would like to emphasize.

• Speed: latency is a concern for us and UIMA per-
formed well with respect to latency. We compared
our UIMA pipeline to a pipeline where instead of us-
ing a CAS to pass annotations, we passed simple Java

10



Person
id e1
occurrences FSIterator
authID 2849209
Name Bill Gates

Jobtitles
[
j1

]





Person
id e2
occurrences FSIterator
authID 3384289
Name Steve Ballmer

Jobtitles
[
j2

]





Jobtitle
id j1
occurrences FSIterator
sdate past
edate 2000
title CEO
company c1





Jobtitle
id j2
occurrences FSIterator
sdate 2000
edate present
title CEO
company c1


Figure 2: Elements generated from example sentence (1)

objects such as String[]. We found that the old IBM
release of UIMA performed nearly as well. In addi-
tion, we believe that the Apache release is substan-
tially faster.

• Ease of wrapping: we found that fitting our modules
into the Analysis Engine API straightforward. In fact,
we felt that doing so improved the structure of our
code. In addition, we made extensive use of the Re-
source Files mechanism and again found fitting our
modules into this mold straightforward.

• Feature structures & types: a number of members of
our group have experience with HPSG and thus the
use of UIMA feature structures and types was natural.

4.2. UIMA wish list
There are a number of UIMA components that if included
in the Apache distribution, would make the move to UIMA
easier:

• Event handling “collection” reader: Many applica-
tions run as a web service or daemon waiting for a
document to push through the pipeline. Currently, the
UIMA examples and documentation focuses on batch
mode examples.

• Readers and consumers that handle XML and HTML:
These are standard modules that most pipelines will
need.

• Cas Editor: we eagerly await Jörn Kottmann’s Cas
Editor’s release within Apache UIMA. We are cur-
rently working with Callisto (callisto.mitre.org) for
manual correction of output for production of gold
data. However, a tighter integration with UIMA and
eclipse would simplify our work flow.

• “Standard” type hierarchy: a combined type hierarchy
of the hierarchy proposed by Hahn et al.(2007) and our
proposal could cover different document types (e.g.,
news, Medline abstracts) and standard entities and re-
lations to be extracted. Given such a standard, Cas-
Consumers could be shared for the presentation of the
results (e.g., RDF viewer, tabular output).

• Access to objects outside of the scope of the CAS:
We have encountered two cases where we have used
a UIMA enabled application within existing work-
flows where we needed objects or artifacts that did

not strictly fit the SOFA metaphor. In one case, we
needed to retain ancillary information about the struc-
ture of the document from an HTML parser. We
wanted to leverage existing code structures rather than
re-implementing them as feature structures for the sole
purpose of storing them in the CAS for later reference.
Using global objects such as singletons did not support
a long term design goal of distributing UIMA compo-
nents across a network. Our solution was to serial-
ize such objects to a byte array and then store them
in a value of a feature structure in the CAS. Subse-
quent UIMA components can then reconstruct the ob-
ject through de-serialization. This process seems to be
against the intented use of feature structures.
In another case, we needed to obtain metrics data from
our UIMA components that is orthogonal and tempo-
rary to the pipeline. Here, we did use a singleton to
collect data. It would be useful if UIMA implemented
a form of aspects for cases such as this. Another stan-
dard example of this usage would be logging.

5. Conclusions
In this paper, we have described our information extrac-
tion pipeline which we implemented using UIMA. We then
presented three highlights of the system: (i) a web ser-
vice wrapping and document injection method, our method
for interfacing our UIMA pipeline with other non-UIMA
systems, (ii) a type system connecting annotations and ex-
tracted elements, and (iii) a wrapper for ANTLR.

6. References
H. Cunningham, D. Maynard, K. Bontcheva, and V. Tablan.

2002. GATE: A framework and graphical development
environment for robust NLP tools and applications. In
Proceedings of the 40th Anniversary Meeting of the As-
sociation for Computational Linguistics.

David Ferrucci and Adam Lally. 2004. UIMA: an archi-
tectural approach to unstructured information processing
in the corporate research environment. Nat. Lang. Eng.,
10(3-4):327–348.

Udo Hahn, Ekaterina Buyko, Katrin Tomanek, Scott Piao,
Yoshimasa Tsuruoka, John McNaught, and Sophia Ana-
niadou. 2007. An uima annotation type system for a
generic text mining architecture. In UIMA-Workshop,
GLDV Conference, April.

11

Tools for UIMA Teaching and Development

Manuela Kunze, Dietmar Rösner

Otto-von-Guericke-Universität Magdeburg
Institut für Wissens- und Sprachverarbeitung

P.O. Box 4120, D–39016 Magdeburg, Germany
makunze@iws.cs.uni-magdeburg.de, roesner@iws.cs.uni-magdeburg.de

Abstract
To support teaching UIMA a number of tools have been developed that are useful for UIMA developers as well. The UIMA comparator
supports the comparison between the results of different UIMA analysis engines on the same documents. The UIMA class generator
helps to minimize typing in UIMA development by automating the definition of classes and stubs for their methods based on an XML
declaration. The usage of these tools in teaching is described and options for additional support are discussed in this paper.

1. Introduction
Our course on Information Extraction (IE) teaches concepts
and algorithms for IE, using UIMA1 and GATE (Cunning-
ham et al., 2002) as reference models and as platforms for
the assignment projects of the participating students.
The aim of the IE course is to make students acquainted
with the problems of, approaches to and recent develop-
ments in IE in general and specifically with the architec-
tures of frameworks for IE like UIMA and GATE. The
students have to use various tools available in UIMA and
GATE in order to solve given assignments. Within the
UIMA framework students develop and extend analysis en-
gines and lexical resources (e.g. lists of various types of
named entities) and then apply these AEs to corpora of
documents (mostly in German). In the last year, this in-
cluded corpora with news, announcements of theatre plays,
sport/games reports etc.2

The evaluation of students assignments related to UIMA is
very time consuming. To reduce this effort, we developed
an UIMA comparator that systematically compares the re-
sults of different UIMA analysis engines.
Students (or in general UIMA beginners) criticized that no
tools are available that minimize typing in the development
of UIMA. The effort for creating a new Analysis Engine
(AE) puts beginners off to continue their work or exper-
iments with UIMA. We created a UIMA Class generator
that generates the Java classes and stubs for their methods
based on an XML description.

2. Computer-Aided Assessment with
eduComponents

As with all our lectures, the IE course makes use of our
eduComponents software (Rösner et al., 2007), a collection
of tools for enriching classes with e-learning and computer-
aided assessment (CAA).
The UIMA comparator will be employed for support-
ing UIMA teaching within the framework for Computer-

1http://incubator.apache.org/uima/index.html
2For detailed information (in German) about the IE courses

given cf. for Summer 2007:
http://wdok.cs.uni-magdeburg.de/studium-und-lehre/

lehrveranstaltungen/sommer2007/ie/

Aided Assessment (CAA) within the eduComponents sys-
tem (Amelung et al., 2008). This section serves to give the
necessary background information on this system, its de-
sign, implementation and employment.

2.1. Requirements
When we introduced computer-assisted assessment (CAA),
we have been targeting for a system which supports:
- automatic testing of programming assignments in differ-
ent programming languages from different programming
paradigms as well as automatic testing of assignments in
other formal systems, (e.g., regular expressions, XSLT
transformations, UIMA analysis engines);
- evaluation and grading of assignments that demand for
short natural language texts as answers;
- ease of integration of additional assignment types, pro-
gramming languages or test methods.

2.2. A Generic Architecture for CAA
Based on the motivation and the requirements the main de-
sign idea is to separate all concerns of managing students,
assignments, and submissions from the actual testing.
The former includes, for instance, storage of assignments
and solutions, proper treatment of submission periods and
re-submissions, communication of results to students, grad-
ing of the results, statistics for individual students and
whole cohorts – and is typically provided and supported by
a LMS (Learning Management System). In the following,
we will use the term frontend for the LMS employed.
The actual testing is highly dependent on the kind of test
method, programming language or other formal notation.
For example, when testing programming assignments, the
output of a student solution can be compared to that of a
model solution for a set of test data, or the assignment can
be tested for properties which must be fulfilled by correct
programs. It also includes security precautions since run-
ning unknown code in an insecure environment could be
dangerous. Thus, all aspects regarding the exact testing
should be encapsulated and implemented in self-contained
modules, we will call them backends.
Each backend defines a schema which describes all input
fields necessary to fully specify the tests, e.g., a model so-
lution and test data for test data based evaluation. It also

12

defines at least one test method option which allows the se-
lection from different compilers or interpreters for a pro-
gramming language and from different comparison func-
tions (e.g., exact match vs. tolerance interval while com-
paring floating point numbers).
To integrate frontends and backends we introduce a new
component which, similar to a printer spooler, manages a
submission queue and several backends. The spooler pro-
vides the following functions: add new submissions for
testing; get results from tests performed by a backend; show
status information (e.g. available backends, number of sub-
missions in queue); add or remove backends; get required
input fields for testing with a certain backend; get available
test method options.
Implementing spooler and backends in a service-oriented
way would also increase the flexibility. Web services3 re-
present an important approach to realize a service-oriented
architecture. They enable an integration of applications
more rapidly, easily, and with less costs. From a consumer
perspective a Web service can be seen as black box that
publishes its interface and functionality.
Fig. 1 shows an UML component diagram of our approach
(Amelung et al., 2008). It differs from most other sys-
tems in its architecture, which clearly separates frontends,
spooler, and backends, offering a high degree of flexibil-
ity and enabling a variety of frontends and backends to be
used. It also allows running the components on disparate
operating systems and in different environments over a net-
work.

<<Interpreter>>
runhugs

<<XML-RPC-Server>>
ECSpooler

<<Backend>>
Scheme

<<Backend>>
...

<<Interpreter>>
mzscheme

...

Plone

<<PloneProduct>>
...

<<PloneProduct>>
ECAutoAssessmentBox

<<Backend>>
Haskell

Server BServer A Server C

Server D

Figure 1: UML component diagram of the general system
architecture

2.3. Implementation
To demonstrate that the generic approach described in 2.2.
is actually working we used our already existing e-learning
environment as frontend and implemented the spooler and
various backend instances.
For this purpose we used Python’s XML-RPC server and
client API. XML-RPC4 is a remote procedure call method
using HTTP as the transport and XML as the encoding, and
allowing complex data structures to be transmitted, pro-
cessed and returned. With it, a client can call methods on a
remote server.

3We realize a Web service as a piece of software designed to
support interoperable machine-to-machine interaction over a net-
work through standardized XML messages.

4http://www.xmlrpc.com/

2.3.1. Spooler
The spooler—we call it ECSpooler—is implemented as a
Python XML-RPC server. When a student submits for an
assignment via a Web interface, the submission as well as
all necessary test data are first sent to ECSpooler which in
turn passes it on to the backend specified by the teacher for
this assignment. If the backend is busy, the test job (sub-
mission) remains in the queue until it can be handled. The
results of the tests performed by the backend are temporar-
ily stored and fetched by the frontend.
To avoid misuse or denial-of-service attacks job submis-
sions and administrative tasks (e.g., start/stop spooler oder
add/remove backends) require authentication. ECSpooler
uses a simple user/password authentication scheme in
which a user normally corresponds to a LMS, not to an in-
dividual person.

2.3.2. Backends
All available backends (e.g., for the programming lan-
guages Haskell, Scheme, Erlang, Prolog, Python, and Java)
are implemented as Python XML-RPC servers and are de-
rived from general backend classes. The latter provide a
lot of functionality necessary to start/stop a backend or add
it to a spooler. Thus, implementing new backends can be
done simply by defining a new input schema, test options
and at least one remote procedure call function.

3. Tools for UIMA
One of our teaching objectives is that our students learn to
actively make use of UIMA. Therefore students get hands-
on experiences and assignments where they first modify
given UIMA analysis engines and later develop AEs (Anal-
ysis Engines) from scratch.
The tools that we discuss in the following have been de-
signed and implemented based on experiences with the pre-
vious student cohorts and they will be employed in future
teaching (e.g. in summer 2008).

3.1. UIMA class generator
The UIMA class generator is a plug-in for Eclipse5 with the
following functionality: From an XML description of an
UIMA processing resource – i.e. AE, CAS Consumer, Col-
lection Reader – the resp. Java classes together with stubs
for their methods are automatically derived. The intention
is to minimize typing in the development of UIMA process-
ing resources. Please note that our students have argued for
the need of such a tool.
During their work with UIMA, the students complained the
lack of tools that could make the work with UIMA easier.
An example: In all but the most trivial UIMA application,
it is necessary to create more than one AE or consumer.
UIMA does not yet support the automatic creation of stubs
for the respective Java classes (i.e. empty AE classes or
consumer classes), but repeatedly copying and editing ex-
isting Java files was experienced by the students as an
avoidable waste of time. The deficiency is overcome by
the UIMA class generator, who takes the name of the class
(and/or information about capabilities and parameters) and
automatically generates the Java files with plain (standard)

5http://www.eclipse.org/

13

methods, e.g. initialize(), process(),..., that can then be re-
fined.

3.1.1. The Eclipse Plugin
The UIMA class generator can be started in the Eclipse en-
vironment after editing the XML descriptor of an AE, CAS
Consumer or Collection Reader via mouseclick on the icon
(see Fig. 3) or via selection of the menu entry in the menu
bar. The UIMA class generator takes as input the name of
an active project in the Eclipse environment and the XML
file opened in the Eclipse editor. The generated class file
is saved in the source directory of the active project. If the
generated Java class exists, the user can choose between
several file operations to solve the conflicts (e.g. renaming
and overwriting of files).
If the file is not a valid XML descriptor, the process of class
creation is aborted.
In the following example, we describe which information
is used for the generation. In this case, we exploit a XML
descriptor for an analysis engine. For each type of descrip-
tor (Collection Reader, CAS Consumer, and Analysis En-
gine), we developed different class generators. The UIMA
class generator reads the XML descriptor, analyses the tags
within the descriptor, and starts the specific class generator.

3.1.2. An Example for Generation
The relevant excerpts from a descriptor file of an analysis
engine are given (see Ex. 1). The content of the node ‘an-
notatorImplementationName’ is used to define the package
statement and the name of the Java class. For each ‘Con-
figurationParameter’, the declaration statement is inserted
and the initialize method contains the statements for read-
ing the values of parameters. The information of the node
‘capabilities’ is used to add additional import statements in
the Java file. Fig. 3 presents the generated Java file for the
given example.

(1) ...
<annotatorImplementationName>tools.DemoAE
</annotatorImplementationName>

...
<configurationParameters>

<configurationParameter>
<name>demoParameter1</name>
<type>Integer</type>
<multiValued>true</multiValued>
<mandatory>true</mandatory>

</configurationParameter>
<configurationParameter>
<name>demoParameter2</name>
<type>String</type>
<multiValued>false</multiValued>
<mandatory>false</mandatory>

</configurationParameter>
</configurationParameters>

...
<capabilities>

<capability>
<inputs/>
<outputs>

<type allAnnotatorFeatures="true">
types.wozStatements</type>
<type allAnnotatorFeatures="true">
types.woz</type>
<type allAnnotatorFeatures="true">
types.sub</type>
<type allAnnotatorFeatures="true">
types.Emotion</type>

</outputs>
<languagesSupported/>

</capability>
</capabilities>

...

3.1.3. UIMA Class Generator in Practice
The developed Class Generator is provided for students of
our current exercise courses that are related to UIMA and
student assistants of our UIMA projects. Our student as-
sistants confirm that the UIMA class generator is an useful
tool that saves time during development of UIMA based
processing resources. We hope that we get a similar feed-
back from the students of our exercise courses at the end of
the course.
The next step in development is to generate a UIMA Class
Generator that has the same functionalities like the Eclipse
plugin but that can be started in a console, so that devel-
opers that not use the Eclipse environment can also use the
UIMA Class Generator. As parameters, the XML Descrip-
tor and the source directory must then be given.

3.2. UIMA comparator
For automatic testing of student assignments in UIMA, a
comparator has been developed and implemented and will
now be evaluated and then employed in future courses. The
comparator validates students analysis results against re-
sults of a master solution. The manual evaluation of stu-
dents solutions is time consuming. To avoid this effort, we
defined an interface (see Fig. 2) for the definition of assign-
ments and for the comparison of results. This generalizes
our experience with automatic testing of programming as-
signments (Rösner et al., 2007).
The definition of assignments contains the following infor-
mation: a Type System Description and additionally a def-
inition of the name and type (form) of external resources.
A list of implementations of AEs and a corpus of docu-
ments for the evaluation has to be provided to the compara-
tor. Each implementation is then applied by the comparator
on the evaluation corpus. Different views on a document
resulting from different AEs are compared with a master
solution. The output of the comparator is a summary con-
taining information which student solutions have the same
results and what differences and varieties are detected. The
comparator compares the position and content of annota-
tions (including features of annotations).

3.2.1. A Multipurpose Tool
The UIMA comparator serves to apply two AEs to a file and
then to systematically compare the resulting annotations. It
may be employed both in UIMA AE development as well
as in UIMA teaching for automatic checking of student so-
lutions in assignments with AE development:

• For UIMA AE development differences between analysis re-
sults of a preceding and a (hopefully) improved version of an
AE are of interest.

• In UIMA teaching it is a very valuable asset to be able to
compare a bunch of student versions of an AE with the mas-
ter solution of the teacher.

14

3.2.2. A Closer Look
The UIMA comparator works as follow:

• Given pointers to two AEs (one seen as the master AE, the
other as the student AE) and a document, it runs the AEs on
(separate versions of) the document.

• The resulting files – called master result and student result -
are then compared on the basis of their annotations and their
features:

– Can all annotations from the master result be found in
the student result (see Fig. 6)?

– If not, which ones are missing (i.e. ‘false negatives’)?

– Are there annotations in the student result that are not
in the master result (i.e. ‘false positives’)?

• For each pair of corresponding annotations the analysis can
be continued for the set of features and their values.

– A flag allows to declare, if leading or trailing white-
space shall be significant when comparing the span of
annotations

Figure 2: Configurator for UIMA Comparator.

3.2.3. Process Pipeline
The process pipeline contains the following steps: A se-
lected collection reader reads the documents, then the sev-
eral analysis engines (master and selected other annotators)
are applied. After each annotator an analysis engine called
sofaCreator is applied. For this annotator, we used an
UIMA based concept of a specific presentation of annota-
tions. This concept is defined as Sofa (Subject of Analysis)
and it allows to group different annotations in a kind of a
‘view’. It is possible to define different views on a doc-
ument. We used this concept to group the annotations of
an annotator in a Sofa. This step simplifies the comparison
process, because handling and accessing of the annotations
of the several annotators will be easier.
The annotator sofaCreator creates a Sofa with the name of
the previous annotator, which contains all annotations of
this annotator. That means, the annotations of an analysis
engine are moved from the (standard) ‘ InitialView’ to a
new Sofa.

After running all annotators, the comparator is applied. The
comparator insert two new annotations CompResults and
SolResult into the ‘ InitialView’.

3.2.4. Annotations of the Comparator
These annotations contain the results of comparison for
each annotation of the master solution and a summary for
each (student) annotator and for each document in the cor-
pus.
For each annotation of a solution (except the master anno-
tation), an annotation of type CompResults is created. This
annotation contains the following data:

• name of solution,

• information about annotation of the analysed solution,

• information about corresponding master annotation,

• flag about correct position and

• flag about correct feature values.

These annotations will be analysed and summarized by the
comparator to generate the annotation SolResult. This an-
notation contains the following information in detail:

• name of solution,

• number of correct annotations,

• number of annotations that are annotated by the master so-
lution and

• number of annotations with wrong feature values.

These comparator annotations are exploited to generate the
different overviews about results.

3.2.5. Presentation of Results
The presentation of results from the UIMA comparator are
available in several variations (We will give only a short
description about the different views here. For more details
cf. the appendix with several screenshots of result presen-
tations):

Document View. There is a graphical interface that dis-
plays master result and student result on two parallel panes
with color coded annotations (see Fig. 4).

Detailed Statistical Overview. For a given document
and a given solution, a table view is presented that contains
name of annotation, results about correctness of position
and features (e.g. highlighted by a red background), and a
summary about all features (and feature values) of the an-
notation (see Fig. 5).

Overview about all Solutions for a Document. This
presentation is a tabular view that contains for each solu-
tion the results for a document (see Fig. 6).

Comparison of all Solutions. All documents and results
of all solutions are presented. This overview provides a fast
overview about all solutions for a specific document (see
Fig. 7).

Student’s Perspective. In this table view (see Fig. 8), the
results are listed for all documents and a summary about all
documents for a solution.

4. Future Work
Our future work is focussed on two projects: 1. The inte-
gration of the comparator into eduComponents and 2. De-
veloping of an UIMA DocWriter.

15

Integration of the Comparator into eduComponents
In this project, we started with the conceptualization of
the interfaces for the comparator. Following reimplementa-
tions are necessesary for the integration:

• interfaces for input of parameters (by teacher)
• interfaces for students (upload for their solution)
• several presentations for results (teacher view and student

view)

These reimplementations are related to user interfaces. The
core of the UIMA Comparator, i.e. the comparison and
evaluation, will be the same like described in this paper.
The relevant Java libraries are integrated into in the frame-
work of our CAA system.

UIMA DocWriter
To manage large UIMA projects or several UIMA applica-
tions, it is necessary to quickly get an overview of the used
annotators, annotation types, and so on. A PEAR package
supports only the installation of a new UIMA application,
but it delivers no documentation about the internal work-
flow of the application. Another useful tool for documen-
tation, Javadoc, manages only information from Java files
but gives not a holistic picture of the complete UIMA work-
flow.
Currently, a complete documentation of an UIMA project
must be written by hand and this is very time consuming.
This bottleneck can be overcome by a ‘UIMA DocWriter’.
An UIMA DocWriter will take an AE descriptor or a CPE
(Corpus Processing Engine) descriptor as input and will au-
tomatically generate a documentation comprising relevant
information:

• a description of annotators,
• used annotation types and their features,
• capabilities,
• workflow of CAS processes,
• applied external resources,
• ...

This documentation will be supplemented by the generated
Javadoc documentation of the containing Java files.
For a quick overview, the generated documentation offers
a kind of concise data sheet, which contains only the most
relevant information but with links to further details. The
data sheet can as well be used for presentation and retrieval
of a specific UIMA application in the ‘UIMA’ download
portal.
Following descriptors should be supported:

• Analysis Engine (primitive and aggregate)
• Type System
• CAS Consumer
• Collection Reader
• Collection Processing Engine

The Document Writer will return the documentation as
HTML, as PDF or as ASCII text file. Links between de-
scriptors (e.g. Analysis Engines refers to a Type System)
will also be presented as e.g. hyperlinks. The user can
choose in an interface which information should be printed
and described in the documentation.
We started with the documentation of Analysis Engines as
HTML based description.

5. Summary
We reported about several tools supporting the development
of UIMA based applications as well as the evaluation of
UIMA based annotators.
The UIMA Class Generator reduces the time effort for cre-
ation of new annotators, collections readers, or CAS Con-
sumers. For a beginner, it is easier to work with such a
tool. Besides minimizing the typing, the generated Java
class avoids the beginners’ search for failures caused by
typing errors or missing statements in the class file.
The second tool presented in this paper is the UIMA com-
parator. The comparator compares annotations of several
Analysis Engines with a given master solution. The com-
parison is based on a match of position and features of the
annotations. We developed this tool to reduce the effort
while comparing students’ solutions with a master solution.
The comparator provides different presentations of results
(give overview about all solutions vs. show a document
with all solutions). Our aim is to integrate this comparator
into CAA facility of the eduComponents framework.
The comparator is as well a helpful tool in UIMA devel-
opment: It allows to quickly detect how changes in UIMA
AEs lead to changes in annotation results.

Acknowledgement
We have to thank our student researchers, Y. Vershynin, F.
Fricke, and A. Shaker for their efforts in developing and
implementing these tools.

Note on Availability
The tools described in this paper are available from the au-
thors upon request. eduComponents are open source and
are available from
http://wdok.cs.uni-magdeburg.de/software/.

6. References
M. Amelung, P. Forbrig, and D. Rösner. 2008. Towards generic

and flexible web services for e-assessment. In ITiCSE ’08:
Proceedings of the 13th annual SIGCSE conference on Innova-
tion and technology in computer science education, New York,
NY, USA. ACM Press. to appear.

H. Cunningham, D. Maynard, K. Bontcheva, and V. Tablan. 2002.
GATE: A framework and graphical development environment
for robust NLP tools and applications. In Proceedings of the
40th Anniversary Meeting of the Association for Computa-
tional Linguistics.

D. Rösner, M. Piotrowski, and M. Amelung. 2007. A sustainable
learning environment based on an open source content man-
agement system. In Wilhelm Bühler, editor, Proceedings of
the German e-Science Conference (GES 2007). Max-Planck-
Gesellschaft.

A Appendix: Screenshots

16

Figure 3: UIMA Class Generator: Generated Java Class.

Figure 4: UIMA Comparator: Document viewer for results from different analysis engines (master and student).

17

Figure 5: UIMA Comparator: Detailed statistical overview.

Figure 6: UIMA Comparator: Overview about all analysis engines and a specific document in the collection.

18

Figure 7: UIMA Comparator: Overview about all documents and all solutions.

Figure 8: UIMA Comparator: Results of different AEs for all documents for a solution.

19

UIMA for NLP based Researchers’ Workplaces in Medical Domains

Manuela Kunze, Dietmar Rösner

Otto-von-Guericke-Universität Magdeburg
Institut für Wissens- und Sprachverarbeitung

P.O. Box 4120, D–39016 Magdeburg, Germany
makunze@iws.cs.uni-magdeburg.de, roesner@iws.cs.uni-magdeburg.de

Abstract
We present our experiences from building domain specific NLP applications on the basis of the UIMA framework. The framework is
used in processing of documents in German from the medical domain. In this paper, we report about two such NLP applications. The
first one is processing of diagnostic summaries in the domain of psychotherapy and the second one is processing of autopsy protocols.
The results of both applications are user interfaces that support the domain experts in their specific research.

1. Introduction
In this paper, we present our experiences from building
domain specific NLP on the basis of the UIMA frame-
work.1 Our experiences with UIMA relate to using UIMA
in university teaching as well as in different NLP appli-
cations. Two of our projects are presented in this pa-
per. These projects analyse and annotate documents from
the medical domain. For the purpose of processing the
resp. corpora, we combined different tools and resources.
The UIMA framework provides the basis for this work.
The results are used from researchers in medical domains.
We have built interfaces as prototypical researchers’ work-
places that present results to researchers and that support
the researchers to define their own search queries against
the annotated corpus. A complete overview about our
UIMA activities (including screenshots of several applica-
tions) is given at our UIMA project site.2

Why UIMA?
UIMA promises to support the re-use of tools (e.g. analysis
engines) from other applications. The tools are configured
by XML based descriptions that are linked to the imple-
mentations of these tool. Parameters, resources and types
of annotations are defined in these descriptors. The hand-
ling of such descriptions is relatively easy, and parameters
for an analysis engine can be changed also by a non UIMA
expert. For the Java implementation of these tools there
exist a variety of interfaces which can be extended.
For each processing step (reading a document, analysing it,
and printing results), Java interfaces are available. UIMA
provides an engine (collection processing engine) to man-
age and to launch these processing steps for a whole corpus.
The modular structure of the framework makes it easy to
use tools (e.g. analysis engines) in different applications,
while the concept of annotations defined in UIMA makes it
possible to exchange results between different applications.
In the next sections, we give a description of our applica-
tions in more detail. We describe two use cases for UIMA
based medical applications. The first one processes diag-

1http://incubator.apache.org/uima/
2http://wdok.cs.uni-magdeburg.de/forschung/projekte/uima-

workbench/projects/

nostic summaries and the second application analyses au-
topsy protocols. For each use case, we give a short descrip-
tion of the corpus and an overview about the processing
pipeline. Finally, a comparative summary is given.

2. NLP Architecture
In general, the architecture of our applications can be di-
vided into four modules:
• preprocessing of documents,

• analysis of documents,

• preparing results for postprocessing, and

• user-interface for domain experts (a kind of researchers’
workplace).

Each module integrates functionalities from the UIMA
framework. The different applications are described in the
following use cases.

2.1. Use Case #1: Processing Epicrises
This application will be used to support psychotherapists
to analyze a corpus of so-called epicrises (i.e. summary
reports of diagnoses and treatment for specific patients).
Their central research question is whether this corpus al-
lows to detect significant changes in the distribution of di-
agnoses that can be related to the fundamental changes of
the socio-political system after 1989 in former East Ger-
many. The general issue here is the development of evalua-
tion strategies for corpora in which temporal information is
relevant and has to be taken into account.
The work started with a feasability study based on a corpus
containing diagnostic summaries only (which are parts of
epicrises which will be under investigation in the near fu-
ture) from patient records from a psychotherapeutic clinic
located in former East Germany. The dates of the corpus
documents span over a time period from before the col-
lapse of the communist regime (the so-called ‘Wende’ or
‘Change’ of 1989) till today. The diagnostic summaries are
written in a very compact form and those from after 1990
are in the most of cases even in a verbless form. A represen-
tative summary contains the following parts (a predefined
order of these parts is not given):

20

• symptoms,

• characteristics or personality of the patient,

• diagnosis,

• and (optional) causal incidents.

2.1.1. Preprocessing Module
The task of the preprocessing module is to prepare the doc-
uments for the analyses. This requires also some analy-
sis engines. The documents in our corpus contain the col-
lected diagnostic summaries made in a year. For the pur-
pose of subsequent analyses, these documents are splitted
into distinct files. Each of these files then contains only one
diagnostic summary. Besides different collection readers,
the module contains a diagnostic detector and a diagnostic
printer. The diagnostic detector annotates the different di-
agnostic summaries and extract from the summary the ID
for this summary. Then the diagnostic printer creates for
each diagnostic summary a file. The name of the file con-
sists of the ID of the diagnostic summary.

2.1.2. Analysis Module
In this module, different analysis engines were combined.
We used domain specific and non domain specific tools.
In the following, we will give a short description of these
tools.

Taggers. The application exploits a structure tagger and
a POS tagger. The structure tagger annotates numbers,
urls, ip numbers, punctuations, and abbreviations. The POS
tagger uses a Java based reimplementation of the POS Tag-
ger of the XDOC system (Rösner and Kunze, 2002) and
of the morphological component MORPHIX for German
(Finkler and Neumann, 1988). The POS annotation con-
tains information about the word category, stem form, as
well as information about case, gender, and number. This
information is later used by other analysis engines.

Concept Detection. The annotation of concepts within
documents is based on three different approaches. The first
annotator uses a kind of gazetteer lists. Each list contains
phrases or tokens for a specific category. The lists are gen-
erated by hand or extracted from Wikipedia.3 There are
lists about syndroms, symptoms, diseases etc.
The second concept annotator is a tagger (for details see
(Kunze and Rösner, 2004)) that uses the resouces of Ger-
maNet (Kunze, 2001). For each token, the annotator looks
for a synset in GermaNet which contains the token. If a
synset was found, then the synset that is assigned in the
hyperonymy relation is used as concept description for the
token.
The UMLS annotator is the third annotator for detection of
concepts. This annotator uses the resources of UMLS (Uni-
fied Medical Language System).4 We developed a tagger
that used the information about concepts from the Metathe-
saurus and information about types in the Semantic Net-
work of UMLS.5 An example: The term ‘Angst’ (in En-

3http://www.wikipedia.de/
4http://www.nlm.nih.gov/research/umls/
5The Metathesaurus is a large multi-lingual database that con-

tains several descriptions about biomedical and health related con-
cepts from different thesauri, classifications etc. Each concept de-

glish: fear) will by this annotator be assigned with the fol-
lowing information:
• type: T184,

• type description: Sign or Symptom,

• concept: C0003467, and

• concepts description: MSH|Persistent feeling of dread, ap-
prehension, and impending disaster.6

The GermaNet and UMLS analysis engines are also ap-
plied in our other projects. By an extension or exchange of
gazetteer lists, the gazetteer annotator could easily be used
for documents from other domains.

Synonym Recognition. The synonym recognition tool
annotates domain specific synonymous terms and phrases
for diagnoses. In the feasability study ten types of diag-
noses (e.g. ‘depression’, ‘psychosomatic disorders’, etc.)
are distinguished. The synonyms are recognised by regular
expressions and are annotated with their type (e.g. depres-
sion). This type will be evaluated by other analysis engines
(e.g. by the subfragment classifier).

Detection and Classification of Subfragments. For a
better evaluation of results, it was necessary to split the di-
agnoses into different parts (e.g. personal characteristics,
symptoms, etc.). For this task, we first use a discourse
marker annotator and after this a splitter has been applied.
For this process, we created a list of discourse markers.
These discourse markers are classified into several groups
that introduce specific subfragments. For example, the fol-
lowing phrases introduce the fragment about causal inci-
dents: infolge, in Folge, als Folge, nach, reaktiviert durch,
als Reaktion auf, im Zusammenhang mit (some examples in
English for this category are: as result of, in consequence
of, after, because of, in conjunction with, etc.).
This information is used by a subfragment classifier. The
task of the subfragment classifier is to assign parts of a di-
agnostic summary to a fragment category. These fragment
categories are diagnosis, symptoms, personal characteris-
tics and causal incident.
We developed two approaches. The first one is rule-
based and the second employs an implementation of an
OpenNLP-Maxent-based classifier.7

The rule-based classifier analyses information about the in-
troducing discourse marker and the discourse marker fol-
lowing of a subfragment and checks for specific keywords
within the subfragment. After separation, the subfragments
of personal characteristics and causal incidents were classi-
fied into specific categories (e.g. familial conflicts vs. job-
related conflicts). This was done by analysing the key-
words.
The maximum entropy classifier uses the following fea-
tures:

scription contains information about its source vocabulary. The
concepts are assigned to at least one semantic type from the Se-
mantic Network in UMLS.

6MSH is the source for this concept description
and stand for MeSH: Medical Subject Headings (see
http://www.nlm.nih.gov/mesh/).

7http://maxent.sourceforge.net/

21

• category of introducing discourse marker,

• category of following discourse marker,

• occurences of specific UMLS and GermaNet categories
within the subfragment, and

• occurences of categories of synonyms in the subfragment.

For the purpose of building the model of the classifier, we
used a training corpus of about 50 diagnostic summaries.
The subfragments were extracted by a specific collection
processing engine and classified by hand. This data is used
as input for training the classifier.

2.1.3. Results Processing and User Interface
In this module, the results are prepared for the evaluation by
psychotherapists. The annotations of the documents were
transformed into different formats. The psychotherapist
can use the documentation viewer of UIMA or a domain
specific viewer. This viewer presents the different subfrag-
ments (personal characteristics, causal incident, symptoms,
and diagnosis) separately together with the whole docu-
ment content. When a classification was possible for the
subfragments ‘personal characteristics’ and ‘causal inci-
dent’, the results are also presented in the viewer (otherwise
the original text of the subfragment is presented).
Another presentation form is a statistical overview about
detected concepts. This view will be extended with master
file data to generate more specific statistics (e.g. number of
depressions in a concrete year). Furthermore, there exists
several consumer implementations for indexing the anno-
tated documents. We integrated a search engine based on
Lucene8 and UIMA’s semantic search engine.
To operate with the system, an user interface is available
for psychotherapists. The interface provides functions to
launch the different processing steps (separation, analyses),
to view results and to search in the corpus via UIMA’s se-
mantic search engine or Lucene.

2.2. Use Case #2: Processing Autopsy Protocols
This application analyses a corpus of autopsy protocols
(Wittig et al., 2006). Results of processing will be used
by medical doctors in their research, e.g. for the purpose of
detection of injury patterns and creation of resp. statistics.
The corpus contains forensic autopsy protocols in German
with more than 1 million running word forms. The autopsy
protocols have a strictly defined content and layout. They
are separated into different document parts, e.g. findings,
background, discussion, death causes, etc. Each document
part has its own characteristics (sub-language).

2.2.1. Preprocessing Module
In this case, we need a preprocessing step for anonymisa-
tion. For this task, an analysis engine is used, which an-
notates sensible data like names of person, locations and
dates. A CAS consumer replaces this data by placehold-
ers and a human reader rechecks the results of this pre-
processing step before subsequent processing steps will be
launched.

8http://lucene.apache.org/java/

2.2.2. Analysis Module
For analysing, we used different analysis engines too. The
non domain specific tools for POS tagging, concept detec-
tion etc. described in the previous sections are again used.
In this section, we will only describe in more detail the do-
main specific analysis engines.

Context Based Analysis. This tool combines several do-
main specific annotators for the detection and analysis of
medical concepts. These annotators detect relations be-
tween injuries and their resp. locations (heart, kidney, etc.).

Personal Data Annotator. This annotator extracts for
each autopsy protocol information about age and weight
of the person. This data is relevant for statistical evalua-
tion (e.g. number and kinds of death causes for specific age
groups).

Traumata Annotator. The traumata annotator searches
for specific mentions of injuries in autopsy protocols. It
applies a list of regular expressions. We differentiate be-
tween several trauma categories: hematoma, fractures, stab
wound, gunshot wound, and so on. For example, the cate-
gory fractures covers different kinds of fractures: commin-
uted fracture, splintered fracture, cranial fracture, etc.

Weapons Annotator. For evaluations about numbers of
acts of violence (e.g. in a specific year), it is necessary to
search for occurrences of weapons. The weapons annotator
annotates these occurrences (e.g. in the background part of
an autopsy protocol). The annotator uses several regular ex-
pressions and each expression belongs to a specific weapon
category. For example: poniard and knife are assigned to
the category thrusting, while axe and hatchet are assigned
to the category baton.

Summary Annotator. The summary annotator uses reg-
ular expressions to extract information about death cause
and manner of death. This information is used for the pur-
pose of a first classification of autopsy protocols.

Criminal Offense Signs Annotator. This annotator cre-
ates annotations for terms and phrases that describe signs of
criminal offense. These terms are categorized into several
types. For example: ‘Durchtrennung’ (in English: transec-
tion by a knife) and ‘Stichkanal’ (in Englisch: stab canal)
are assigned to the category ‘stab injury’.

2.2.3. Results Processing and User Interface
The results of the different annotators are prepared for tex-
tual summaries and for UIMA’s semantic search engine.
The annotations are used for building up a search index.
To support the user for creating specific user queries, we
extend UIMA’s query interface. The user can select a spe-
cific annotation and its features from a list of possible an-
notations and feature values (e.g. the annotation ‘Alter’ (in
Englisch: age) has a feature labeled with ‘Bereich’ (in Eng-
lish: range). This feature can have the values: ‘bis10’, ‘11-
19’, ‘20-29’, and so on.) The selected entry is inserted as
XML fragment into the query for the UIMA search engine.
This query interface can also be used for other applications
(e.g. see use case # 1). As input, the interface expects the
following data:

• directory of indexed files,

• directory of CAS files,

22

• type system descriptor file,

• the XML description for the indexer, and

• a XML based description of possible values for features (a
predefined list of values or a link to a file that contains the
values).

The XML descriptions are used to create the list of possible
entries for the user interface.

2.3. Comparision of Researchers’ Workplaces
There are some relevant differences between the two types
of researcher’s workplaces:
Researchers in forensic medicine use information extracted
from autopsy protocols to answer a broad spectrum of ques-
tions, mostly of a statistical nature. These may be repetitive
questions that ask for developments over time periods, e.g.
questions related to criminal statistics. Other questions may
be related to possible changes of data in relation to specific
events. A typical example for the latter type is the question
if, and when how and under what circumstances, a new se-
curity device in automobiles influences injury patterns and
death rates in car accidents. For reliable results this type
of researchs needs to be based on a large and continually
updated corpus of – ideally – protocols from throughout
Germany (and additionally from Austria and Switzerland).
The ease of formulation of ad hoc queries is a major re-
quirement for this type of researchers’ workplace.
In contrast, the epicrisis project has a single central research
question: Have psychotherapeutic diagnoses and diagnostic
argumentation and terminology changed in relation to the
’Wende’ in East Germany and if so, in what respect? The
corpus of about 1000 discharge summaries ranging from
1979 till 1999 is fixed (ie. it is a ’historical’ corpus) and
covers all resp. patients from this time period from the
clinic under investigation. The research question demands
for much more creativity and experimentation here in con-
trast to the more repetitive nature of some of the statistical
questions in the evolving corpus of autopsy protocols.

3. Developing of Resources
The UIMA framework is also useful for extension of lan-
guage resources used in NLP applications. We used dif-
ferent CAS consumers for generating of lists about missing
information in our language resources. For example:
• terms not covered by POS Tagger,

• abbreviations not covered by structure tagger, and

• subfragments that could not be assigned to a fragment cate-
gory.

The CAS consumers return lists with e.g. terms that are not
covered by the POS Tagger. The developer can use this list
as input for approaches in automatic extension of lexical
resources or for the evaluation of tools.
Furthermore, we used another CAS consumer to create our
training data for the classifier. The CAS consumer extracts
all relevant information for the classifier. These data were
annotated (by hand) with the correct classification.

4. Summary
In this paper, we presented two complex example systems
for processing documents from the medical domain:

• evaluation of (diagnostic summaries of) epicrises and

• analyses of autopsy protocols.

Both architectures are build up on the UIMA framework.
We used different implementation interfaces (e.g. collec-
tion reader, analysis engine, and consumer) to create a com-
plex application for supporting the domain experts in their
analyses. The whole system is build up in a modular man-
ner, and the integrated tools could also be used for process-
ing other documents. The strict separation of resources and
process methods simplifies the extension of domain specific
resources.
The unique principle of using XML based descriptors sup-
ported fast implementation and configuration of tools for
specific domains. The framework delivers different APIs
for accessing and managing the information in the descrip-
tors.
Besides UIMA, the application contains tools and inte-
grates resources, like Lucene or GermaNet.
During the developing of the described applications, we
also used UIMA for the creation of lexical resources (e.g.
print-out of terms not covered by POS Tagger) and training
data for the subfragment classifier.
When you have some experiences with UIMA, the pro-
cess of creation of complex NLP applications is simple.
For beginners, it is a little bit hard to understand the in-
ternal structure and mechanisms within UIMA. The tuto-
rials and documentation are a good start to working with
UIMA, but the description of internal classes, methods etc.
are insufficient. Some processes are essential while devel-
oping UIMA based applications (e.g. merging of different
type system descriptions, reading of descriptors and so on),
a tutorial for developer that describes such aspects of the
processes could be helpful.
All tools described in this paper are available from the au-
thors upon request.

5. References
W. Finkler and G. Neumann. 1988. MORPHIX: a fast

Realization of a classification-based Approach to Mor-
phology. In H. Trost, editor, Proceedings der 4. Öster-
reichischen Artificial-Intelligence Tagung, Wiener Work-
shop Wissensbasierte Sprachverarbeitung, pages 11–19,
Berlin, August. Springer Verlag.

M. Kunze and D. Rösner. 2004. Issues in Exploiting Ger-
maNet as a Resource in Real Applications. LDV Forum,
19(1):19–30. ISSN 0175-1336.

C. Kunze, 2001. Lexikalisch-semantische Wortnetze, pages
386–393. Spektrum, Akademischer Verlag, Heidelberg;
Berlin.

D. Rösner and M. Kunze. 2002. An XML based Document
Suite. In Proceedings of Coling 2002, pages 1278–1282,
Taipei, Taiwan, August.

H. Wittig, W. Kuchheuser, M. Kunze, D. Krause, and
D. Rösner. 2006. Erfahrungen bei der Nutzung
des Computerprogramms UIMA als Werkzeug für
die zielorientierte Suche in rechtsmedizinischen Doku-
mentensammlungen. In Jahrestagung der Dt. Ges. f.
Rechtsmedizin, Innsbruck. Tagungsband.

23

Flexible UIMA Components for Information Retrieval Research

Christof Müller∗, Torsten Zesch∗,
Mark-Christoph Müller∗, Delphine Bernhard∗, Kateryna Ignatova∗,

Iryna Gurevych∗ and Max Mühlhäuser†

∗ Ubiquitous Knowledge Processing Lab
† Telecooperation Division

Technische Universität Darmstadt, Germany
{mueller|zesch|chmark|delphine|ignatova|gurevych|max}@tk.informatik.tu-darmstadt.de

Abstract
In this paper, we present a suite of flexible UIMA-based components for information retrieval research which have been successfully used
(and re-used) in several projects in different application domains. Implementing the whole system as UIMA components is beneficial for
configuration management, component reuse, implementation costs, analysis and visualization.

1. Introduction
Existing information retrieval (IR) tools and frameworks
like Apache Lucene1 focus primarily on application build-
ing, where fast indexing and retrieval capabilities for large
data collections are the driving factor. In IR research how-
ever, indexing and retrieval speed are not the (only) impor-
tant factors. For rapidly performing successful IR experi-
ments, it is crucial to
• support an easy integration, combination and configu-

ration of new IR algorithms,
• manage vast numbers of runs of IR experiments result-

ing from different system configurations,
• provide evaluation methods for retrieval performance,

and
• visualize the data, the retrieval process and the results.

Successful research in the field of IR and the development
of new IR models involve constant changes to both the
algorithm implementations and the preprocessing compo-
nents, as well as the handling and visualization of (poten-
tially huge amounts of) textual data for analysis purposes.
A recent shift in IR towards semantics and NLP methods, as
indicated by emerging search engines like Powerset, Hakia,
Lexxe, and CognitionSearch,2 shows the need for integrat-
ing more sophisticated preprocessing capabilities into IR
frameworks.
In this paper, we present a suite of flexible UIMA-based
components for IR research which have been successfully
used (and re-used) in several projects in different appli-
cation domains. The components are part of the DKPro
(Darmstadt Knowledge Processing) repository3, a collec-
tion of UIMA-based components for NLP tasks. The focus
of this paper is on a description of the IR components in
the DKPro repository. Section 2. briefly describes some
requirements for research-oriented IR systems. Section 3.
outlines a generic IR workflow and how it is realized by
our DKPro components. Section 4. describes some of the
projects in which they have been successfully applied.

1http://lucene.apache.org
2http://www.powerset.com, http://www.hakia.com, http://lexxe.com,

http://cognitionsearch.com
3http://www.ukp.tu-darmstadt.de/software/repository

2. UIMA for Research-Oriented IR
From the above characterization of IR research, some clear
requirements for the implementation of IR systems can
be deduced, including the ability to process (potentially
huge amounts of) unstructured natural language text, and
to quickly configure different setups using varying combi-
nations of (pre-)processing and retrieval components.
The modular nature of our components (as brought about
by the UIMA architecture) simplifies within-project config-
uration management (i.e. different system configurations
for different experiment runs), and minimizes the effort
for cross-project employment (i.e. re-use) of components.
The implementation of IR algorithms as UIMA compo-
nents also offers the possibility to use the results of sophis-
ticated NLP methods in the retrieval process without hav-
ing to build custom indexing formats. Moreover it enables
a thorough analysis of data and results as the visualization
component can create combined views of the preprocessing
and retrieval process.

3. IR Components in DKPro
The DKPro software repository is a collection of UIMA
components for various NLP tasks. Among components
for tasks in areas as diverse as topic segmentation, opin-
ion mining, and community mining, it also contains flexi-
ble and efficient IR components.4 The components cover
all steps in what can be regarded as a generic IR workflow.
Figure 1 provides an overview.

3.1. Collection Reading
This initial step relates to the basic task of importing the
test collections (i.e. the documents and the related topics5)
into the IR system. In UIMA, it is to be performed by in-
stances of reader components. In different application do-
mains, document collections come in vastly different for-
mats, and it is in the reader (and only here) that the pecu-
liarities of the respective formats are dealt with. The DKPro
repository contains several readers for various formats. A

4Currently based on Lucene. Work for supporting further IR
toolkits like e.g. Terrier is ongoing.

5The topic is a natural language statement of a user’s informa-
tion need which is used to create a query in an IR system.

24

Documents

TREC
Reader

FAQ
Reader

XML
Reader

WSDL
Reader

● Sentence splitting
● Paragraph splitting
● Tokenization
● Spelling correction
● Lemmatization
● Stemming
● Compound splitting
● Stop word removal
● Thesaurus

Index Term
Generator

Topics

Lucene Query
Generator

Lucene
Searcher

Lucene
Index
Writer

IR
Evaluator

IR
Result

Consumer

Document
Index

Collection reading Preprocessing

Indexing

Retrieval and evaluation

Evaluation
DB

Rankings

Collection
Reader Annotator Consumer

Legend

Figure 1: DKPro Components in a Generic IR Workflow

core functionality performed by all readers is the annota-
tion of each processed collection item (i.e. document and
topic) with a DocumentMetaData annotation. Apart from
providing a unique ID for each item, this annotation also
contains information like the title of a document or the ID
of the collection it belongs to. This information is used
in several downstream processing steps, including retrieval
and visualization (cf. below). Some of the readers conserve
collection-specific formatting information by adding anno-
tations to the document. The XMLReader e.g. can be pa-
rameterized to create annotations for arbitrary XML ele-
ments found in a document. Other readers (like e.g. the
WSDLReader) use more elaborate analysis to create more
specific annotations.

3.2. Preprocessing
IR document collections normally consist of natural lan-
guage text (but cf. Section 4.3.). Some preprocessing is
commonly performed in order to (1) make explicit hid-
den structure within the texts (e.g. sentence or paragraph
splitting or tokenization), (2) normalize their content (e.g.
lemmatization, stemming, compound splitting, or spelling
correction), or (3) add linguistic meta information (e.g.
POS tagging, parsing, or stop word identification).
In UIMA, this is modelled as a task for annotator com-
ponents, which add the new information and the normal-
ized content in the form of annotations. More substan-
tial modifications (like e.g. spelling correction in error-
prone user-generated discourse, cf. Section 4.2.1.) can
be implemented by having the annotator component ac-
tually modify the underlying content.6 This method is
used by SpellingCorrector. For numerous prepro-
cessing tasks, powerful stand-alone tools are already avail-
able in the NLP research community. Where possible,
the components in DKPro utilize these. Our POSTagger
and Lemmatizer e.g. are wrappers for the TreeTagger
(Schmid, 1994). In a broader sense, preprocessing can
also be understood to comprise less generic and more
application-specific tasks. For IR, one of these tasks is
query expansion, in which related terms are added to the
query text. The DKPro repository contains a component
which adds related terms (e.g. based on various types of se-
mantic relatedness (Gurevych, 2005)) in the form of anno-
tations. Keeping the original query text and the expansion

6Technically, this is implemented by having the annotator cre-
ate a new view containing the altered content.

terms apart by adding the latter in the form of annotations
is particularly useful because it allows explicit control over
the use of the query expansion feature by downstream com-
ponents, e.g. for assigning a different weight to expansion
terms in the query generation and retrieval process.

3.3. Indexing
The generation of a document and query index is a prereq-
uisite for efficient retrieval. The scope and nature of the in-
dex can vary for different collections and different applica-
tions. In some settings, all document and query tokens (pre-
sumably excluding stop words) have to be indexed, while
in other settings only certain parts might be relevant. In
DKPro, the IndexTermGenerator annotator is respon-
sible for identifying terms to be indexed. Provided that the
respective preprocessing has been performed earlier, it can
create index terms of entire tokens, lemmata, stems, and/or
other arbitrary annotation elements. If the POSTagger an-
notator was applied to the documents and queries to be in-
dexed, index term generation can also be constrained by
POS information. The resulting index terms are then writ-
ten by a consumer component to an index file in the for-
mat required by the IR engine to be used. Up to now, the
DKPro repository contains a LuceneIndexWriter and
some project specific components, which are described in
Section 4.

3.4. Retrieval, Evaluation, and Visualization
In the retrieval step, the previously generated document and
query indices and a set of parameter settings (e.g. thresh-
old values to be used) are employed to create actual IR
runs. A run consists of the application of all queries to
a document collection and yields a quantitative evaluation
of the overall effectiveness of the applied (pre-)processing
pipeline, parameter settings, and retrieval engine for a par-
ticular document collection. The retrieval step is broken
down into query generation, search, evaluation, and (op-
tionally) visualization. For each of the first three steps,
there is a dedicated component in DKPro. The first two
(LuceneQueryGenerator and LuceneSearcher)
are particular to the retrieval engine to be used. The third
one (IREvaluator) is a general-purpose IR evaluation
component which computes common IR evaluation mea-
sures by wrapping the trec eval7 tool, but which also
offers other evaluation measures like Spearman’s rank cor-

7http://trec.nist.gov/trec eval

25

relation coefficient. The IREvaluator can optionally
store the evaluation results in a relational database. The
stored results include not only the overall retrieval results,
but also detailed information about individual topics and
documents.
In contrast to visualization of IR results in an end-user
oriented setting8, IR research is best supported by allow-
ing researchers to trace individual topics and documents
through the entire retrieval run, e.g. for error or general per-
formance analysis. For the DKPro IR components, this is
supported by a component which allows result visualiza-
tion and browsing. As browsing is inherently interactive, it
is not naturally implemented as a (pipeline-oriented) UIMA
component. Therefore, result browsing is implemented as a
servlet-based web application which reads evaluation infor-
mation from the database (created by the IREvaluator)
and displays it in a web browser. The analysis process
which is necessary for understanding and improving the IR
model requires data browsing on different information lev-
els:

• run level: configuration parameters and overall results;
• query level: evaluation results of each query (for se-

lected runs);
• document level: relevance scores and relevance assess-

ments of each document (for a certain query and se-
lected runs);

• process level: visualization of the retrieval process of a
document (for a certain query and selected runs).

The component uses the original documents and topics,
the output of the retrieval process and the relevance as-
sessments. In order to provide detailed information on the
process level, the component offers the possibility to rerun
the processing pipeline for a selected document and query,
adding a special consumer to the pipeline which creates an
HTML document with preprocessing and retrieval informa-
tion. In this step, topic and document are passed simultane-
ously through the pipeline (in the same CAS object, but in
two separated views) and the retrieval components can add
additional information that helps to understand the details
of the retrieval process.
Especially for research purposes, the tight coupling of
preprocessing and retrieval can be beneficial when devel-
oping new IR algorithms. Instead of investing time in
(re-)adjusting or implementing new indexing formats, the
retrieval components can (temporarily) work directly on the
annotations created by the preprocessing components.

3.5. Configuration Management
As mentioned above, IR research aims at finding new and
improved algorithms and optimized settings for IR param-
eters. Also, different configurations for preprocessing steps
yield multiple indices. In practice, therefore, the process-
ing workflow described above has to be executed very of-
ten. The DKPro IR components are complemented with
a number of helper components for batch execution of ex-
perimental runs. The helper classes provide functionality

8http://people.lis.uiuc.edu/∼twidale/irinterfaces/2classics.html,
http://people.ischool.berkeley.edu/∼hearst/tb-overview.html

for programmatically configuring and executing collection
processing engines. The configurations can be stored in
a relational database which enables the visualization and
comparison of IR results in the visualization component.

4. DKPro IR Components in Use
In this section, we give a detailed account of how some of
the components in the DKPro repository are employed in
several projects in different application domains. Where
available, experimental results are also reported.

4.1. Electronic Career Guidance
The task of electronic career guidance is to support school
leavers in their search for a profession or a vocational
training to take up. In (Gurevych et al., 2007), we de-
scribe work in which electronic career guidance is mod-
elled as an IR task. Vocational trainings are represented
by documents which were automatically extracted from
BERUFEnet, a database created by the German Federal
Labour Office. Topics are short essays collected from
students in which they describe in their own words what
they would like their future job to be like. One spe-
cial challenge of this task is the large vocabulary gap be-
tween the language of the (expert-authored) documents
from the database and the language of the students. The
term vocabulary gap relates to the fact that people with
different backgrounds or different levels of expertise use
(sometimes strikingly) different vocabularies when describ-
ing similar things. String-based IR approaches (as repre-
sented e.g. by Lucene) are not able to adequately handle
this phenomenon. The best results reported in (Gurevych
et al., 2007) were therefore produced by a semantic in-
formation retrieval component, which scores the similar-
ity of documents and queries on the basis of their seman-
tic relatedness. The components come as the annotators
RelatednessScorer and SemanticSearcher and
the consumer SemanticIndexWriter, and fit seam-
lessly into the pipeline of the other DKPro components.

4.2. Question Answering
Question Answering (QA) systems aim at giving precise
answers to natural language questions. The architecture
of traditional QA systems is therefore more complex than
IR systems, since they have to include a component which
extracts answers from documents. The answer extraction
problem can be avoided by leveraging the wealth of in-
formation available on the Web in the form of Frequently
Asked Questions (FAQ) pages and question-answer ser-
vices such as Yahoo!Answers9 or WikiAnswers10. When
answers are retrieved from question-answer repositories,
the QA task can be redefined as an IR task where topics are
natural language questions and documents are the question-
answer pairs. There are actually two ways to address this
task: by identifying paraphrases of the input question in a
question-answer repository (Section 4.2.1.), or by retriev-
ing the most similar question-answer pair from an FAQ
(Section 4.2.2.).

9http://answers.yahoo.com
10http://wiki.answers.com

26

4.2.1. Question Paraphrase Identification
The objective of this task is to retrieve those questions
in the question-answer repository which are most similar
to the input question. A first difficulty lies in the fact
that most online question-answer services record real user
questions, which may be ill-formulated or may contain
spelling errors. Prior to indexing, therefore, we apply the
SpellingCorrector annotator. In order to perform
the matching of an input question to the most similar ques-
tion in a question-answer pair, we have implemented sev-
eral text similarity measures based on the work by Tomuro
& Lytinen (2004) and Zhao et al. (2007), among others.
These measures include matching coefficient, word overlap
coefficient, edit distance and term vector cosine similarity.
Two UIMA annotators are in charge of computing the simi-
larity values and ranking the results for each input question.
These annotators replace the LuceneQueryGenerator
and LuceneSearcher components in the generic re-
trieval step described above. Since the similarity measure
to be used in a given experiment is a component’s parame-
ter, the available measures can be easily tested and new text
similarity measures can be conveniently added.

4.2.2. FAQ Mining
Based on the work by Jijkoun & de Rijke (2005), we aim at
answering users’ questions by retrieving relevant question-
answer pairs found in FAQ pages. Within this task, a doc-
ument is considered as a collection of several fields: ques-
tion and answer of a question-answer pair, title of the cor-
responding FAQ page, and the full text of the FAQ page.
In order to keep this document-specific information, anno-
tations are added to the document in the collection read-
ing step by means of a parameterized XMLReader annota-
tor. Further, the preprocessing stage allows to normalize the
content by performing lemmatization and stemming, which
are required for later building both stemmed and lemma-
tized indices. Additional information, such as the docu-
ment’s language and contained stopwords, is also added
at this point. The IndexTermGenerator allows to in-
dex different fields, e.g. a non-stemmed question keeping
stopwords, a stemmed answer without stopwords, etc. Easy
combination of annotation components and flexibility dur-
ing indexing make it possible to easily evaluate different
system configurations as described by Jijkoun & de Rijke
(2005). Our current baseline system reimplements several
of their models with comparable results. E.g., the perfor-
mance of the baseline model for the retrieval of the so called
‘adequate’ and ‘material’ answers is 45% in the top 10 re-
sults.

4.3. Web Service Retrieval
Web service retrieval is the task of retrieving from a repos-
itory of web services those services that provide a partic-
ular functionality. When cast as an IR task, topics are
descriptions of required functionalities, while the services
to be retrieved are represented as semi-structured docu-
ments. These documents have been created by crawl-
ing known web service repositories and processing the
collected WSDL files. Within each WSDL file, the
WSDLReader identifies and analyzes operation names and

operation signatures (i.e. names and types of operation pa-
rameters) and creates a textual representation to be pro-
cessed using the standard IR workflow.

5. Conclusion
In this paper, we presented a suite of flexible UIMA-
based components for research-oriented information re-
trieval which have been successfully used (and re-used) in
several projects in different application domains. The us-
age of UIMA as framework not only shows benefits for
the preprocessing components, but also for the actual re-
trieval components. Apart from well-known features of
UIMA like configuration management, component reuse,
and replicating processing pipelines, the tight coupling in-
side UIMA of the preprocessing and the actual retrieval
process offers possibilities for fast prototyping of new IR
algorithms by directly using UIMA annotations instead of
developing custom indexing formats. It also extends anal-
ysis and visualization capabilities by offering combined
views of preprocessing and retrieval on different levels of
granularity.
The described IR and preprocessing components are part
of the DKPro repository and (with some exceptions) will
be made available to interested researchers.

Acknowledgements Parts of this work were carried out
in two projects funded by the German Research Founda-
tion (DFG): “Semantic Information Retrieval from Texts in
the Example Domain Electronic Career Guidance” (grant
GU 798/1-2), and “Mining Lexical-Semantic Knowledge
from Dynamic and Linguistic Sources and Integration into
Question Answering for Discourse-Based Knowledge Ac-
quisition in eLearning” (grant GU 798/3-1).

References
Gurevych, Iryna (2005). Using the structure of a conceptual net-

work in computing semantic relatedness. In Proceedings of
the 2nd International Joint Conference on Natural Language
Processing (IJCNLP’2005). Jeju Island, Republic of Korea.

Gurevych, Iryna, Christof Müller & Torsten Zesch (2007). What
to be? - Electronic career guidance based on semantic relat-
edness. In Proceedings of the 45th Annual Meeting of the
Association for Computational Linguistics, pp. 1032–1039.
Prague, Czech Republic.

Jijkoun, Valentin & Maarten de Rijke (2005). Retrieving an-
swers from frequently asked questions pages on the web.
In CIKM ’05: Proceedings of the 14th ACM international
conference on Information and knowledge management, pp.
76–83. New York, NY, USA: ACM.

Schmid, Helmut (1994). Probabilistic part-of-speech tagging us-
ing decision trees. In Proceedings of the International Con-
ference on New Methods in Language Processing (NeM-
LaP). Manchester, U.K., 14–16 September 1994.

Tomuro, Noriko & Steven Lytinen (2004). Retrieval Models and
Q&A Learning with FAQ Files. In Mark T. Maybury (Ed.),
New Directions in Question Answering, pp. 183–194. AAAI
Press.

Zhao, Shiqi, Ming Zhou & Ting Liu (2007). Learning Question
Paraphrases for QA from Encarta Logs. In Proceedings of
the 20th International Joint Conference on Artificial Intelli-
gence, pp. 1795–1801. Hyderabad, India.

27

Integrating a Natural Language Message Pre-Processor with UIMA

Eric Nyberg, Eric Riebling, Richard C. Wang and Robert Frederking
Language Technologies Institute

Carnegie Mellon University
5000 Forbes Avenue

Pittsburgh, PA 15213 USA
E-mail: {ehn,er1k,rcwang,ref}@cs.cmu.edu

Abstract
This paper describes the use of the Unstructured Information Management Architecture (UIMA) to integrate a set of natural language
processing (NLP) tools in the RADAR system. The challenge was to define a common data model and a set of component interfaces
for these tools, so that they could be integrated into a single system. The integrated system is used to pre-process each email arriving in
the RADAR user’s IMAP store. We present a UIMA collection processing engine for RADAR, including a common type system for
text analysis results and annotators for each of the NLP tools. The paper also includes an analysis of system performance and a
discussion of the lessons learned through use the of UIMA for this integration task.

1. Introduction
This paper describes the use of the Unstructured
Information Management Architecture (UIMA) to
integrate a set of natural language processing (NLP)
components in the RADAR system. The RADAR
(Reflective Agent with Distributed Adaptive Reasoning)
system is comprised of a set of intelligent agents that
assist the user with routine tasks such as email and
scheduling 1 . Its initial test domain is conference
planning.

RADAR agents include a Calendar Agent, which notices
requests for appointments and helps the user to fit them
into his or her calendar, and a Briefing Assistant, which
extracts important parts of documents such as meeting
minutes to provide automatic briefings (Kumar et al.
2007). These two RADAR agents assume that email
messages have been pre-processed with text analysis
software to recognize important ranges of text (for
example, a request for a meeting. or an action item). This
pre-processing is accomplished by a large set of both
pre-existing, and project-developed, NLP tools.

The architectural challenge was to define a common data
model and a set of component interfaces for these tools, so
that they could be integrated into a single system. The
integrated system is used to pre-process each email
arriving in the RADAR user’s IMAP store; the output of
the NLP tools is stored in the form of standoff annotations
- data structures derived from text analysis which are
stored separately from the text itself. The UIMA
framework is used to define a common type system for
text analysis results. An annotator wrapper was written
for each NLP component in the pre-processor. Each
annotator wrapper is responsible for providing input to an
NLP component in its native format, and converting the

1 http://radar.cs.cmu.edu/

output of the component back into standoff annotations.
The annotator wrappers were integrated into a single
collection processing engine (CPE). An object referred to
as the common analysis structure (CAS) is created for
each input message; this structure includes storage for the
original text, as well as storage and an index for each
annotation type. Components produce instances of
annotation types, which are stored in the CAS as it is
passed from component to component. The RADAR CPE
also includes Collection Reader and CAS Consumer
components, which are responsible for reading and
writing email messages and their annotations to and from
the persistent database storage. The full CPE is depicted
in Figure 1.

Annotations Database

1 a new email message is
stored in the annotations
database

RADAR Collection Processing Engine (CPE)

Collection
Reader

CAS
ConsumerAnnotator Annotator…

CAS

2 A UIMA Collection Processing Engine is invoked. Stand-off
annotations (tags) are created to capture the system’s
understanding of the email.

Radar
Agent

email
messages

message
annotations (tags)

3 The results are stored in the
Annotations Database for use
by other RADAR agents

Radar
Agent…

Annotations Database

1 a new email message is
stored in the annotations
database

RADAR Collection Processing Engine (CPE)

Collection
Reader

CAS
ConsumerAnnotator Annotator…

CAS

2 A UIMA Collection Processing Engine is invoked. Stand-off
annotations (tags) are created to capture the system’s
understanding of the email.

Radar
Agent

email
messages

message
annotations (tags)

3 The results are stored in the
Annotations Database for use
by other RADAR agents

Radar
Agent…

Figure 1: The RADAR Collection Processing Engine

The following sections provide more detail regarding the
design and implementation of the RADAR CPE. Section
2 describes the NLP components that were integrated.
Section 3 describes the process that was followed to
integrate the different modules into the CPE. Section 4

28

provides an analysis of system performance and discusses
the lessons learned when using UIMA to integrate our
suite of NLP components. Section 5 concludes with some
suggestions for future work.

2. Annotators & Related Components
This section provides a list of the annotators in the
RADAR CPE, including a brief description of each
annotator’s subtask, the component that it wraps, its input
annotation types (if any) and its output annotation types.
The annotators are described in the order that they are run
for each input email.

2.1 Email Opening Annotator
 The Email Opening Annotator identifies the span of text
in the message that contains the opening or greeting, e.g.
"Dear Blake,". This annotator is implemented by a
hand-coded set of surface patterns written in the Mixup
language provided by the MinorThird toolkit (Cohen,
2004). It is the first component to process the email text,
and it requires no prior input annotations. It outputs
instances of a single, simple annotation type with no
attributes: EMAIL_HEADING.

2.2 Typo Annotator
The Typo Annotator identifies spans of text in the
message that are likely to be misspelled words, and lists
alternatives. This annotator is implemented via the open
source Jazzy spell checker2, and it requires no prior input
annotations. It outputs instances of a single annotation
type called TypoAnnotation, which has two attributes:
Typo, the token string containing the spelling error, and
Corrections, an array of strings containing proposed
corrections, sorted in order of increasing string edit
distance from the original token string.

2.3 Connexor Annotator
The Connexor Annotator uses the Connexor parser3 to
mark spans of text denoting sentences, tokens, parts of
speech and lemmas for tokens, and functional dependency
grammar parses for sentences. This annotator requires no
prior input annotations, and outputs instances of three
annotation types: ConnexorSentence, ConexorToken
(including attributes POS and Lemma), and
ConnexorParse (which includes an attribute, Value, which
contains a string representation of the Connexor parse
analysis).

2.4 Temporal Expression Annotator
The Temporal Expression Annotator identifies spans of
text containing temporal expressions such as "next
Thursday". This annotator is implemented using
MinorThird compiled annotation rules. It outputs a single
annotation type, TimeExpression, which includes an
attribute, AnchoredValue, containing a canonical time
expression for the precise date and time indicated by the

 2 http://jazzy.sourceforge.net/
3 http://www.connexor.eu/

surface text, in a format based on ISO8601 (Han et. Al,
2006). Note that a relative time expression like “next
Thursday” can only be resolved to an AnchoredValue by
calculating its calendar position relative to the time that
the email was sent.

2.5 Functional Structure Annotator
The Functional Structure (FS) Annotator processes the
information provided by the prior annotations to produce
a grammatical functional structure or f-structure for each
sentence. Each f-structure contains information about the
grammatical functions (or roles) expressed in the sentence,
such as subject, object, indirect object, etc. The FS
Annotator is implemented… (need something from Eric
R. here). This annotator requires input annotations
EMAIL_HEADING, CXR_PARSE, and TEMPORAL_EXPRESSION,
and produces a single output annotation, F_STRUCTURE.

2.6 General Frame (GFrame) Annotator
The General Frame (GFrame) Annotator processes the
F_STRUCTURE annotations to produce a general (that is,
not domain-specific) semantic frame representation. The
GFrame Annotator uses the Mapper component from the
KANTOO machine translation system (a general
transformation engine for feature structures) (Nyberg et
al., 2002), and a set of general (non-domain-specific)
interpretation rules. The GFrame annotator outputs a
single annotation type, GFRAME.

2.7 Domain Frame (DFrame) Annotator
The Domain Frame (DFrame) Annotator processes the
F_STRUCTURE and Gframe annotations for each sentence
to produce a domain-specific semantic frame
representation, for the conference scheduling domain.
The DFrame annotator is implemented using the
KANTOO Mapper component and a set of
domain-specific interpretation rules. The DFrame
annotator outputs a single annotation type, DFRAME.

2.8 Person Name Annotator
The Person Name Annotator identifies possible person
names using a Hidden Markov Model trained with the
MinorThird toolkit. Outputs a single annotation type,
PERSON_NAME_VPHMM.

2.9 RADAR Person Annotator
The RADAR Person Annotator identifies names of
known individuals, e.g. “Blake Randal”, using a Hidden
Markov Model trained with the MinorThird toolkit 4 .
Outputs a single annotation type, RADAR_PERSON.

2.10 SCONE Implicit Feature Annotator
The SCONE Implicit Feature Annotator looks up
information from the SCONE Knowledge Base for terms
in email. Outputs a single annotation type,

4 http://minorthird.sourceforge.net/

29

IMPLICIT_FEATURE.

2.11 SCONE Semantic Annotator
The SCONE Semantic Annotator connects and
communicates with a network-based SCONE and
SconeGrammar server, retrieving semantic and/or
element data relations that SCONE has for a given text. It
outputs three annotations: DISCOURSE_STRUCTURE
(attributes: SEMANTIC_VALUE, STRUCTURE_SPEC_TYPE),
BRIEFING_CONCEPT (attribute: VALUE), and
BRIEFING_HEURISTIC (attribute: VALUE).

2.12 Vendor XML Annotator
The Vendor XML Annotator produces a custom XML
representation for conference vendor order confirmation
and vendor quote e-mails (as for, e.g., food providers).
This annotator outputs a single annotation type,
VENDOR_XML (with attribute VALUE).

2.13 Space Request Annotator
The Space Request Annotator extracts information from
e-mails requesting physical space (office/room/lab space,
etc.) and produces a custom XML representation. This
annotator outputs a single annotation type, SPACE_XML
(with attribute SPACE_REQUEST_VALUE).

2.14 Task Annotator
The Task Annotator identifies overall tasks for the
RADAR agents, where tasks are pre-defined in the
conference scheduling domain. This annotator outputs a
single annotation type, TASK (with attributes
TASK_TEMPLATE and TASK_CATEGORY).

2.15 Briefing Annotator
The Briefing Annotator uses 6 sets of trained Minorthird
models to guess the likelihood of each email being one of
six types of briefing request. (These are used to generate a
briefing email to the conference organizer’s supervisor.)
Returns a single annotation whose value is a string
containing the subset of the 6 types deemed possible, as
comma separated values: "attendance", "av", "food",
"general", "reschedule", "room". This annotator produces
a single annotation type, BRIEFING (with attribute
BRIEFING_CATEGORIES).

3. RADAR CPE Integration
The components listed in Section 2 were integrated into a
single Collection Processing Engine (CPE) for RADAR.
In addition to the annotator listed above, two additional
UIMA components were required: a) a Collection Reader
to read incoming emails from the Annotations Database
and convert them into run-time CAS objects, and b) a
CAS Consumer to store the annotated CAS objects back
into the Annotations Database (see Figure 1).

The annotators in the RADAR CPE include components
which are written in Java, and which integrate directly
into the UIMA run-time (which is also written in Java).

The exceptions are legacy components (Connexor parser,
KANTOO Mapper, and SCONE) which are deployed as
network services; for these components, the annotator
implementation consists of a UIMA wrapper which
maintains a network connection to the appropriate
network server and takes care of translation to/from the
CAS representation when the remote service is used to
process the email text.

4. Evaluation
The use of UIMA in deploying the RADAR NLP
component architecture was evaluated along three
dimensions: overall cost of adoption, measured in
programmer effort; run-time performance of the
completed system, measured in seconds; and robustness
of the resulting implementation, which is discussed in
terms of general observations about the system after
several months of use.

4.1 Overall Cost of Adoption
The RADAR CPE was integrated by programmer who
had already completed a UIMA tutorial and one prior
UIMA deployment. The programmer was able to wrap
and integrate the 15 annotators listed in Section 2 in about
6 weeks of full-time work. This work was greatly
facilitated by the UIMA framework, which allowed the
initial deployment to take place very quickly. Remaining
concerns about use of UIMA in the longer term are related
to robustness of the communication with remote services;
see Section 4.4 for further discussion.

4.2 Run-Time Performance
The run-time speed of the annotators (measured over 250
sample messages) is shown in Table 1.

Table 1: Annotator Processing Time, 250 messages

Most of the annotators required less than a second per
document, on average. The most time-consuming

% Time(ms) s/doc Annotator
65.27 5310311 21.24 DFrame
24.60 2001145 8.00 GFrame
2.99 243653 0.97 RADAR Person
2.65 215952 0.86 SCONE Sem.
1.50 122228 0.49 Temporal Expr.
1.03 83563 0.33 Person Name
0.71 57742 0.23 SCONE Impl.
0.54 44187 0.18 F-Structure
0.18 14889 0.06 Email Opening
0.17 13513 0.05 SpaceRequest
0.17 13445 0.05 Conexor
0.07 5835 0.02 Typo
0.06 4746 0.02 CAS Consumer
0.03 2725 0.01 Collection Reader
0.03 2415 0.01 Task

100.00 8136349 32.55 Entire Pipeline

30

annotators are the DFrame and GFrame annotators, which
evaluate two different sets of semantic interpretation rules
at run time to transform the original functional structure
into a final frame output.

4.3 Accuracy
We also evaluated the accuracy of some of the annotators
in the RADAR CPE through human evaluation of the
output. We randomly selected 50 messages and evaluated
whether or not each annotation was correct. The precision
(the percentage of annotations that were correct) are
shown in Table 2. For comparison, the number of
structures which were correct but is also shown.

Annotator % Correct % Partly
Correct

Vendor Order Annotator 100% --
Task Annotator 73% 77%

Person Name Annotator 76% 85%
Space Request Annotator 64% 79%

Table 2: Annotator Precision

4.4 Transparency and Robustness
Although UIMA provided excellent support for quickly
integrating different NLP components, the most
straightforward implementation of legacy components as
networked services was not completely robust. The first
implementation used direct TCP socket connections to
remote server machines, and parsed the low-level string
protocols provided by each service. There was no support
for process logging or server restart in our implementation,
so it became time-consuming to debug system failures
when a networked component was involved. For example,
if a new, buggy set of KANTOO Mapper rules was
deployed for the KANTOO DFrame server, the DFrame
Annotator might experience an error state when calling
out to the server; the only means of debugging such a
failure at present is to manually inspect the log messages
on the KANTOO server, and to restart the service
manually as required.

5. Conclusion and Future Work
Our adoption of UIMA for integrating the RADAR CPE
was an overall success. In only six weeks a single
programmer was able to integrate 15 different NLP
components into a single pre-processor for incoming
email messages. The system includes native Java
components as well as remote services integrated via Java
wrappers, and reads and writes annotated email messages
from a persistent relational store.

In future work, we intend to address the robustness issues
with better design for remote NLP services. It would be
preferable to integrate such services via a common
standard that is already well-supported in Java (for
example, WSDL). This would simplify the integration of
remote services in RADAR while placing responsibility
for standards compliance on the service remote side,

rather than the client side. In retrospect, it would have
been a cleaner approach to write web service wrappers for
each of the remote NLP components before integrating
them into UIMA, but this would have taken additional
programmer time before a working prototype would have
been achieved.

Another possible approach is to deploy third-party
annotators as brokered services. This would promote the
migration of code for handling native service protocol
messages from the UIMA client pipeline out to the remote
service. Such a design would provide cleaner separation
of responsibility between the service and client, since it
does not require the UIMA client pipeline to incorporate
low-level details of the third-party service protocol.

In order to improve the transparency and robustness of the
system, better logging is required, especially with respect
to the operations of remote services that are integrated
into the pipeline. We are beginning to investigate the new
UIMA-EE framework as a means to achieve better
logging in the overall pipeline. Eventually, we hope to
build a predictive model of remote service performance
that will allow us to dynamically allocate back-end
processing nodes for optimal pipeline throughput.

6. Acknowledgements
This material is based upon work supported by the
Defense Advanced Research Projects Agency (DARPA)
under Contract No. NBCHD030010. We also thank the
anonymous reviewers for their helpful comments on an
earlier draft of this paper.

7. References
Cohen, William W. (2004). Minorthird: Methods for

Identifying Names and Ontological Relations in Text
using Heuristics for Inducing Regularities from Data,
http://minorthird.sourceforge.net.

Han, Benjamin, Donna Gates and Lori Levin
(2006).Understanding temporal expressions in emails.
Proceedings of the Human Language Technology
Conference, Association for Computational
Linguistics.

Kumar, M. et al. (2007). Summarizing Non-textual
Events with a ‘Briefing’ Focus. Proceedings of RIAO,
Centre De Hautes Etudes Internationales
D'Informatique Documentaire.

Nyberg, E., T. Mitamura, K. Baker, D. Svoboda, B.
Peterson and J. Williams (2002). “Deriving Semantic
Knowledge from Descriptive Texts using an MT
System”, Proceedings of AMTA 2002.

Yang, Y. et al. (2005). Robustness of Adaptive Filtering
Methods in a Cross-Benchmark Evaluation.
Proceedings of ACM SIGIR, 98–105. ACM Press.

31

ClearTK: A UIMA Toolkit for Statistical Natural Language Processing

Philip V. Ogren, Philipp G. Wetzler, Steven J. Bethard
Center for Computational Language and Education Research

University of Colorado at Boulder

Boulder, CO USA

E-mail: philip@ogren.info, Philipp.Wetzler@colorado.edu, Steven.Bethard@colorado.edu

Abstract

This paper describes a toolkit, ClearTK, which was developed at the Center for Computational Language and Education Research at

the University of Colorado at Boulder. ClearTK is a framework that supports statistical natural language processing and implements a

number of tasks such as part-of-speech tagging, named entity identification, and semantic role labelling. ClearTK is written in the Java

programming language on top of Apache UIMA. The core of this framework contains a flexible and extensible feature extraction

library and a set of interfaces to several popular machine learning libraries including OpenNLP’s MaxEnt, Mallet’s Conditional

Random Fields, LibSVM, SVMlight, and Weka. We demonstrate that ClearTK can be used to achieve state-of-the-art performance on

biomedical part-of-speech tagging.

1. Introduction

The Center for Computational Language and Education

Research (CLEAR)
1
 has had a strong presence in the

Natural Language Processing (NLP) community for over

a decade publishing dozens of high quality research

papers. Despite this research success the center has not

produced software that has been widely used outside of it

other than the speech recognition software Sonic
2

.

Software written for research purposes is not necessarily

easy to install, compile, use, debug, and extend. As such,

we undertook to create a framework for statistical NLP

that would be a foundation for future software

development efforts that would encourage wide

distribution by being well documented, easily compiled,

designed for reusability and extensibility, and extensively

tested. The software we created, ClearTK
3

, is a

framework that supports statistical NLP by providing a

rich feature extraction library, interfaces to popular

machine learning libraries, and a set of components for

tackling NLP tasks such as tokenization, part-of-speech

tagging, syntactic parsing, named entity identification,

and semantic role labeling. ClearTK is available with

source code under a research-use only license
4
. ClearTK

currently consists of 175 classes and over 20 unit test

suites containing nearly 1300 assertions.

ClearTK is built on top of the increasingly popular

Unstructured Information Management Architecture

(UIMA) described in (Ferrucci and Lally 2004). Briefly,

UIMA provides a set of interfaces for defining

components for analyzing unstructured information and

provides infrastructure for creating, configuring, running,

debugging, and visualizing these components. In the

context of ClearTK, we are focused on UIMA’s ability to

1 http://clear.colorado.edu, formerly named the Center for

Spoken Language Research
2 http://clear.colorado.edu/Sonic/
3 http://clear.colorado.edu/ClearTK/
4

https://www.cusys.edu/techtransfer/downloads/Bulletin-Resea

rchLicenses.pdf

process textual data. All components are organized

around a type system which defines the structure of the

annotations that can be associated with each document.

This information is instantiated in a data structure called

the Common Analysis Structure (CAS). There is one CAS

per document that all components that act on a document

can access and update. Every annotation that is created is

posted to the CAS which is then made available for other

UIMA components to use and modify. Here is a short list

of the most important kinds of components:

 Collection Reader – a component that reads in

documents and initializes the CAS with any available

annotation information.

 Analysis Engine – a component that performs

analysis on the document and adds annotations to the

CAS or modifies existing ones.

 CAS Consumer – a component that processes the

resulting CAS data (e.g. write annotations to a

database or a file)

 Collection Processing Engine (CPE) – an aggregate

component that defines a pipeline that typically

consists of one collection reader, a sequence of

analysis engines, and one or more CAS consumers.

We chose UIMA for a wide variety of reasons including

but not limited to its open source license, wide spread

community adoption, strong developer community,

elegant APIs that encourage reusability and

interoperability, helpful development tools, and extensive

documentation. While UIMA provides a solid foundation

for processing text, it does not directly support statistical

NLP. ClearTK provides a framework for creating UIMA

components that use statistical learning as the foundation

for decision making and annotation creation.

In the following sections we describe how statistical NLP

is performed with ClearTK (section 2), give an overview

of some of the NLP tasks ClearTK supports (section 3),

and give results on a part-of-speech tagger written using

ClearTK (section 4).

32

2. Statistical NLP in ClearTK

ClearTK was designed and implemented with special

attention given to creating reusable and flexible code for

performing statistical NLP. As such, the library provides

classes that facilitate extracting features, generating

training data, building classifiers, and classifying

annotations. ClearTK introduces classifier annotators

which are analysis engines that perform feature extraction,

classify the extracted features using a machine learning

model, and interpret the results of the classification by e.g.

labeling annotations or creating new annotations. A

classifier annotator can also be run in training mode in

which it performs feature extraction and then writes out

training data which is then used for building a model.

2.1. Feature Extraction

The ClearTK feature extraction library is highly

configurable and easily extensible. Each feature extractor

produces a feature or set of features for a given annotation

(or pair or collection of annotations as the feature

extractor requires) for the purpose of characterizing the

annotation in a machine learning context. A feature in

ClearTK is a simple object that contains a value (i.e. a

string, boolean, integer, or float value), a name, and a

context that describes how the feature value was extracted.

Most features are created by querying the CAS for

information about existing annotations. Because features

are typically many in number, short lived, and dynamic in

nature (i.e. features often derive from previous

classifications), they are not represented in the CAS but

rather as simple Java objects.

The spanned text extractor is a very simple example of a

feature extractor that takes an annotation and returns a

feature corresponding to the covered text of that

annotation. The type path extractor is a slightly more

complicated feature extractor that extracts features based

on a path that describes a location of a value defined by

the type system with respect to the annotation type being

examined. For example, Figure 1 shows a simple

hypothetical type system. A type path extractor initialized

with the path headword/partOfSpeech can extract

features corresponding to the part-of-speech of the head

word of examined constituents.

A much more sophisticated feature extractor is the

window feature extractor. It operates in conjunction with

a simple feature extractor (such as the spanned text

extractor or type path extractor) and extracts features

over some numerically bounded and oriented range of

annotations (e.g. five token to the left) relative to a focus

annotation (e.g. a named entity annotation or syntactic

constituent) that are within some window annotation (e.g.

a sentence or paragraph annotation.) The “featured”

annotations, the focus annotation and the window

annotation are all configurable with respect to the type

system. This allows the window feature extractor to be

used in a wide array of contexts. The window feature

extractor also handles boundary conditions such that e.g.

words appearing outside the sentence that the focus

annotation appears in would be considered as

“out-of-bounds.” This feature extractor allows one to

extract features such as:

 The three part-of-speech tags to the left a word.

 The part-of-speech tag of the head word of

constituents to the right of an annotation.

 The identifiers of recognized concepts to the left an

annotation.

 The penultimate word of a named entity mention

annotation.

 The last three letters of the first two words of a named

entity mention annotation.

 The lengths of the previous 10 sentences.

A feature extractor is any class that generates feature

objects. For example, the window extractor has a method

that takes a focus annotation (e.g. a word) and a window

annotation (e.g. a sentence) and produces features relative

to these two annotations according to how the feature

extractor was initialized. Many feature extractors

implement an interface that designate them as simple

feature extractors which allows them to be used by more

complicated feature extractors such as the window

extractor. It is the responsibility of the classifier annotator

to know how to initialize feature extractors and how to

call them. Table 1 lists some of the feature extractors

provided by ClearTK.

Similar to feature extractors, feature proliferators create

features suitable for characterizing an annotation in a

machine learning context by taking as input features

created by a feature extractor and creating new features.

An example of a feature proliferator is lower case

proliferator which takes features created by e.g. the

spanned text extractor and creates a feature that contains

the lower cased value of the input feature. Another

example of a feature proliferator is the numeric type

proliferator which examines a feature value and

determines if it is a string that contains some digits,

contains only digits, looks like a year, looks like a Roman

numeral, etc. Table 2 lists some of the feature

proliferators provided by ClearTK.

2.2. Classification

After a classifier annotator extracts features it then

Figure 1: A hypothetical type system that
contains the path headWord/partOfSpeech.

constituent

• headWord

• range type =
word

word

• partOfSpeech

• range type =
string

33

classifies the features and interprets the results.
Classification is performed by a classifier which is a
wrapper class that handles the details of providing a set of
features to a machine learning model so that it can classify
them and return a result. Currently there are classifier
implementations for LibSVM

5
described in (Chang and

Lin 2001), Mallet Conditional Random Fields (CRF)
6

described in (McCallum 2002), OpenNLP MaxEnt
7

,
SVM

light 8
 described in (Joachims 1999) and Weka

9

described in (Witten and Frank 2005)
10

. Because the
classifier wrappers handle the details of passing features
to and results from a machine learning library, the
developer of a classifier annotator does not have to worry
about the low level details of working with each library
and can focus on the NLP task itself. An additional
benefit of the classifier abstraction is that it allows one to
swap out one machine learning library for another and
compare and contrast the fitness of a machine learning
library for a particular task (see the results section below).

Each of these machine learning libraries are implemented
in Java except for SVM

light
which is implemented in the C

programming language. As is common for machine
learning libraries, the code for training is much more
complicated than the code that performs classification.
As such, we re-implemented the classifier in Java such
that it can directly classify using the models generated by
SVM

light
. We do not support all of the many variations of

5
 http://www.csie.ntu.edu.tw/~cjlin/libsvm/

6 http://mallet.cs.umass.edu/
7 http://maxent.sourceforge.net/
8 http://svmlight.joachims.org/
9 http://www.cs.waikato.ac.nz/ml/weka/
10 There are licensing incompatibilities between ClearTK and

Weka and SVMlight depending on how ClearTK is to be used.

Weka and SVMlight are not distributed with ClearTK.

SVM
light

 (e.g. SVM
struct

, SVM
cfg

, and SVM
hmm

) or all of
the various kernels that are available in SVM

light
.

The classifier interface has two classification methods.
The first is a method that takes a set of features
corresponding to an instance to be classified and returns a
single result. The second is a method that takes a list of
feature sets that correspond to a sequence of instances to
be classified together (or in sequence) and returns a list of
results. The latter method is needed for sequential learners
such as Conditional Random Fields or Hidden Markov
Models because these learners must be able to view the
full sequence of instances at once.

After a result or list of results is returned from the
classifier the classifier annotator is responsible for
interpreting those results by updating existing annotations
or creating new ones. For example, part-of-speech
tagging is typically accomplished by classifying features
extracted for each word annotation. The classification
returned will correspond to a part-of-speech tag which can
be used to set the part-of-speech of the word annotation in
the CAS. This example assumes a type system similar to
the one shown in Figure 1. For other tasks, such as named
entity identification, the resulting classifications will
result in new annotations. Named entity identification is
often performed by classifying each word as beginning,
inside, or outside a named entity (or some variant of this
basic approach). In this example, the classifier annotator
would be responsible for taking these word-level
classifications and creating named entity annotations for
the words that are classified as beginning or inside a
named entity. Other NLP tasks such as semantic role
labeling are significantly more complicated and require
classification of pairs of annotations and as such, feature
extraction is performed, in part, on pairs of annotations
using feature extractors such as the distance extractor and
the syntactic path extractor (see Table 1). In this context,
the classification results are interpreted as establishing e.g.
a predicate-argument relationship.

2.3. Training Data Consumers

When a classifier annotator is in training mode it creates

training data from extracted features rather than

classifying them. Each machine learning library specifies

its own particular format that it expects as input when

learning a model. Figures 2, 3, and 4 show snippets of

training data for MaxEnt, Weka, and LIBSVM,

respectively. In ClearTK, training data are created by

training data consumers which are classes that know how

to take a set of features and an outcome and write training

Extractor features extracted derived from…

spanned text spanned text of an annotation

distance the “distance” between two
annotations

type path value defined by a path through the
type system

syntactic
path

the syntactic path from one syntactic
constituent to another

white space existence of whitespace before or after
an annotation

gazetteer entries from a gazetteer found in the
text

head word headword of syntactic constituents

relative
position

the relative position of two
annotations (e.g. before, overlap left,
etc.)

window some window of annotations in or
around the focus annotation

n-gram generates n-gram style features
relative to some window of
annotations in or around the focus
annotation

bag generates bag-of-words style features

Table 1: Feature extractors provided by ClearTK

Proliferator Description

capital type all uppercase, all lowercase, initial
uppercase, mixed case

numeric
type

all digits, 4 digit year, some digits,
roman numeral

character
n-grams

character prefixes and suffixes

hyphen contains hyphen

lower case Lower case version of string feature

Table 2: Feature proliferators provided by ClearTK

34

data suitable for a given machine learning library. There

is one (or more) training data consumer for each machine

learning library that ClearTK supports.

2.4. Workflow

A typical workflow for a statistical NLP task in ClearTK

involves creating training data, building a model, and then

classifying annotations on unseen or test data. Creating

training data involves taking an annotated corpus

provided by some third party (e.g. Penn Treebank or

GENIA) and transforming the data along with a host of

features into a data format consumable by a machine

learner. Creating training data in ClearTK involves the

following steps for each document in the corpus:

a) A collection reader reads in a document from an

annotated corpus from its distribution format and

adds whatever useful annotation information is

provided in the format (e.g. part-of-speech labels,

named entities, syntax parse, etc.) to the CAS.

b) A series of analysis engines process the document by

creating the annotations needed for the classifier

annotator's feature extractors.

c) A classifier annotator in training mode iterates

through annotations that are to be classified. For

each focus annotation(s) the following two steps are

performed:

o extract features for the annotation(s)

o pass the features to a training data consumer

The result of this process is a training data file that can be

read in by a machine learning library. Model building is

performed directly by the machine learning library and is

typically invoked from the command line or via a simple

script. ClearTK provides basic scripts and examples to

invoke the various learners. After a model has been built

it is packaged up into a jar
11

 file along with some

additional meta-data so that a classifier wrapper class can

be instantiated from the jar file.

When a classifier annotator is run in classification mode

the following steps are performed on unseen or separate

test data for each document:

a) A collection reader reads in a document

b) A series of analysis engines process the document by

creating the annotations needed for the classifier

annotator's feature extractors.

c) The classifier annotator iterates through annotations

that are to be classified. For each focus annotation(s)

the following three steps are performed:

o extract features for the annotation(s)

o pass the extracted features to the classifier

wrapper for classification

o interpret results of the classification

d) A CAS consumer writes out results in a format

appropriate for an evaluation script.

3. NLP Components in ClearTK

ClearTK provides a growing library of UIMA

components that support a variety of NLP tasks. The

library consists of three main types of components:

collection readers, analysis engines, and classifier

annotators which are summarized in Table 3. The

collection readers of particular interest provided by

ClearTK are those that read in widely used annotated

corpora such as Penn Treebank
12

 or PropBank
13

. The

Penn Treebank reader reads in constituent parse trees into

the CAS such that the full syntactic parse of each sentence

is represented in the CAS such that constituents and their

relations can be retrieved. The PropBank reader extends

this reader by layering on the predicate/argument

structure provided by the PropBank corpus. There are

also collection readers for reading in the ACE 2005

corpus
14

 and the CoNLL 2003
15

 shared task data.

The analysis engines provided by ClearTK include a

pattern-based tokenizer, a gazetteer annotator, and various

wrappers around other NLP libraries. The tokenizer is

based on Penn Treebank tokenization rules
16

. The

gazetteer annotator finds entries from a gazetteer in text

using simple string matching. Other analysis engines

include wrappers around the OpenNLP part-of-speech

tagger, sentence detector, and syntax parser and a wrapper

around the Snowball stemmer
17,18

.

11

 http://java.sun.com/javase/6/docs/technotes/guides/jar/index.html
12 http://www.cis.upenn.edu/~treebank/
13 http://verbs.colorado.edu/~mpalmer/projects/ace.html
14 http://www.nist.gov/speech/tests/ace/2005/
15 http://www.cnts.ua.ac.be/conll2003/ner/
16 http://www.cis.upenn.edu/~treebank/tokenization.html
17

 http://snowball.tartarus.org/
18 We use a modified version of the Snowball stemmer

Figure 2: Example MaxEnt training data

Figure 3: Example Weka training data

Figure 4: Example LIBSVM training data

35

ClearTK currently provides a small handful of classifier

annotators: a part-of-speech tagger (described in section

4), a BIO-style chunker, and a pair of classifier annotators

that support semantic role labelling. The BIO chunker

performs text chunking using the popular Begin, Inside,

Outside labelling scheme for classifying annotations as

members of some kind of “chunk.” For example, in

named entity recognition labels such as “B-person” or

“I-location” are used for words that begin a person

mention or are inside a location mention, respectively.

The BIO chunker is used for named entity recognition,

shallow parsing, and tokenization. Semantic role

labelling is achieved by the predicate and argument

annotators. The predicate annotator decides whether

constituents of a syntactic parse are predicates or not. The

argument annotator runs subsequently and finds the

arguments of a predicate.

4. Results

4.1. Biomedical part-of-speech tagging

To demonstrate the utility of a flexible feature extraction

library coupled with interfaces to several popular machine

distributed by Lucene: http://lucene.apache.org/

learning libraries we report results for part-of-speech

tagging on biomedical scientific literature. The

part-of-speech tagger that was created using ClearTK

consists of less than 60 lines of code. For training and

testing we used the GENIA corpus which consists of 2000

MEDLINE abstracts and about 500,000 part-of-speech

tagged words (Tateisi and Tsujii 2004). An

inter-annotator agreement study was conducted on fifty of

the abstracts and was found to be 98.62% (as simple

agreement). The GENIA tagger performs at 98.49%

accuracy (Tsuruoka, Tateishi et al. 2005) when trained on

the first 90% of the data and tested on the remaining 10%.

This represents state-of-the-art performance for this

corpus.

4.2. Feature sets

Table 4 provides a listing of the feature sets that were used

for training a part-of-speech tagging model. These

feature sets are loosely based on the features used in

(Tsuruoka, Tateishi et al. 2005). Given a word in a

sentence, wordi, each numbered feature set in Table 4

describes a set of features extracted for that word for

part-of-speech classification. The feature sets are

cumulative such that F2 contains all of the features in F1,

F3 contains all of the features in F2, and so on. Feature set

F3 is problematic for Mallet because it is a sequential

learner tagging an entire sequence at once. This means

that previous part-of-speech labels of words earlier in the

sentence are not available as features for words later in the

sentence. For this reason there are no performance results

given for Mallet for feature set F3. For the Mallet

experiments using features sets F4 through F7 the

part-of-speech features introduced in F3 are excluded.

4.3. Part-of-speech tagging accuracy

Table 5 shows the results of the ClearTK part-of-speech

tagger using the seven feature sets against four machine

learning libraries. LibSVM out-performed the other

learners for every feature set with a top performance of

98.63%. The general trend, as expected, is that adding

component type description

Penn Treebank
reader

CR Reads the Penn Treebank
corpus

PropBank CR Reads the PropBank corpus

ACE2005
reader

CR Reads in named entity
mentions from the ACE
2004 and 2005 tasks

CoNLL2003
reader

CR Reads in named entity
mentions from the CoNLL
2003 task

GENIA reader CR Reads in the GENIA corpus

tokenizer AE Penn Treebank style
tokenizer

sentence
detector

AE Wrapper around OpenNLP
sentence detector

syntax parser AE Wrapper around Open NLP
syntax parser

stemmer AE Wrapper around the
Snowball stemmer

gazetteer
annotator

AE Finds mentions of entries in
a gazetteer using simple
string matching

POS tagger CA performs part-of-speech
tagging

BIO chunker CA performs BIO-style
chunking

predicate
annotator

CA Identifies predicates

argument
annotator

CA Identifies and classifies
semantic arguments of
predicates

Table 3: Components provided by ClearTK. CR =
collection reader, AE = analysis engine, and CA =

classifier annotator

 description Features

F1 current word wordi

F2 word and word

bigram features

F1, wordi+1, wordi+2, wordi-1,

wordi-2, wordi+wordi-1,

wordi+wordi+1

F3 previous tags F2, posi-1, posi-2, posi-1+posi-2

F4 character
prefixes and
suffixes

F3, prefixes sizes 1, 2, and 3,
suffixes sizes 1, 2, 3, 4, 5,
and 6

F5 lexical
characteristics

F4, capital type (e.g. all caps,
initial caps, etc.), numeric
type (e.g. all digits, contains
digit, roman numeral, etc.),
contains hyphen

F6 lower case F5, lower_case(wordi)

F7 Stem F6, stem(wordi)

Table 4: Feature sets used for training part-of-speech

tagging models.

36

http://lucene.apache.org/

more features improves performance. Interestingly,

feature set F3, which introduces part-of-speech tag

features, performs worse than using feature set F2.

Similarly, for feature set F7, which introduces stemmed

word features, the performance generally degrades

slightly.

Each data point in Table 5 represents five-fold cross

validation. For the columns labelled LibSVM, MaxEnt,

and SVM
perf

 (a variant of SVM
light

) each fold is trained on

80% of the data and tested on the remaining 20%. The

Mallet learner was prohibitively slow when training on 80%

of the data and so only 20% of the data was used for

training in each fold. We trained Mallet on 80% of the

data using feature set F6 and it took five days to train, 2.5

minutes to tag, and performed at 97.84% accuracy. This

was a frustrating result because Mallet has consistently

outperformed the other learners on other sequential

tagging tasks such as tokenization and named entity

recognition.

4.4. Part-of-speech model learning time

Table 6 provides a general approximation of how long

each learner requires to train a model for a given feature

set. Because the model training took place on a wide

variety of CPUs ranging from a single processor running

at 1.7 GHz with 1GB of RAM to a doubly hyper-threaded

CPU running at 3.4GHz with 4GB of RAM, these results

are not strictly comparable. In general, however, the

models that took longer to build were run on more

powerful machines and so it is possible to make rough

conclusions about the relative performance. The

minimum training time across the five folds is given

rather than the average. The clear trend is that the MaxEnt

learner is much faster than the other three.

Despite the smaller amount of training data, Mallet is still
consistently the slowest learner (as shown in Table 6.) We
have trained Mallet models on similarly sized data sets
with a much smaller training cost. However, the number
of possible classification outcomes in these models was
much less. This finding is consistent with the time
complexity of training CRFs which includes a term that is
the square of the number of outcomes.

4.5. Part-of-speech tagging time

Table 7 provides a general approximation of the time it
took to assign part-of-speech tags to the test set. Again,
for the same reasons described above, this data can only
be used for rough comparison. Still, there are two trends
which seem quite clear. LibSVM is by far the slowest
classifier of the three and MaxEnt is the fastest. Another
interesting trend is that there is little or no connection
between how long it takes to train a model and how long it
takes to classify words. For example, the slowest learner,
Mallet, provides the second fastest tagger while the
second slowest learner, LibSVM, provides the slowest
tagger.

4.6. Discussion

Clearly, this experiment is nowhere near an exhaustive
search through the space of possible feature sets and
machine learning libraries. Furthermore, each learner has
its own set of configuration parameters that can and
should be tuned for a particular task. SVM

light
, for

example, comes in many flavors including SVM
light

,
SVM

struct
, SVM

hmm19
, and SVM

perf
. The latter being the

one used in this experiment with essentially default
configuration parameters, i.e. a linear kernel was used
with the regularization parameter C set to 20.0. SVM

perf

generates binary classifiers which were normalized using
Platt’s probabilistic outputs for SVMs as described by
(Lin, Lin et al. 2007). LibSVM was trained using the
linear kernel and default values for all other parameters.
Similarly, Mallet was trained without changing any of the
default parameter settings. MaxEnt was run with 150
iterations with a feature frequency cut-off of four. We
experimented with using beam search with MaxEnt but
found that it made very little difference in the outcomes.
Weka was excluded from this experiment because it

19 SVMhmm is not currently supported by ClearTK but seems the

most appropriate choice for part-of-speech tagging.

 LibSVM MaxEnt Mallet SVMperf

F1 94.91 93.40 91.80 90.21

F2 96.85 94.44 91.51 92.38

F3 96.75 93.76 91.94

F4 98.49 98.14 95.88 96.99

F5 98.58 98.22 96.35 97.31

F6 98.58 98.28 96.37 97.42

F7 98.55 98.16 96.34 97.43

Table 5: Part-of-speech tagging accuracy results

 LibSVM MaxEnt Mallet SVMperf

F1 343 0.5 755 102

F2 959 13 669 68

F3 469 16 81

F4 324 20 598 77

F5 258 21 646 83

F6 297 21 597 77

F7 280 21 435 83

Table 6: Training time for building models for

part-of-speech tagger in minutes.

 LibSVM MaxEnt Mallet SVMperf

F1 40 0.3 0.5 0.6

F2 186 0.3 1.0 2.5

F3 200 0.4 2.6

F4 137 0.7 1.3 4.7

F5 123 0.7 1.5 4.4

F6 133 0.7 1.5 2.4

F7 127 0.7 1.5 3.1

Table 7: Tagging time for test data in minutes.

37

contains a wide variety of machine learning algorithms,
many of which do not handle string features, and because
we are not familiar enough with this library to make a
confident selection among the many choices to represent
this library well.

Despite the limitations of the experiment (e.g. using 20%

of the data for training Mallet, no parameter tuning, and

limited feature space exploration) it is interesting to note

that several of the configurations performed at

state-of-the-art for this task. The results also point to

possibilities for future experimentation such as combining

the fastest taggers (MaxEnt and Mallet), removing the

features introduced in feature set F3, and replacing

SVM
perf

 with SVM
struct

 or SVM
hmm

.

More important than the scientific contributions of this

experiment are the observations on how ClearTK makes

this kind of experimentation possible and easy. By having

a feature extraction library that is highly configurable

with respect to a user-defined type system it is possible for

developers to reuse feature extractors for a wide variety of

NLP tasks. In fact, the feature extractors used for the

part-of-speech taggers were written in the context of

supporting named entity recognition and there were no

new feature extractors created for the part-of-speech

tagger (though, admittedly, these are very similar tasks.)

Additionally, because feature extraction is performed

independently of any particular machine learning library,

it is possible to swap out one learner for another and

directly compare them with respect to performance (both

accuracy and throughput) with all other factors being

equal. This allows a best-of-breed approach to

classification in which e.g. Mallet CRF could be used for

certain sequential labelling tasks while LibSVM or

SVM
light

 can be used for binary classifications required

for semantic role labelling while implementations for all

of these tasks share common code infrastructure.

This experiment was carried out using an experimental

configuration file for defining a set of feature extractors to

be used for training and classification. This allows

decisions about which feature extractors to use at runtime

without having to change the code that calls the feature

extractors for each feature set of interest. Additionally,

UIMA is highly configurable at runtime via the use of

configuration files called descriptors which allows, for

example, one to define a CPE using XML to specify a

particular execution order of components. These two

configuration mechanisms allowed each run of the

experiment to be executed without any code changes or

recompilation. Each run was executed by calling a single

script that took in a set of properties associated with the

learner being used, a feature extraction configuration file,

a set of descriptor files, and parameters that determined

the testing and training sets.

5. Conclusion

We have described a new framework for statistical NLP

called ClearTK. ClearTK provides a rich feature

extraction library, interfaces to several popular machine

learning libraries, and a library of components that

perform a variety of NLP tasks. We have demonstrated

that ClearTK can perform at state-of-the-art level for the

task of biomedical part-of-speech tagging and discussed

and compared the performance of different learners on

this task.

6. Acknowledgements

The authors gratefully acknowledge the following

members of CLEAR for their input during the creation of

ClearTK: Ying Chen, Ken Griest, James Martin, Martha

Palmer, and Wayne Ward. We also thank the respective

authors of the previously mentioned machine learning

libraries and the members of the UIMA community that

have answered our many questions via the UIMA users

list.
20

 We would also like to thank the University of

Colorado Technology Transfer Office
21

 who helped fund

this project.

7. References

Chang, C. C. and C. J. Lin (2001). "LIBSVM: a library for

support vector machines." Software available at

http://www. csie. ntu. edu. tw/cjlin/libsvm 80:

604–611.

Ferrucci, D. and A. Lally (2004). "UIMA: an architectural

approach to unstructured information processing in

the corporate research environment." Natural

Language Engineering 10(3-4): 327-348.

Joachims, T. (1999). "Making large-Scale SVM Learning

Practical. Advances in Kernel Methods-Support

Vector Learning." B. Scoelkopf, C. Burges, A. Smola.

Lin, H. T., C. J. Lin, et al. (2007). "A note on Platt’s

probabilistic outputs for support vector machines."

Machine Learning 68(3): 267-276.

McCallum, A. K. (2002). "Mallet: A machine learning for

language toolkit." Unpublished. http://mallet. cs.

umass. edu.

Tateisi, Y. and J. Tsujii (2004). "Part-of-speech annotation

of biology research abstracts." Proceedings of

LREC04.

Tsuruoka, Y., Y. Tateishi, et al. (2005). "Developing a

Robust Part-of-Speech Tagger for Biomedical Text."

Advances in Informatics: 10th Panhellenic

Conference on Informatics, PCI 2005, Volos, Greece,

November 11-13, 2005: Proceedings.

Witten, I. H. and E. Frank (2005). Data Mining: Practical

Machine Learning Tools and Techniques, Morgan

Kaufmann.

20

 http://incubator.apache.org/uima/mail-lists.html
21

 https://www.cusys.edu/techtransfer/

38

http://mallet/

UIMA-based Clinical Information Extraction System

Guergana K. Savova, Karin Kipper-Schuler, James D. Buntrock, and Christopher G. Chute
Division of Biomedical Informatics, Mayo Clinic College of Medicine, Rochester, Minnesota, USA

E-mail: savova.guergana@mayo.edu, schuler.karin@mayo.edu, buntrock@mayo.edu, chute@mayo.edu

Abstract

This paper describes the Mayo Clinic information extraction system for the clinical domain which was developed using
IBM’s Unstructured Information Management Architecture. The system is being used to process and extract information
from free-text clinical notes (>25M documents). Annotators are strung together to build a pipeline for the discovery of
clinical named entities such as diseases, signs/symptoms, anatomical sites and procedures. Attributes related to the
named entities – context, status and relatedness to patient – are also extracted from the text. The pipeline consists of a
context free tokenizer, context sensitive spell corrector annotator, abbreviation disambiguation annotator, lexical
normalizer annotator, sentence detector, context dependent tokenizer, part of speech tagger, shallow parser, dictionary
look-up annotator, a machine learning component, negation annotator and WSD component. We describe the architecture,
annotators and evaluation of select annotators. Some extensions and applications of the system are presented and future
challenges outlined. The system has been in production since 2005 and is to be released in the public domain in 2008.

1. Introduction and background
The vast amount of free text clinical information is a rich
source for clinical research and knowledge discovery.
Mayo Clinic's record indexing heritage started with Dr.
Plummer who began organizing patient dossiers in 1907.
Since 1935, our institution has maintained a
comprehensive, machine-readable set of coded diagnostic
and procedural data that provides indexing to patient
records for retrieval and data analyses to serve the broader
goal of patient care, research and education.

Recent advances in Natural Language Processing
(NLP) technology resulted in an ever increasing interest
of the biomedical community towards using NLP tools to
process large amounts of textual data. Until recently such
systems for processing biomedical and clinical texts have
been narrowly focused on a specific type of clinical
document. The field of NLP has matured to the point that
commodity functions could be reused in larger systems.

Several research projects have been developed that
have focused specifically on the development of NLP
components to process and analyze free-text. However,
little research deals directly with textual clinical data
mainly due to the limited number of NLP researchers with
full access to patient clinical data. A notable example of a
production NLP system for processing clinical reports is
Medical Language Extraction and Encoding System
(MedLEE) (Friedman, 1997) initially designed for
radiology reports and later extended to other medical
domains such as mammography reports and discharge
summaries. MetaMap developed at the National Library
of Medicine (Aronson et al., 2000) is an example of an
NLP system designed to process scholarly biomedical
literature. It provides mapping of unrestricted text to the
Unified Medical Language System 1 (UMLS)
Metathesaurus concepts. MetaMap involves parsing the
text into noun phrases using the SPECIALIST™ minimal
commitment parser, the generation of lexical, syntactic
and orthographic variants, followed by a sophisticated
mapping and ranking of the phrases. University of
Pittsburgh’s Cancer Text Information Extraction

1 http://www.nlm.nih.gov/research/umls/

System 2 (caTIES) -- a part of the Cancer Biomedical
Informatics Grid3 (caBIG) project at the National Cancer
Institute -- encodes information extracted from free text
surgical pathology reports to populate caBIG-compliant
data structures.

There are two main efforts to build flexible and
modular frameworks that can accommodate the need for
large volume processing of unstructured data. Information
Extraction (IE) systems which transform unstructured data
into structured databases can be built using either of these
technologies. GATE 4 (Generalized Architecture for Text
Engineering) is an open-source environment that provides
an architecture, software framework, and graphical
development environment for the development of text
annotators and resources. ANNIE is a highly modularized
general purpose IE system developed on the GATE
platform. GATE and ANNIE have been successfully used
in the biomedical domain (Frank et al., 2004; Goldin and
Chapman, 2003). Like GATE, IBM’s Unstructured
Information Management Architecture (UIMA) 5 is a
framework which allows the development of text analysis
systems. Besides text, UIMA has the capabilities of
handling other unstructured data. Annotations can be
extracted and written into a relational database. The four
main UIMA services are acquisition, unstructured
information analysis, structured information access, and
component discovery (Ferrucci and Lally, 2004). A UMIA
annotator performs a specific task. Once annotators are
written to conformance, both UIMA and GATE provide
pipeline development and permit the developer to quickly
customize processing to a specific task.

IBM’s Biological Text Knowledge Services
(BioTeKS) (Mack et al. 2004) initiative is the first major
application of UIMA. It is designed for text analysis and
search methods for the Life Sciences domain. Clinical IE
systems in general rely on a number of NLP components
each implementing a different technology. An extensive
overview of recent advances in the clinical domain is
(Meyster et al., 2008).

In this paper we present the design, architecture and

2 https://cabig.nci.nih.gov/tools/caties
3 https://cabig.nci.nih.gov/
4 http://www.gate.ac.uk/
5 http://incubator.apache.org/uima/

39

mailto:schuler.karin@mayo.edu
mailto:buntrock@mayo.edu
mailto:chute@mayo.edu

select component evaluation of a large-scale, modular,
real-time clinical IE system built within the UIMA
framework. The system is being used at the Mayo Clinic
to discover important clinical facts from relatively loose
clinical text which are then stored in a structured database
to afford many applications and use cases. The system is
to be released in the public domain in 20086.

2. Clinical text and its characteristics
Clinical notes mostly follow the XML-based Health
Level 7 Clinical Document Architecture (CDA) structure
which “provides an exchange model for clinical
documents such as discharge summaries and progress
notes, and brings the healthcare industry closer to the
realization of an electronic medical record”7. The CDA
document specifies a <Section> element which has a
narrative element <text> within which one can find the
relevant clinical content. Beyond the CDA structure, the
text within each section is unstructured. (Pakhomov et al.,
2006) present the characteristics of clinical language
along with examples from Mayo Clinic clinical notes. In
summary, clinical notes are textual descriptions of
physician-patient encounters. The narrative is typical of
quasi-spontaneous speech with the following
characteristics: incomplete sentences, inverted
constructions, conversational grammar, misspellings and
spelling variations, abbreviations and acronyms. All these
characteristics of clinical texts set it apart from newswire
texts and even scholarly biomedical literature texts and
present NLP challenges of varying degrees. A clinical
domain IE system needs to address these challenges.

3. System design
Mayo Clinic and IBM collaborated on a Text Analysis
project with the goal to build a clinical IE system that
would enable the retrieval of clinical documents at Mayo
Clinic. A number of requirements were established from
the genesis of the project from an indexing and retrieval
perspective: scalability, flexibility, stability, real-time
processing, distributed processing, and annotation
versioning. The ability to re-index the document corpus
was considered critical in the architecture. Best practices
included software modularity allowing best-of-breed
annotator components, whether the components were
developed in-house, adopted from open source, or
purchased commercially. The architecture was designed
to accommodate bulk and real-time processing and
leveraged existing interface feeds for clinical documents
by routing them to a warehouse. A work manager was
written using messaging queues to distribute the work for
text analysis. Additional text analysis engines can be
configured and added with appropriate hardware to
increase document throughput of the system. The text
analysis engines are deployed as Enterprise Java Beans on
IBM WebSphere Application Server™ (WAS) cluster
consisting of twenty dual-processor blade servers. Each of
the WAS servers have local message queues populated by
a home-grown load balancing process with metadata
about the request. For production deployment we used an
asynchronous architecture. The text analysis engines were
wrapped into Message Driven Beans. Each JMS message

6 Supported by an IBM UIMA Innovation Award
7 http://xml.coverpages.org/ni2004-08-20-a.html

consumed by the Message Driven Bean was fed directly
to the text analysis engine for annotation. The Message
Driven Beans were deployed using WAS and the JMS
Provider was IBM WebSphere MQ™.

4. Annotators and UIMA pipeline
To implement the annotators we used the AlphaWorks
version of UIMA8 and are in the process of converting
them to the Apache version as part of our open-source
release package.

Our annotators are strung together to build a pipeline
for clinical named entities (NEs) discovery. NEs are
textual mentions that belong to the same class, e.g.
diseases, signs/symptoms, anatomical sites, procedures.
Each NE, in turn, has additional attributes:

• Context with values of current, historyOf, and
familyHistoryOf.

• Status with values of confirmed, possible, and
negated.

• Related_to_patient with values of true and false
according to whether the information is about the patient.

For example, in “There are no complaints worrisome
for recurrent metastatic oropharynx cancer”, “metastatic
oropharynx cancer” has a context of historyOf, status of
negated and related_to_patient is true.

The context sensitive spell corrector annotator is
used for automatic spell correction on word tokens. This
annotator uses a combination of isolated-word and
context-sensitive statistical approaches to rank the
possible suggestions (Thompson-McInness et al, 2004).
The suggestion with the highest ranking is stored as a
feature of a token.

The context free tokenizer is a finite state based
annotator that parses the document text into the smallest
meaningful spans of text. A token is a set of characters
that can be classified into one of these categories: word,
punctuation, number, contraction, possessive, or symbol
without taking into account any additional context. The
context dependent tokenizer uses context to detect
complex tokens such as dates, times, and ordered or
numbered problem lists.

The lexical normalizer annotator is applied only to
words, possessives, and contractions. It generates a
canonical form by using the National Library of Medicine
UMLS Lexical Variant Generator (LVG)9 tool. It also
generates a list of lemma entries with Penn Treebank tags
as input for the part-of-speech tagger.

The sentence detector annotator parses the
document text into sentences. The sentence detector is
based on a Maximum Entropy classifier 10 trained to
recognize sentence boundaries from hand-annotated data.

The part-of-speech (POS) pre-tagger annotator
executes prior to the POS tagger annotator. The pre-tagger
loads a list of words with unambiguous POS with
predetermined Penn Treebank tags which the POS tagger
ignores. The POS tagger annotator assigns a part of
speech tag to all tokens. The current production version is
a proprietary IBM tagger which uses Hidden Markov
Models trained on a combination of the Penn Treebank

8 http://www.alphaworks.ibm.com/tech/uima
9 http://SPECIALIST.nlm.nih.gov
10 http://maxent.sourceforge.net/

40

corpus11 of general English and a corpus of manually
tagged clinical data developed at the Mayo Clinic (Coden
et al., 2005; Pakhomov et al., 2006).

The shallow parser annotator makes higher level
constructs at the phrase level. The shallow parser
currently being used in our system is the proprietary IBM
shallow parser. It uses a set of rules operating on tokens
and their part-of-speech category to identify linguistic
phrases in the text such as noun phrases, verb phrases, and
adjectival phrases. For our public release of the pipeline,
we will substitute the proprietary IBM components with
open source ones from the openNLP project12.

The dictionary NE annotator uses a set of enriched
dictionaries (SNOMED-CT13, MeSH14, RxNorm15, and
Mayo Synonym Clusters (MSC)) to look up NEs of type
drugs, disorders/diseases, signs, and symptoms in the
document text. The MSC database contains a set of
clusters each consisting of diagnostic statements that are
considered to be synonymous. Synonymy here is defined
as two or more terms that have been manually classified to
the same category in the Mayo problem list repository,
which contains over 20 million manually coded
diagnostic statements. These diagnostic statements are
used as entry terms for dictionary look up.

The ML (Machine Learning) NE annotator is based
on a Naïve Bayes classifier trained on a combination of
the UMLS entry terms and the MSC. Each diagnostic
statement is represented as a bag-of-words and used as a
training sample for generating a Naive Bayes classifier
which assigns MSC identifiers to noun phrases identified
in the text of clinical notes. In operation, the annotator
scans through the input text attempting to match any
portion of it to the MSC database using the dictionary NE
annotator. If a match is detected, then a new NE is
introduced and assigned an MSC id; otherwise, the output
of the shallow parser annotator is used to identify noun
phrases whose heads match single word entities in MSC
and are classified with the Naïve Bayes classifier.

The negation annotator assigns a certainty attribute
to each named entity with the exception of drugs. This
annotator is based on a generalized version of Chapman’s
NegEx algorithm (Chapman et al., 2001.)

The Word Sense Disambiguation (WSD) component
aims to uniquely associate a term with a single ontology
entry. We built a classifier for 50 of the most frequent and
relevant ambiguities occurring in the Mayo clinic clinical
notes (Savova et al., 2008b.). The classification method is
based on the empirical risk minimization principle, which
aims to minimize prediction errors measured by a loss
function (Zhang, 2004). The abbreviation disambiguation
annotator attempts to detect and expand abbreviations
and acronyms based on Maximum Entropy classifiers
trained on automatically generated data (Pakhomov,
2002). A set of Mayo compiled dictionaries are also used
that detect abbreviations and hyphenated terms.

We additionally developed the freely available
Mayo Weka/UIMA Integration 16 (MAWUI) which
provides a link between UIMA and the machine learning

11 www.TB-2.upenn.edu
12 http://opennlp.sourceforge.net/api/index.html
13 http://www.nlm.nih.gov/research/umls/Snomed/snomed_main.html
14 http://www.nlm.nih.gov/mesh/
15 http://www.nlm.nih.gov/research/umls/rxnorm/index.html
16 http://informatics.mayo.edu/text/index.php?page=weka

package Weka17. MAWUI allows feature selection and
extraction within UIMA after which models can be
trained within WEKA and subsequent classifiers
integrated back within the UIMA pipeline.

5. Evaluation of select annotators
Although a difficult and time-consuming task due to the
need to develop evaluation testbeds, we have formally
evaluated some of the components and are currently in the
process of evaluating others. (Pakhomov et al., 2006)
describe the development of a POS-tagged corpus from
Mayo Clinic’s clinical notes. In addition, they trained and
evaluated the performance of the TnT open source tagger
(Brants, 2000) on the combination of Penn Treebank data
and the Mayo Clinic corpus. Results were reported as

 Accuracy=100 x (hits/total) (1)
The best accuracy of 94.7% is achieved when the model is
built from data that included clinical texts. Without such
combined corpus, the accuracy drops to 89.8%. The
performance of the IBM proprietary POS-tagger is
described in (Coden et al., 2005.) The best accuracy is
close to 93% achieved when the model was trained using
the combined Penn Treebank and Mayo Clinic data.

Additionally, we have developed a corpus of
manually annotated disease named entities (Ogren et al.,
2008.) The dataset consists of 160 notes and 1,556 named
entity annotations which were mapped to 658 unique
SNOMED codes. Inter-annotator agreement is for span
(90.9%), concept code (81.7%), context (84.8%), and
status (86.0%) agreement. Complete agreement for span,
concept code, context, and status was 74.6%. In
(Kipper-Schuler et al., 2008) we describe the evaluation
of the dictionary look-up algorithm against these gold
standard annotations in terms of
 Recall = correctSystemHits/allInGoldStandard (2)
 Precision = correctSystemHits/allSystemHits (3)

F-score = (2*P*R)/(P+R) (4)
F-score range is 0.56-0.81 depending on the strictness of
match criteria. The most strict one (F-score of 0.56) is for
exact span, context, and status match. The least
constrained matching criterion is a partial match of the
textual span. The F-score for the negation detection is
0.96 pointing to the robustness and stability of that
component (Kipper-Schuler et al., 2008.)

Evaluation of our WSD component is presented in
(Savova et al., 2008b.) Experimentation with 28 different
feature sets identified the most productive combinations
for each of the 50 clinical ambiguities with a reported
F-score of 0.82. A disadvantage of the current WSD
component is that no universal feature set can be applied
to every ambiguous word to achieve maximum
performance. Some customization for each ambiguous
term is needed. The performance of the abbreviation
disambiguation component was measured at
approximately 89% accuracy (Pakhomov, 2002). As
previously pointed out, the presence of acronyms and
abbreviations pose a considerable challenge and are found
to be a major source of system errors.

Currently, we are in the process of training and
evaluating the openNLP part-of-speech tagger and
shallow parser which will be released with the public
release of the system.

17 http://www.cs.waikato.ac.nz/ml/weka/

41

6. Discussion
The Mayo Clinic IE system has been applied to a number
of use cases. Clinical research usually involves the
identification of patient cohorts to be included in a study
which have to meet a number of criteria per disease case
definition. A recent application of our system is the
successful identification of a cohort of patients for a
congestive heart failure study.

Our system has proven flexible and adaptable. We
were able to quickly extend it to new variables, e.g. the
discovery of patient smoking status (Savova et al., 2008a)
as defined in one of five categories: SMOKER,
CURRENT SMOKER, PAST SMOKER,
NON-SMOKER and UNKNOWN based on patients’
respective medical records. We customized the dictionary
to perform focused NE extraction. Our classifier was built
off WEKA using the MAWUI component to link UIMA
features and WEKA. Feature extraction and selection was
performed off UIMA annotations. The WEKA classifier
was added as a new component in our existing pipeline.
This smoking status classifier will be used as part of a
more general identification of risk factors for peripheral
vascular diseases.

Currently, we are also developing a classifier to
automatically categorize neuroradiology reports
according to tumor progression. The annotations
generated by our UIMA pipeline are to be used as
classifier features, e.g. NEs, parsed phrases and sentences.

We are also in the process of building additional
annotators that will extend the described pipeline. One
such more complex annotator is the Drug Profile. A
knowledge model which identifies the components
necessary for drug identification based on several use
cases is under construction. The model centers on the
relation of the drug to the particular patient to distinguish
it from the generic drug characteristics provided by
pharmaceutical companies. This more complex drug
identification annotator will handle the discovery of
dosage, frequency, side-effects, status (e.g. discontinued,
started, past, as needed), among other drug attributes
related to a given patient at a given time point.

We demonstrated here that we have successfully
built an extendible IE system for the clinical domain.
There are a number of challenging NLP tasks that we are
planning to tackle in the future – in particular, coreference
resolution, relation discovery between NEs, temporal
resolution and text-based reasoning.

7. Conclusions
In this paper we presented a high throughput information
extraction system for the clinical domain developed
within IBM’s Unstructured Information Management
Architecture. It consists of a number of annotators each
performing a specific natural language processing task.
We have evaluated most of them and reported results. The
system has been in production at the Mayo Clinic since
2005 and is planned to be released in the public domain in
2008. Its flexibility and modularity allow for quick
extensions and applications to a variety of use cases.

References
Aronson AR, Bodenreider O, Chang HF, Humphrey, SM,

Mork, JG, Nelson SJ, Rindflesch TC and Wilbur WJ.
(2000). The NLM Indexing Initiative. Proc AMIA

Symp. 2000:17-21.
Brants, T. (2000). TnT – a statistical part-of-speech tagger.

Proc. NAACL/ANLP-2000 Symposium.
Chapman WW, Bridewell W, Hanbury P, Cooper G,

Buchanan B. (2001). Evaluation of Negation Phrases in
Narrative Clinical Reports. Proc AMIA, 2001.

Coden, AR., Pakhomov SV, Ando R and Chute CG.
(2005). Domain-specific language models and lexicons
for tagging. J Biomed Inform. 38: 422-30.

Ferrucci D, Lally A. (2004). UIMA: an architectural
approach to unstructured information processing in the
corporate research environment. Natural Language
Engineering. 2004;10 (3:4):327-348.

Frank E, Hall M, Trigg L, Holmes G, and Witten IH.
(2004). Bioinformatics Advanced Access.
Bioinformatics online. April 8, 2004.

Friedman C. (1997). Towards a Comprehensive Medical
Language Processing System: Methods and Issues.
Proc AMIA, 1997.

Goldin IM, Chapman WW. (2003). Learning to Detect
Negation with 'Not' in Medical Texts. Paper presented
at: Workshop on Text Analysis and Search for
Bioinformatics at the 26th Annual International ACM
SIGIR Conference, 2003.

Kipper-Schuler KC, Kaggal V, Masanz J and Savova GK.
(2008). System evaluation on a named entity corpus
from clinical notes. Proc LREC 2008.

Mack R., Mukherjea S., Soffer A., Uramoto N., Brown E.,
Coden A., Cooper J., Inokuchi A., Iyer B., Mass Y.,
Matsuzawa H. and Subramaniam LV. (2004). Text
Analytics for life sciences using the unstructured
information management architecture. IBM Sys J, vol.
43, N 3, 2004.
http://www.research.ibm.com/journal/sj/433/mack.html.

Meystre SM; Savova GK; Kipper-Schuler KC and Hurdle
JE. (2008). Extracting information from textual
documents in the electronic health record: a review of
recent research. IMIA Yearbook of Medical Informatics
2008. Methods Inf Med 2008; 47 Suppl 1:138-154.

Ogren PV, Savova GK and Chute CG. (2008).
Constructing evaluation corpora for automated clinical
named entity recognition. Proc LREC 2008.

Pakhomov S, Coden A. and Chute CG. (2006).
Developing a corpus of clinical notes manually
annotated for part-of-speech. Int J Med Inf (2006) 75,
418-429.

Pakhomov S. (2002). Semi-Supervised Maximum
Entropy Based Approach to Acronym and
Abbreviation Normalization in Medical Texts. 40th
Meet ACL, Philadelphia, PA.

Savova GK, Ogren PV, Duffy P, Buntrock JD and Chute
CG. (2008a). Patient smoking status identification
within Mayo Clinic Life Sciences System. J Am Med
Inform Assoc. 2008; 15(1).

Savova GK; Coden A; Sominsky I; Johnson R; Ogren P;
de Groen P and Chute CG. (2008b). Word sense
disambiguation across two domains: biomedical
literature and clinical notes. J Biomed Inform.
doi:10.1016/j.jbi.2008.02.003

Thompson-McInness B, Pakhomov S, Pedersen T. (2004).
Automating Spelling Correction Tools Using Bigram
Statistics. Medinfo, San Francisco, CA, USA.

Zhang T. (2004). Solving large scale linear prediction
problems using stochastic gradient descent algorithms.
In ICML 2004, pp. 919–926.

42

http://www.research.ibm.com/journal/sj/433/mack.html
http://dx.doi.org/10.1016/j.jbi.2008.02.003

Shallow, Deep and Hybrid Processing with UIMA and Heart of Gold

Ulrich Schäfer

German Research Center for Artificial Intelligence (DFKI), Language Technology Lab
Campus D 3 1, Stuhlsatzenhausweg 3, D-66123 Saarbrücken, Germany

email: ulrich.schaefer@dfki.de

Abstract
The Unstructured Information Management Architecture (UIMA) is a generic platform for processing text and other unstructured,
human-generated data. For text, it has been proposed and is being used mainly for shallow natural language processing (NLP) tasks
such as part-of-speech tagging, chunking, named entity recognition and shallow parsing. However, it is commonly accepted that getting
interesting structure and semantics from documents requires deeper methods. Therefore, one of the future goals for UIMA will be inclu-
sion of openly available, deep linguistic parsing technology for the generation of semantics representations from documents.
Heart of Gold is a lightweight, XML-based middleware architecture that has been developed for this purpose. It supports hybrid, i.e.
combined shallow and deep processing workflows of multiple NLP components to increase robustness and exploit synergy, and linguistic
resources for multiple languages. The notion of explicit transformation between component input and output enables flexible interaction
of existing NLP components. Heart of Gold foresees both tightly (same process) and loosely coupled (via networked services) processing
modes. Assuming familarity with UIMA, we introduce Heart of Gold and propose and discuss hybrid integration scenarios in the context
of UIMA. Possible applications include precision-oriented question answering, deep information extraction and opinion mining, textual
entailment checking and machine translation.

1. Introduction
At last with the incubation of UIMA as an Apache project,
language technology and natural language processing tools
are becoming standard techniques usable in mainstream ap-
plication software. More and more pre-existing tools for
text processing got news clothes and found their way into
the UIMA component repository1. So, job done – what’s
next?
If one looks closer at the different types of integrated tools,
then only the same few types of components appear – at
least those openly available: shallow tools such as part-of-
speech taggers, chunkers, named entity recognizers and en-
tity detectors, the latter ones for specific tasks or domains.
But this is only half the range of natural language pro-
cessing (besides the language dimension that is currently
mostly English).
To get structure and semantics from unstructured text, much
more is needed than identifying types of named entities or
part-of-speech tags. Ultimately, one needs text understand-
ing, getting the relations between the various entities men-
tioned in the text, or at least a predicate-argument struc-
ture per sentence. This cannot be provided only by shallow
tools, but requires deep parsing.
Moreover, even rather shallow tasks such as template-based
information extraction work better in rather fixed word-
order languages such as English, but perform worse on free
word-order languages. Again, deep syntactic parsing could
help to improve results. While efficiency is no longer a
problem for deep parsing, robustness can be overcome us-
ing a hybrid approach we will discuss below.
The distinction between shallow and deep processing is
a continuum rather than a strict dichotomy. Deep means
knowledge-intensive, comprehensive, generic. By shal-
low, we mean partial, less informed analysis, often domain-
dependent. It has to be pointed out that the distinction be-

1http://uima.lti.cs.cmu.edu

tween statistical and rule-based NLP is orthogonal to that,
as deep and shallow analyses may involve both. For more
in-depth discussions, cf. (Uszkoreit, 2002; Schäfer, 2007).
There is one further distinction that plays a role when
characterizing the kind of analysis results and its relation
to NLP software architecture. (Cunningham et al., 1997)
present a classification of software infrastructures for NLP
by distinguishing three models they call

• referential (analyses are stored as separate representa-
tions with pointer references into the original text),

• additive (e.g. cumulative SGML/XML annotation
markup), and

• abstraction-based (as in typed feature structures of
deep analysis where the analysis result consists of a
closed, integrated information structure for larger text
entities, typically a whole sentence).

Thus, architectures for shallow and deep components
should support at least referential and abstraction-based
representations. The latter is not supported by architectures
such as GATE (Bontcheva et al., 2004).
Although the designers of UIMA had deep processing in
mind already when they started developing their framework
(Ferrucci and Lally, 2004; Götz and Suhre, 2004), at least
openly available deep processing is currently less devel-
oped in UIMA than in other approaches, and so is the novel
hybrid (combined deep and shallow) integration paradigm.
In this paper, we will present another framework, Heart of
Gold, and discuss its relation to UIMA. This framework has
been developed independently of and in parallel to UIMA.
It integrates mainly openly available shallow and deep pro-
cessing components and linguistic resources for many lan-
guages.
Heart of Gold (Callmeier et al., 2004; Schäfer, 2007)2 is a
lightweight, XML-based middleware architecture that has

2Download, documentation: http://heartofgold.dfki.de

43

http://www.dfki.de/~uschaefer
mailto:ulrich.schaefer@dfki.de
http://uima.lti.cs.cmu.edu
http://heartofgold.dfki.de

been developed in the context of DELPH-IN3, a collabo-
ration of various research groups developing and sharing
open source tools and linguistic resources for the Head-
driven Phrase Structure Grammar (Pollard and Sag, 1994).
Being open source, Heart of Gold is also contained in the
OpenNLP collection4.
The main motivation why Heart of Gold has been devised
is flexible support for the combination of multiple shallow
NLP analysers with a deep HPSG parser, and for generat-
ing robust deep semantic representations of the meaning of
natural language sentences. It could be shown that through
integration with PoS tagging and named entity recognition,
deep parsing coverage on newspaper text can be doubled,
even on broad-coverage grammars with relatively large lex-
ica (Crysmann et al., 2002; Schäfer, 2007).
We will in the following discuss the Heart of Gold ap-
proach, how it differs from and can be brought together
with UIMA. The idea is that if Heart of Gold would be
migrated to UIMA (hypothetically), not only single com-
ponents should be migrated, but also the efforts invested
in elaborated hybrid integration workflows should be pre-
served, e.g. for English, German and Japanese.

2. Heart of Gold
2.1. Design principles
One of the design decisions that have been made in Heart
of Gold is the choice of open XML standoff markup as the
only representation format for input and output of the com-
ponents. It contains aspects of both referential (through
character offset positions encoded in attributes) and addi-
tive representation architectures mentioned in the introduc-
tion.
Standoff markup is easy to exchange, transformable us-
ing standard XML transformation languages such as XSLT
(Clark, 1999), and interoperability benefits from Unicode
being part of the XML standard. The XML approach is
in principle compatible with UIMA which in addition sup-
ports isomorphic object structure in the supported program-
ming languages. The elegance of the XML approach lies in
the closeness to XML corpus annotation, i.e. persistently
‘multidimensionally’ stored analysis results form an auto-
matically annotated corpus.
Fig. 1 gives a schematic overview of the Heart of Gold
middleware architecture in between applications (top) and
external NLP components (bottom). Communication with
the middleware is supported via XML-RPC web service or
programmatically via a Java API. When a new application
session is started, it takes a configuration specifying the
wrapped NLP components to start for this session. Each
component is started according to its own configuration.
An application client can send texts to the middleware and
the NLP components are then queried in a numerically de-
fined processing order (‘depth’). The shallowest compo-
nents (e.g. tokenizer) are assigned a low number and are
started first etc. The output of each component must be

3DEep Linguistic Processing with HPSG Initiative; http://
www.delph-in.net

4http://opennlp.sf.net

Computed
annotations
XML,RMRS

Application

Module Communication Manager

R
es

ul
ts

Q

ue
rie

s

External,
persistent
annotation
database

 Modules

 External NLP
components

XSLT service

Figure 1: Middleware architecture

XML markup. Each component gets the output of the pre-
vious component as input by default, but can also request
(via configuration) other annotations as input.
As there is no commonly accepted XML standard for lin-
guistic annotation, the architecture itself makes no assump-
tion about the XML format as long as it is well-formed
XML. XML transformation is used to mediate between dif-
ferent I/O formats.
Components may produce multiple output annotations (e.g.
in different formats). Thus, the component dependency
structure in general forms a graph. In Section 2.8., we de-
scribe a further generalization of the default pipeline.

2.2. Session and annotation management

The resulting NLP annotations are stored in a per-session
markup storage (Fig. 2) that groups all annotations for
an input query (a sentence or text) in annotation collec-
tions. The markup can also be made persistent by sav-
ing it to XML files or storing it in an XML database.
Annotations can be accessed uniquely via a URI of the form

 Session Annotation
collection (1
per input text)

Standoff annotations (computed by modules/components)

Figure 2: Session and multi-dimensional markup storage

hog://sid/acid/aid in XPath expressions where sid is
a session ID, acid is an annotation collection ID and aid is
an annotation identifier typically signifying the name of the
producing component. Structured metadata like configura-
tion and processing parameters (e.g. processing time and
date, language ID etc.) are automatically stored within the
annotation markup as first root daughter element.

44

http://www.delph-in.net
http://www.delph-in.net
http://opennlp.sf.net

Component NLP Type Languages Implemented in
JTok tokenizer de, en, it,... Java
ChaSen Japanese segm./tagger. ja C
TnT HMM tagger de, en,... C
Treetagger statistical tagger en, de, es, it,... C
Chunkie HMM chunker de, en,... C
ChunkieRMRS chunk RMRSes de, en XSLT, SDL/Java
LingPipe statistical NER en, es,... Java
FreeLing morph./tagger/NER ca, en, es, gc, it C++
Sleepy shallow parser de OCaml
SProUT morph., shallow NLP/NER de, el, en, ja,... XTDL, Java
LoPar/wbtopo PCFG parser de C, XSLT
Corcy coref resolver en Python
RASP shallow NLP en C, Lisp
PET HPSG parser de, el, en, ja,... C, C++, Lisp
RMRSmerge RMRS merger de, en,... XSLT, SDL/Java
SDL generic sub-architectures SDL/Java

Figure 3: Integrated components from shallow (top) to deep (bottom). Details and references on http://heartofgold.dfki.de.

2.3. Wrapped NLP components

NLP components are integrated through adapters called
modules (either Java-based, subprocesses or via XML-
RPC) that are also responsible for generating XML standoff
output in case this is not supported natively by the under-
lying, pre-existing component. Various shallow and deep
NLP components have already been integrated, cf. Fig. 3.

2.4. Integration through transformation

Heart of Gold heavily relies on the use of XSLT for com-
bining and integrating XML markup produced by the NLP
components. The general idea is to use XSLT to trans-
form XML to other XML formats, or to combine and query
annotations. In particular, XSLT stylesheets may resolve
conflicts resulting from multi-dimensional markup, choose
among alternative readings, follow standoff links, or decide
which markup source to give higher preference.
(Carletta et al., 2003), e.g. propose the NXT Search
query language (for corpus access) that extends XPath by
adding query variables, regular expressions, quantification
and special support for querying temporal and structural
relations. Their main argument against standard XPath is
that it is impossible to constrain both structural and tempo-
ral relations within a single XPath query. Our argument is
that XSLT can complement XPath where XPath alone is not
powerful enough, yet providing a standardized language.
Further advantages we see in the XSLT approach are porta-
bility and efficiency (in contrast to ‘proprietary’ and slow
XPath extensions like NXT), while it has a quite sim-
ple syntax in its (currently employed) 1.0 version. XSLT
can be conceived as a declarative specification language as
long as an XML tree structure is preserved (not necessarily
fully isomorphic to the input structure). However, XSLT
is Turing-capable and therefore suited to solve in principle
any markup integration or query problem.
Finally, extensions like the upcoming XSLT/XPath 2.0 ver-
sion or efficiency gains through XSLTC (translet compila-
tion) can be taken on-the-fly and for free without giving
up compatibility. Technically, the built-in Heart of Gold

XSLT processor could easily replaced or complemented by
an XQuery processor. However, for the combination and
transformation of NLP markup, we see no advantage of
XQuery over XSLT.
Heart of Gold comes with a built-in XSL transforma-
tion service, and module adapters can easily implement
transformation support by including a few lines of code.
Stylesheets can also be generated automatically in Heart
of Gold, provided a formal description of the transforma-
tion input format is available. An example is the mapping
from named entity grammar output type definitions in the
deep-shallow integration scenario we will describe briefly
by example below.

2.5. Performance
There is a slight performance drawback Heart of Gold
shares with other service-oriented architectures. It is im-
posed by the XML framework, yet partly countervailed by
fast XSL transformation. While deep parsing alone is in
the range of milliseconds per sentence thanks to the very
efficient PET system, a hybrid parse may take up to 1-2
seconds including PoS tagging, named entity recognition,
and some more seconds for very long sentences.
The majority of the time goes into Java-based XML pro-
cessing, and there is room for optimization. However, we
think this is an acceptable tradeoff for very flexible and
quick experimental integration of (new) NLP components
in exciting new, rapidly prototyped applications, including
the benefits of Unicode given for free in multilingual inte-
gration scenarios.

2.6. Integrating shallow and deep processing
The main motivation for integrating deep and shallow pro-
cessing is that deep parsing alone is not robust enough.
Open class words such as names, locations, time expres-
sions not in the deep lexicon prevent construction of full
parse trees. A simple, yet very efficient way of making
parsing more robust to gaps in the lexicon is using PoS tag-
ging as pre-processing. From the PoS information for a
word unknown to the deep lexicon, one or more generic

45

http://heartofgold.dfki.de

Figure 4: Hybrid workflows for German, English, Japanese

lexicon entry is put on the deep parser’s chart containing at
least the information about the word class and maybe other
information such as morphological or basic semantics fea-
tures.
In the same way, named entity recognizers and gazetteers
may contribute e.g. domain-specific information missing in
the deep grammars. This forms a division of labor: the (ex-
pensive) deep grammar is responsible for modelling correct
general language use, syntax and generating a sentence-
semantic representation, while the shallow components add
domain-specific information that does not need to be main-
tained in the deep lexicon and can be easily changed for a
different application domain.
We now give an example for such a hybrid workflow, de-
picted for English in the middle of Figure 4. The configu-
ration for German is analogous except that there is no sec-
ondary shallow fallback component.
The raw input sentence text is sent to the JTok tokenizer
and the named entity recognizer SProUT (Drożdżyński et
al., 2004), because SProUT comes with its own tokenizer
with a finer-grained token classification. Chunkie (HMM
chunker) and TnT (HMM tagger) use the tokenized output
from JTok as input, Chunkie output is used as secondary in-
put for the ChunkieRMRS cascade (left branch in Figure 4
for German and English) we will be explain Section 2.8.
The output of this cascade (shallow RMRS) can be used
as shallow fallback result in case the deep parser fails to
parse the input sentence. Similarly, RASP (English only)
produces another shallow RMRS as fallback annotation.
Back to the middle pipeline, the tagger output for the sen-
tence ’George Washington was born in Virginia’

<w id="TNT0" cstart="0" cend="5">

<surface>George</surface>

<pos tag="NNP" prio="1.000000e+00"/>

</w>

<w id="TNT1" cstart="7" cend="16">

<surface>Washington</surface>

<pos tag="NNP" prio="1.000000e+00"/>

</w>

<w id="TNT2" cstart="18" cend="20">

<surface>was</surface>

<pos tag="VBD" prio="1.000000e+00"/>

</w>

<w id="TNT3" cstart="22" cend="25">

<surface>born</surface>

<pos tag="VBN" prio="1.000000e+00"/>

</w>

<w id="TNT4" cstart="27" cend="28">

<surface>in</surface>

<pos tag="IN" prio="1.000000e+00"/>

</w>

<w id="TNT5" cstart="30" cend="37">

<surface>Virginia</surface>

<pos tag="NNP" prio="1.000000e+00"/>

</w>

as well as the recognized named entities from SProUT

<w id="SPR1" cstart="0" cend="16" prio="0.5"

constant="yes">

<surface>George Washington</surface>

<typeinfo id="TIN1" baseform="no">

<stem>$genericname</stem>

</typeinfo>

</w>

<w id="SPR2" cstart="30" cend="37" prio="0.5"

constant="yes">

<surface>Virginia</surface>

<typeinfo id="TIN2" baseform="no">

<stem>$genericname</stem>

</typeinfo>

</w>

are transformed into the deep parser’s (PET; (Callmeier,
2000)) input chart format using XSLT (shown above is al-
ready the transformed version). Another XSLT stylesheet

46

Figure 5: Heart of Gold analysis results in GUI with specialized XML visualizations

is used to combine these and possibly other annotations in
a single PET input chart document 5.
From this XML input chart, the deep parser generates or
looks up deep lexicon entries, then starts HPSG parsing.

2.7. Output: semantics representation
Instead of huge typed feature structures containing the
monotonically assembled unification result of the HPSG
parse tree per sentence, applications are rather interested
in a distilled sentence semantics representation. This distil-
late largely omits linguistics details from morphology and
syntax, but provides a graph structure of connected seman-
tic entities for the whole sentence, including its predicate-
argument structure.
One such representation generated by many modern HPSG
grammars is MRS - minimal recursion semantics (Copes-
take et al., 2005) or its robust XML variant RMRS (Copes-
take, 2003). RMRS turns the semantics representation of
a sentence into an XML standoff format as well (including
references back into character positions of the input sen-
tence) and thus is appropriate for being processed by the
middleware and forwarded to applications.
An RMRS contains EPs (elementary predications) with ar-
gument connected via handle and individual variables. The
idea is that shallow NLP components may deliver equiva-
lent where possible, but maybe underspecified representa-
tions, e.g. the argument positions of a transitive verb may
be empty when a shallow parser cannot find the appropriate
object. The HCONS (handle constraints) attribute allows
to concisely express scopus ambiguities via handles. The

5Stylesheets are also employed to visualize the linguistic
markup, e.g. by transforming analysis results to HTML (Fig. 5)
or LATEX.

ING (in-group) attribute explicitly indicates conjunction of
its contained pairs.
A sample RMRS as produced by the deep parser PET run-
ning the HPSG grammar ERG6 in Heart of Gold is shown
in Figure 6, depicted in the MRS matrix format instead of
raw XML for better readability.
Figure 7 shows a structured result from the named entity
recognizer SProUT transformed to the RMRS format. It
contains information such as name variants or the indica-
tion that Virginia is of type province. This information was
not passed to the deep grammar as it is irrelevant for pars-
ing in this case, but it might be interesting for consuming
applications.
Thus, RMRS is used as a uniform, though not manda-
tory output format of both deep and shallow components.
The RMRSmerge module at the end of the shallow-deep
pipeline can be used to merge RMRSes produced by mul-
tiple components into a single representation (‘merged
RMRS’ in Figure 4).

2.8. Sub-architectures
Heart of Gold modules roughly correspond to TAEs (Text
Analysis Engines) in UIMA. The equivalent to UIMAs
composed TAEs are sub-architectures in Heart of Gold.
The SDL module enhances Heart of Gold with a compi-
lable NLP module control flow for sub-architectures, i.e.,
enabling declarative specification of modules that are com-
posed of other modules. SDL (System Description Lan-
guage) has been developed independently of Heart of Gold
by (Krieger, 2003).
SDL generates Java code for declaratively defined architec-
tures of NLP systems obeying a class interface imposed by

6English Resource Grammar; http://www.delph-in.net/erg/

47

http://www.delph-in.net/erg/



TEXT George Washington was born in Virginia.
TOP h1

RELS




prop-or-ques m rel
LBL h1
ARG0 e2tense=past

MARG h4

PSV x3num=sg
pers=3




proper q rel
LBL h6
ARG0 x3
RSTR h7
BODY h8




compound name rel
LBL h9
ARG0 e11

ARG1 x10num=sg
pers=3

ARG2 x3




udef q rel
LBL h12
ARG0 x10
RSTR h13
BODY h14




named rel
LBL h15
ARG0 x10
CARG George




named rel
LBL h31
ARG0 x3
CARG Washington




bear v
LBL h16
ARG0 e2
ARG2 x3




in p
LBL h32
ARG0 e19tense=u

ARG1 e2
ARG2 x18




proper q rel
LBL h20
ARG0 x18
RSTR h21
BODY h22




named rel
LBL h23

ARG0 x18num=sg
pers=3

CARG Virginia




HCONS {h4 qeq h16,h7 qeq h9,h13 qeq h15,h21 qeq h23}
ING {h9 ing h31,h16 ing h32}


Figure 6: Deep semantics representation (RMRS) by ERG and PET for “George Washington was born in Virginia”.

TEXT George Washington
TOP h100

RELS




ne-person rel
LBL h100
ARG0 x100
CARG George Washington




variant rel
LBL h101
ARG0 x101
CARG Washington | G. Washington
ARG1 x100




surname rel
LBL h111
ARG0 x111
CARG Washington
ARG1 x100




given name rel
LBL h112
ARG0 x112
CARG George
ARG1 x100




ING {h100 ing h101,h100 ing h111,h100 ing h112}




TEXT Virginia
TOP h100

RELS




ne-location rel
LBL h100
ARG0 x100
CARG Virginia




surface rel
LBL h103
ARG0 x103
CARG Virginia
ARG1 x100




prepositions rel
LBL h104
ARG0 x104
CARG in
ARG1 x100




locname rel
LBL h108
ARG0 x108
CARG virginia
ARG1 x100




loctype rel
LBL h110
ARG0 x110
CARG province
ARG1 x100




ING {h100 ing h103,h100 ing h104,h100 ing h108,h100 ing h110}


Figure 7: Shallow RMRS by SProUT for the named entities “George Washington” and “in Virginia”.

the SDL framework. The initial intention was to be able
to declaratively define cascaded SProUT instances, e.g. for
shallow chunk parsing. An application are e.g. cascades of
(shallow) NLP modules and XSL transformations.
Although the described mainly sequential control flow ap-
proach in Heart of Gold for NLP modules by defining a
depth and canonical processing order based upon, aug-
mented with potentially multiple input and multiple output
annotations in each processing step, was flexible enough
for deep-shallow integrations for many languages, it turned
out that some envisaged, RMRS-related shallow processing
applications required additional features such as loops and
parallelism – which SDL supports.
The declarative specification of the architecture is a sin-
gle expression consisting of symbolic module names con-
nected via operators, plus assignment of these symbolic
module names to Java class names, constructor arguments,
and some processing options.
The SdlModule is a generic wrapper plugging SDL sub-
architectures into the Heart of Gold. SdlModule acts like
any other Heart of Gold module in that it takes a (config-
urable) XML annotation as input, and returns an output an-
notation.
The name of the embedded SDL Java class containing the
compiled architecture description (previous section) is part
of the SdlModule configuration. The generated Java code

of the SDL description is compiled and executed at runtime
in the SdlModule code using Java reflection.
ChunkieRMRS (Frank et al., 2004), left branch of the Ger-
man and English workflows in Figure 4, shall now serve as
an example of such a compound, SDL-based component.
Externally, it acts like a single component, but consists of
eight sub-modules in this case (Fig. 8).
A robust, partial semantics representation is generated from
a shallow chunker’s output and morphological analysis by
means of a processing cascade consisting of four SProUT
grammar instances with four interleaved XSLT transforma-
tions. SProUT is used here for intermediate, rule-based
transformation of complex typed feature structures.
The scenario is equally a good example for XSLT-based
annotation integration. Chunker analysis results are in-
cluded in the RMRS to be built through an XSLT stylesheet
using the XPath expression

document($uri)/chunkie/chunks/chunk[

@cstart=$beginspan and @cend=$endspan]

where $uri is a variable containing an annotation iden-
tifier of the form hog://sid/acid/aid as explained in
Section 2.2.

2.9. Applications
A recent application of the middleware for English is hy-
brid processing of scientific papers in the field of language

48

Heart of Gold NLP architecture instance

input sentence Chunkie

nodeid_cat
SProUT SProUT

rmrs_final
XSLT SProUT XSLT XSLT XSLT

rmrs_phrase reorderfs2rmrsxmlrmrs_lex

RMRS result

pos_filter
SProUT
rmrs_morph

 . . . other NLP components . . .

SDL−defined SProUT−XSLT cascade sub−architecture

Figure 8: SDL sub-architecture for constructing RMRSes from chunks in Heart of Gold

technology (Schäfer et al., 2008). Currently abstracts, later
full papers from the ACL Anthology (Bird et al., 2008) are
extracted from PDF, parsed with Heart of Gold, and so-
called quriples are extracted from the RMRS. Quriples are
query-oriented subject-verb-object-rest tuples that are in-
dexed and made searchable from a GUI application called
the Scientist’s Workbench. 62.5% full parse coverage could
be reached with out-of-the-box components and lingware
resource in a pipeline as described in Section 2.6.
Another application is question answering from structured
knowledge sources such as ontologies or databases. In the
QUETAL system (Frank et al., 2006), the hybridly com-
puted RMRSes of natural language questions, both German
and English, are directly translated to SPARQL ontology
queries of which the results are returned as answers formu-
lated by a template-based generator.
There are various further applications of purely shallow
configuration instances of Heart of Gold, e.g. for infor-
mation extraction on soccer game descriptions (Buitelaar et
al., 2006) and opinion mining.

2.10. Related Work
There is few related work on hybrid NLP architecture.
Most others such as (Grover and Lascarides, 2001) are sys-
tems that integrate specific instances of shallow and deep
tools without having the right or claiming themselves to
form generic architectures. GATE is shallow by design
and (without modification) not suited for abstraction-based
components such as deep parsers.
An interesting approach from a research area unrelated
to language technology by (Löwe and Noga, 2002) bears
some similarity with Heart of Gold. They describe a
generic XML-based, network-enabled middleware archi-
tecture for re-usable components that explicitly makes use
of XSLT as adapter language between components. It has
been proposed as a generic middleware in the spirit of
CORBA, DCOM or EJB. However, it can well be conceived
as a supporting, independent argument that the XML and
XSLT-based middleware approach is a useful design pat-
tern for software architecture.

3. UIMA Integration Scenarios
In this section, we discuss a hypothetical migration of hy-
brid processing in Heart of Gold to UIMA. The cheap way
of migrating to UIMA would be to wrap Heart of Gold con-
figuration instances as a whole in a UIMA TAE (text anal-
ysis engine). But this would probably not add any value.
There is no doubt that components currently integrated in
Heart of Gold could be migrated to UIMA, each in a sepa-
rate TAE, as well as the simple, ’direct’ pipelines for hybrid

processing, as composed TAEs.
Going this way would require more implementation work,
but the result would be (hopefully) analogous configurabil-
ity, then UIMA-enabled. To keep the same flexibility as
in Heart of Gold, the configurable stylesheets for transfor-
mation between components could be put in separate TAEs
or as adapters. At the end, UIMA would benefit from new
(mostly open source) TAEs, and the new paradigm of hy-
brid analysis.
An interesting, but even more implementation-intensive ap-
proach would be separating linguistic resources such as
grammars or lexica specific to components by putting them
behind KSAs (knowledge source adapters). Currently, each
component comes with its own resources and resource for-
mat. There is some synergetic gain forseeable through
KSAs, but there is doubt that this will be worth the effort
for every component.
Another interesting approach would be sharing the type hi-
erarchy among deep and shallow components. Currently,
this is possible for the deep parser PET and the generic
NLP engine SProUT. Both use the same very efficient bit-
vector encoding technique for their type system (Callmeier,
2000). As it is for HPSG, it necessarily supports multi-
ple inheritance, while in the UIMA, only single-inheritance
type systems seem to be supported which would cause a
problem e.g. for the feature structure structure representa-
tion of parse results.
The biggest effort will probably have to be invested in the
CAS (Common Analysis Structure). The lightweight Heart
of Gold proposes and supports RMRS as optional com-
mon format, but is also open to any other standoff for-
mat. Agreements on the formats are only necessary be-
tween connected components.
In UIMA, the I/O of TAEs has to be specified more rigidly
as part of the CAS. In the ideal case, this could result in sys-
tems where the workflow can be computed automatically
(in the ideal case) from a global I/O specification, e.g. by
an application. Currently, this is a manual task in Heart of
Gold.

4. Summary and Outlook
We have presented Heart of Gold and discussed its re-
lation to and possible connection with UIMA. UIMA is
an emerging, industrial-strength platform for application-
oriented processing of unstructured data such as natural lan-
guage text. It has been designed very thoroughly and now
constitutes a rather complex framework. Therefore, mainly
shallow NLP tools have been migrated to UIMA so far.
Heart of Gold is meant mainly as a lightweight research
instrument for flexible experimentation with hybrid, XML-

49

based NLP component integration and for rapid prototyp-
ing of applications using semantic analyses of text. Re-
search on deep processing and improving it with respect
to robustness through various approaches, also other than
integrating it with shallow tools, e.g. through additional
statistical models and extensions, is a hot research topic.
Now that hybrid processing has turned out promising and
proven successful for a range of applications, UIMA may
help to bring deep and hybrid processing faster to a broader
community and market. And vice versa: UIMA and
UIMA-based applications will benefit from increased anal-
ysis depth gained through hybrid processing.

5. Acknowledgments
This work has been supported by a grant from the German
Federal Ministry of Education and Research (FKZ 01 IW
F02). Thanks to the anonymous reviewers for their valu-
able, concise and encouraging comments.

6. References
Steven Bird, Robert Dale, Bonnie Dorr, Bryan Gibson,

Mark Joseph, Min-Yen Kan, Dongwon Lee, Brett Pow-
ley, Dragomir Radev, and Yee Fan Tan. 2008. The ACL
anthology reference corpus: a reference dataset for bibli-
ographic research. In Proceedings of LREC-2008, Mar-
rakech, Morocco.

Kalina Bontcheva, Valentin Tablan, Diana Maynard, and
Hamish Cunningham. 2004. Evolving GATE to meet
new challenges in language engineering. Natural Lan-
guage Engineering, 10(3-4).

Paul Buitelaar, Thomas Eigner, Greg Gulrajani, Alexander
Schutz, Melanie Siegel, Nicolas Weber, Philipp Cimi-
ano, Günter Ladwig, Matthias Mantel, and Honggang
Zhu. 2006. Generating and visualizing a soccer knowl-
edge base. In Frank Keller and Gabor Proszeky, editors,
Proceedings of the EACL06 Demo Session, Trento, Italy.

Ulrich Callmeier, Andreas Eisele, Ulrich Schäfer, and
Melanie Siegel. 2004. The DeepThought core architec-
ture framework. In Proceedings of LREC-2004, pages
1205–1208, Lisbon, Portugal.

Ulrich Callmeier. 2000. PET – A platform for experimen-
tation with efficient HPSG processing techniques. Natu-
ral Language Engineering, 6(1):99–108.

Jean Carletta, Stefan Evert, Ulrich Heid, Jonathan Kil-
gour, Judy Robertson, and Holger Voormann. 2003.
The NITE XML toolkit: flexible annotation for multi-
modal language data. Behavior Research Methods, In-
struments, and Computers, special issue on Measuring
Behavior, pages 353–363.

James Clark, 1999. XSL Transformations (XSLT). World
Wide Web Consortium, http://w3c.org/TR/xslt.

Ann Copestake, Dan Flickinger, Ivan A. Sag, and Carl Pol-
lard. 2005. Minimal recursion semantics: an introduc-
tion. Journal of Research on Language and Computa-
tion, 3(2–3):281–332.

Ann Copestake. 2003. Report on the design of RMRS.
Technical Report D1.1b, University of Cambridge, Cam-
bridge, UK.

Berthold Crysmann, Anette Frank, Bernd Kiefer, Stefan
Müller, Jakub Piskorski, Ulrich Schäfer, Melanie Siegel,

Hans Uszkoreit, Feiyu Xu, Markus Becker, and Hans-
Ulrich Krieger. 2002. An Integrated Architecture for
Deep and Shallow Processing. In Proceedings of ACL
2002, pages 441–448, Philadelphia, PA.

Hamish Cunningham, Kevin Humphreys, Robert
Gaizauskas, and Yorick Wilks. 1997. Software
infrastructure for natural language processing. In
Proceedings of the 5th Conference on Applied Natural
Language Processing, pages 237–244, San Francisco,
CA, USA. Morgan Kaufmann Publishers Inc.

Witold Drożdżyński, Hans-Ulrich Krieger, Jakub Pisko-
rski, Ulrich Schäfer, and Feiyu Xu. 2004. Shallow
processing with unification and typed feature structures
– foundations and applications. Künstliche Intelligenz,
2004(1):17–23.

David Ferrucci and Adam Lally. 2004. UIMA: an architec-
tural approach to unstructured information processing in
the corporate research environment. Natural Language
Engineering, 10(3-4):327–348.

Anette Frank, Kathrin Spreyer, Witold Drożdżyński, Hans-
Ulrich Krieger, and Ulrich Schäfer. 2004. Constraint-
based RMRS construction from shallow grammars. In
Proceedings of the HPSG-2004 Conference, Center for
Computational Linguistics, Katholieke Universiteit Leu-
ven, pages 393–413. CSLI Publications, Stanford, CA.

Anette Frank, Hans-Ulrich Krieger, Feiyu Xu, Hans Uszko-
reit, Berthold Crysmann, Brigitte Jörg, and Ulrich
Schäfer. 2006. Question answering from structured
knowledge sources. Journal of Applied Logic, pages 20–
48. DOI: 10.1016/j.jal.2005.12.006.

Thilo Götz and Oliver Suhre. 2004. Design and implemen-
tation of the UIMA common analysis system. IBM Sys-
tems Journal, 43(3). DOI: 10.1147/sj.433.0476.

Claire Grover and Alexis Lascarides. 2001. XML-based
data preparation for robust deep parsing. In Proceedings
of ACL/EACL 2001, pages 252–259, Toulouse, France.

Hans-Ulrich Krieger. 2003. SDL – A description language
for building NLP systems. In Proc. of the HLT-NAACL
Workshop on the Software Engineering and Architecture
of Language Technology Systems, pages 84–91.

Welf Löwe and Markus L. Noga. 2002. A lightweight
XML-based middleware architecture. In Proceedings of
IASTED AI 2002, Innsbruck. ACTA Press.

Carl Pollard and Ivan A. Sag. 1994. Head-Driven Phrase
Structure Grammar. Studies in Contemporary Linguis-
tics. University of Chicago Press, Chicago.

Ulrich Schäfer, Hans Uszkoreit, Christian Federmann,
Torsten Marek, and Yajing Zhang. 2008. Extracting and
querying relations in scientific papers on language tech-
nology. In Proc. of LREC-2008, Marrakesh, Morocco.

Ulrich Schäfer. 2007. Integrating Deep and Shallow Nat-
ural Language Processing Components – Representa-
tions and Hybrid Architectures. Ph.D. thesis, Faculty of
Mathematics and Computer Science, Saarland Univer-
sity, Saarbrücken, Germany.

Hans Uszkoreit. 2002. New Chances for Deep Linguis-
tic Processing. In Proceedings of COLING 2002, pages
xiv–xxvii, Taipei, Taiwan.

50

http://w3c.org/TR/xslt

CFE – a system for testing, evaluation and machine learning of UIMA based
applications

Igor Sominsky, Anni Coden, Michael Tanenblatt
IBM Watson Research Center

19 Skyline Dr., Hawthorne NY, 10532 USA

E-mail: sominsky@us.ibm.com, anni@us.ibm.com, mtan@us.ibm.com

Abstract

There is a vast quantity of information available in unstructured form, and the academic and scientific communities are increasingly
looking into new techniques for extracting key elements - finding the structure in the unstructured. There are various ways to identify
and extract this type of data; one leading system, which we will focus on, is the UIMA framework. Tasks that are often desirable to
perform with such data after it has been identified are testing, correctness verification (evaluation) and model building for machine
learning systems. In this paper, we describe a new Open Source tool, CFE, which has been designed to assist in both model building
and evaluation projects. In our environment, we used CFE extensively for both building intricate machine learning models, running
parameter-tuning experiments on UIMA components, and for evaluating a hand-annotated "gold standard" corpus against annotations
automatically generated by a complex UIMA-based system. CFE provides a flexible, yet powerful language for working with the
UIMA CAS - the results of UIMA processing - to enable the collection and classification of resultant data. We describe the syntax and
semantics of the language, as well as some prototypical, real-world use cases for CFE.

1. Introduction

A wealth of information is captured in unstructured

sources, ranging from text to streaming video. Analysis of

these sources and extraction of knowledge from them is

the goal of several frameworks currently in use within the

research community. Two open source frameworks, the

Gate system (http://www.gate.ac.uk) and the UIMA

framework (http://incubator.apache.org/uima) have

gained popularity. Although different in several aspects,

both systems are modular, providing a mechanism for

creating and executing a pipeline of components, known

as “annotators”. These annotators implement various

algorithms, each of which performs a specific analysis

task. In this paper, we will focus on textual unstructured

data sources. Hence, examples of annotators are natural

language processing (NLP) components, such as

part-of-speech taggers and parsers, rule based annotators

or named entity annotators based on a variety of

machine-learning algorithms.

One of the challenges faced by all application developers

is the testing and evaluation methodology. At a high level,

the issues typically are regression testing and computation

of accuracy metrics (e.g. precision/recall) against a “gold

standard”. There are many tools available (e.g.,

Knowtator (http://knowtator.sourceforge.net) and Callisto

(http://callisto.mitre.org)) for manually annotating

documents, both for building machine learning training

data and for creating “gold standard” corpora to be used as

a reference set in testing. Evaluation and testing involves

comparing annotations from different executions. Within

the UIMA framework, this can be accomplished by

extracting and comparing values of properties of UIMA

annotations. These annotations can be arbitrarily complex.

Extraction of these properties, called features, is also one

of critical sub-tasks in creating machine learning models,

as the feature vectors for building the models can be

generated from features values of UIMA annotation.

It should be noted that the term features, which is

frequently used throughout this paper, is often used in

different contexts. This term may refer to properties of

UIMA annotation types or features that are used to

build/evaluate models for machine learning algorithms. In

this paper we will use the term features in relation to

properties of UIMA annotations, while values of models

for machine learning will be referred as ML features.

What we needed, but were not able to discover, was a tool

that could be configured to extract specific portions of a

UIMA CAS (Common Analysis Structure: the

object-based data structure in which UIMA represents

objects, properties and values), specifically a set of

features from some set of annotations based on user

specified conditions. Traditionally, application-specific

“CAS Consumers” have been written to satisfy this

requirement. While this approach is reasonable for a fixed

(or nearly fixed) set of output requirements, it can be

unwieldy when experimenting with different sets of

features to be extracted, an underlying annotation model

is in flux, or if two or more differing (yet equivalent)

models need to be extracted and aligned. For these

reasons, we created a system to perform these kinds of

extraction tasks, and which provides a powerful

declarative extraction specification language. The same

functionality is also needed to generate ML features to

build models that underlie machine learning algorithms.

To accomplish the final steps of evaluation tasks, we

combine the generalized feature extractor with a system

within which accuracy metrics can be computed.

This paper is organized as follows. In section 2, we will

describe the challenges of testing and evaluating UIMA

51

pipelines in detail and discuss why other testing and

evaluation environments proved to be inadequate. The

feature extraction specification language (FESL) – is

introduced in section 3. Section 4 will describe a

real-word use case of FESL performance evaluation of an

NLP system and section 5 will demonstrate how FESL

can be used for machine learning related processing. We

conclude in section 6 with proposing some potential

extensions.

2. Problem statement

Evaluation of an information extraction system consists

of several steps: defining a baseline against which to

compare, defining the comparison criteria, extracting

relevant information from sources (e.g., the baseline and

the system to be evaluated) and subsequent comparative

analysis.

At a very general level, for a given textual document, a

UIMA pipeline executes as shown in Figure 1.

Figure 1: UIMA pipeline

First, the document is read into a Common Analysis

System (CAS) structure. Next, a set of analysis engines

(AEs) mark up this piece of text, producing annotation

objects, each of which is usually associated with a span of

text in that document. Finally, one or more CAS

Consumers read these annotations, perform any necessary

processing, and then output results.

Figure 2: An abstract view of typical UIMA annotation

Each annotation (as shown for example in Figure 2) has

properties associated with it. These properties contain

specific information about the annotation, and as

described in the introduction, are called features.

Although the actual implementation of UIMA annotation

objects is much more complex, this abstract view reflects

information stored in these objects. The values of features

are set by AEs and could either be modified or used

without modification by subsequent annotation engines.

In the example in Figure 2, the annotations are created

with a dictionary lookup mechanism against a medical

terminology, the attributes being the begin and end offsets

of the relevant piece of text in the document that this

annotation object is associated with, the semantic class of

the named entity that is described by the annotation, the

terminology name and code associated with it from that

dictionary, and the actual text fragment.

The first step in the process of evaluation is the definition

of equality between two types to be compared. This

necessitates a specification of a set of features from both

the test and reference sets that should be compared, and

the criteria for the comparison. In the next step, the

annotations of those types and their significant properties

are extracted. We developed the language FESL to specify

the details of this extraction. FESL contains sufficient

semantics for expressing rules for generation of

parameters for building machine learning models. The

extraction can be implemented as part of a standard

UIMA component (AE or CAS consumer) depending on

particular application requirements. For the evaluation

environment, we developed a tool that extracts required

feature values using a CAS consumer. It performs the

extraction from two CAS structures that are to be

compared and loads the extracted information into a

Microsoft Excel spreadsheet, where the final stages of the

evaluations are executed, as described in section 4.

3. The Feature Extraction Specification
Language (FESL)

To enable a high degree of flexibility and extensive

functionality, we defined an XML-based specification

language that expresses semantic rules for feature

extraction. One of the key concerns in defining the

language was to avoid any dependency upon any

particular application of the extraction process. This

allows reusing the same extraction semantics for different

purposes, whether for comparative analysis, subsequent

algorithm execution or machine learning related

processing. The feature extraction process is independent

of the representation of the feature in the final output. This

enables different output formats for different use cases,

such as machine learning or testing. As a simple example,

extracted values for comparison could contain spaces in

their representation, while the same values extracted for

machine learning could replace spaces with underscore

characters. The component also defines a destination for

output. For instance, the analysis engine (AE) could store

the extracted features values within a CAS structure

and/or a subsequent CAS Consumer might output them to

an external source such as a disk file or database.

The semantics of the specification language allow the

definition of complex multi-parameter criteria that could

identify a particular concept of interest. Such criteria

allow locating the information expressed by any

particular UIMA annotation and/or its features in a CAS

structure, evaluating its value against one or more

Collection Reader

Source Structured
Information

Analysis Engine

Analysis Engine

Analysis Engine

CAS Consumer

CAS Consumer

CAS Consumer

52

conditions and recording the results in an internal

depository for post processing. The criteria for such

search can be specified by a combination of the following

conditional expressions, written with FESL:

a. type of an annotation object that contains the feature

(in the general case, the feature does not have to be a

property of the object, but should be accessible (i.e on

the path) from its properties, as will be shown further

down in this section)

b. surrounding (enclosing) annotation type and relative

location of the object within the enclosure, as

indicated by the enclosingAnnotation attribute of the

targetAnnotations XML tag, shown in Figure 3 (the

significance of the enclosing annotation is explained

below)

c. path to the feature from the annotation object, as

indicated by the featurePath attribute of the

featureMatchers XML tags, as shown in Figure 3

d. type and value of the feature itself; the feature value

can be evaluated against different constraints

expressed with FESL, as explained further down in

this section

e. values of any public Java get-style methods (methods

that accept no parameters and return a value)

implemented by the underlying class of the feature

f. location of the object or the feature on a specific path

(in cases when it is required to select/bypass

annotations if they are features of certain annotation

types)

One of the key capabilities of FESL mentioned in items

(a), (c) and (f) is an ability to specify a “path” to a feature

from an annotation object. This path is a sequence of

feature/method names, separated by the colon character,

that mimics the sequence of Java method calls required,

starting at the annotation object, in order to extract the

feature value. It should be noted that, as UIMA

annotations support arrays as feature types, FESL also

provides the ability to extract values of features that are

arrays or properties of annotations that are contained in

arrays. Figure 5 contains a sample of how arrays are

specified in FESL. In addition, special array semantics

allow accessing elements of arrays by index and sorting

them by offset before extraction.

Some applications require performing an extraction of

information relevant to a certain concept within sentence

boundaries; other may extend the scope of the extraction

to a paragraph. As mentioned in item (b) FESL has the

ability to define such a scope by specifying an enclosing

annotation as illustrated in Figure 3.

Typically, values of UIMA annotation features are

required to be extracted, but FESL also enables an

extraction of non-UIMA properties of an object by using

Java reflection mechanism. As specified by item (e), a

value returned by any public method that has no

arguments can be extracted and treated in the same way

UIMA features are processed. As shown in Figure 3,

getCoveredText is not a property of a UIMA Annotation

type, but rather a method that this type defines.

As previously mentioned in item (d) the feature values

can be evaluated by conditional expressions stated in

FESL. Particularly, the feature values can be evaluated

whether they:

i. are of a certain type

ii. belong to a specific set of values (vocabulary), where

the set of values, as shown on Figure 3, is defined by

the enumFeatureValues XML tag

iii. belong to a range of numeric values (inclusively or

non-inclusively) as defined by the

rangeFeatureValues XML tag

iv. match certain bits of a bit mask (integer values only);

the bitmaskFeatureValues XML tag will contain an

integer bitmask along with a flag indicating whether

the bitmask should exactly match to a feature value

v. match a Java regular expression pattern, where the

patternFeatureValues XML tag will contain a regular

expression against which a feature value will be

evaluated

The evaluation of the search criteria can be specified in

disjunctive normal form. Conjunctions are bounded by

FESL groupFeatureMatcher XML tags and are referred to

as groups. Disjunction is implicit between multiple

groups. This gives a powerful and flexible way of

defining fairly complex criteria for a search of a required

annotation and/or its value.

It should be noted that the semantics of FESL, as shown in

Figure 3, separate the concept and specification of target

annotations (TA) from feature annotations (FA). Although

they use identical semantic rules for specifying the search

criteria, the ways the results of the search are processed

are different. In particular, TAs are used to locate a

concept, while FAs are the annotations upon which the

extraction of features is performed. Target annotations are

specified by the targetAnnotationMatcher XML tag, and

feature annotations by the featureAnnotationMatcher

XML tag. During the extraction process, a TA is located

according to its search criteria. Once the TA is found, FAs

that correspond to the TA, and match to their own search

criteria, are located and feature values are extracted from

them. Additionally, the semantics allow the extraction of

features from multiple FAs, where each FA is located by

its specific context relative to the TA. This is particularly

useful in machine learning related processing where it is

often required to select features from annotations that are

located “near” another annotation with certain properties.

Let us consider a quite common example taken from the

machine learning domain: extracting “a bag of words

within a window of size 5 centered around the word

‘tumor’, excluding prepositions, conjunctions, articles

and punctuation”. This could be understood as: search for

token-based annotations that corresponds to the word

“tumor” (TA), and on every match consider the 5 nearest

53

token-based annotations (FAs) on both sides, and

excluding tokens that have associated part-of-speech tags

indicating they are of one of the following categories:

preposition, conjunction, article or punctuation, then

extract the token that corresponds to that FA. The FESL

semantics allow the unambiguous specification of criteria

for such a search that is shown in Figure 3.

<targetAnnotations className="BOW5Tumor"
 enclosingAnnotation="SentenceAnnotation">
 <targetAnnotationMatcher annotationTypeName="TokenAnnotation">
 <groupFeatureMatchers>
 <featureMatchers featurePath="getCoveredText" featureTypeName="String">
 <enumFeatureValues>
 <values>tumor</values>
 </enumFeatureValues>
 </featureMatchers>
 </groupFeatureMatchers>
 </targetAnnotationMatcher>
 <featureAnnotationMatchers annotationTypeName="TokenAnnotation"
 windowsizeLeft="5" windowsizeRight="5">
 <groupFeatureMatchers>
 <featureMatchers featurePath="getCoveredText" featureTypeName="String"/>
 <featureMatchers featurePath="pennTag" featureTypeName="String"
 exclude="true">
 <enumFeatureValues caseSensitive="true">
 <values>IN</values>
 <values>CC</values>
 <values>DT</values>
 <values>null</values>
 </enumFeatureValues>
 </featureMatchers>
 </groupFeatureMatchers>
 </featureAnnotationMatchers>
</targetAnnotations>

Figure 3: Bag of words extraction sample

In this figure, short versions of UIMA annotation type

names are shown for better readability. In the example, all

extracted feature values are assigned a label

“BOW5Tumor” (the value of the targetAnnotation’s

“className” attribute). The label could be used in

subsequent processing for the grouping of related results

of extraction. The search is limited to token annotations

(TokenAnnotation) within the same sentence

(SentenceAnnotation), as specified by

enclosingAnnotation attribute. Also, annotations of type

TokenAnnotation have a property called pennTag that

contains their part-of-speech tags. As illustrated in this

example, the TokenAnnotation’s getCoveredText attribute

is evaluated if, and only if, that same TokenAnnotation’s

pennTag contains a value in the set specified under

enumFeatureValues XML tag.

Figure 4: Tokenized sentence

To demonstrate how this FESL specification is applied

consider the sentence from Figure 4. Each box on this

figure corresponds to a single TokenAnnotation. These

TokenAnnotations are all enclosed within a single

SentenceAnnotation. Each TokenAnnotation contains a

unique label, a text string covered by this annotation and a

POS tag. According to the FESL specification in Figure 3,

first a TA of a TokenAnnotation type with covered text

tumor is searched for. Once it is found (T7), a search is

performed for 5 FAs of a type TokenAnnotation to the left

from T7. Only annotations whose POS tag is not IN, CC,

DT or null are selected during the search. Thus the

selected FAs will be T6, T4, T2 and T1. The same

algorithm applied on the right context of T7 will produce

a selection of FAs labeled T8, T9 and T10. As has been

mentioned earlier, the search for FAs is limited by

sentence boundaries. For this reason, even though a

windowSizeRight and windowSizeLeft are specified with

the value 5, fewer than five TokenAnnotations are actually

selected.

As opposed to this previous example for machine learning,

in the case of feature extraction for a comparative analysis

(e.g. evaluation), the TA and FA usually are the same.

To demonstrate another set of capabilities of FESL,

consider a case where it is necessary to process

annotations that implement hierarchical models, (i.e.,

annotations containing other annotations, which may

themselves contain annotations, etc.), with multiple levels

of containment. The set of particular features that are

required for extraction depend on where in the hierarchy

the annotation is located and how it is related to the higher

level annotation. As an example, we consider a case

where it is required to distinguish between a dimension of

a surgical margin and dimensions of a tumor. Figure 5

illustrates these capabilities, where the requirement is to

extract values of features of Dimension annotations that

are constituents of Size annotations which in turn are

properties of two different containing UIMA annotations:

PrimaryTumor annotations and MetastaticTumor

annotations. An additional requirement is to extract

feature values of all other Dimension annotations under a

separate label. Figure 5 illustrates how these complicated

requirements can be specified with FESL:

<targetAnnotations className="PrimaryTumorDimension"
 enclosingAnnotation="SentenceAnnotation">
 <targetAnnotationMatcher annotationTypeName="Size" fullPath="
 PrimaryTumor:Size"/>
 <featureAnnotationMatchers annotationTypeName="Size"
 windowsizeInside="1">
 <groupFeatureMatchers>
 <featureMatchers featurePath="Dimensions:toArray:Unit"
 featureTypeName="String"/>
 <featureMatchers featurePath="Dimensions:toArray:Extent"
 featureTypeName="String"/>
 </groupFeatureMatchers>
 </featureAnnotationMatchers>
</targetAnnotations>
<targetAnnotations className="MetastaticTumorDimension"
 enclosingAnnotation="SentenceAnnotation">
 <targetAnnotationMatcher annotationTypeName="Size"
 fullPath="PrimaryTumor:Size"/>

T1
Multiple

NNP

T2
serosal

JJ

T3
,

null

T4
mesenteric

JJ

T5
and

CC

T6
omental

JJ

T7
tumor

NN

T8
studs

NNS

T9
are

VBP

T10
present

JJ

T11
.

null

54

 <featureAnnotationMatchers annotationTypeName="Dimension"
 windowsizeInside="3">
 <groupFeatureMatchers>
 <featureMatchers featurePath="Unit" featureTypeName="String"/>
 <featureMatchers featurePath="Extent" featureTypeName="String"/>
 </groupFeatureMatchers>
 </featureAnnotationMatchers>
</targetAnnotations>
<targetAnnotations className="Processed"
 enclosingAnnotation="SentenceAnnotation">
 <targetAnnotationMatcher annotationTypeName="Dimension"
 fullPath="PrimaryTumor:Size:Dimensions:toArray"/>
</targetAnnotations>
<targetAnnotations className="Processed"
 enclosingAnnotation="SentenceAnnotation">
 <targetAnnotationMatcher annotationTypeName="Dimension"
 fullPath="MetastaticTumor:Size:Dimensions:toArray"/>
</targetAnnotations>
<targetAnnotations className="OtherDimension"
 enclosingAnnotation="SentenceAnnotation">
 <targetAnnotationMatcher annotationTypeName="Dimension"/>
 <featureAnnotationMatchers annotationTypeName="Dimension"
 windowsizeInside="1">
 <groupFeatureMatchers>
 <featureMatchers featurePath="Unit" featureTypeName="String"/>
 <featureMatchers featurePath="Extent" featureTypeName="String"/>
 </groupFeatureMatchers>
 </featureAnnotationMatchers>
</targetAnnotations>

Figure 5: Dimension extraction sample

In the example above, a path to features of interest that are

properties of feature annotations (FA) is specified by a

sequence of properties/methods that are required in order

to locate the final feature. For example:

fullPath="PrimaryTumor:Size:Dimensions:toArray"

specifies that PrimaryTumor contains a property called

“Size” of a type that has an array of dimensions, and

elements of that array should be of type Dimension as

enforced by the annotationTypeName attribute. The first

target annotation (TA) with a class label

PrimaryTumorDimension is specified to be of a type Size

and located on a path PrimaryTumor:Size. This

specification ensures that only Size annotations that are

constituents of PrimaryTumor annotations are matched.

Once the TA is located, a feature annotation (FA) of the

same type Size is searched for within the offset boundaries

of the TA, which is enforced by windowsizeInside attribute.

In this example, the value of windowsizeInside attribute is set

to 1, guaranteeing that the same Size annotation that was

previously selected as the TA will also be selected as the

FA. The same rules apply to the processing of target

аnnotations referenced by the

MetastaticTumorDimension class label. Also in this

example, a specification of an arbitrary label “Processed”

with no FA specification should be noted. This illustrates

the functional feature of FESL of excluding annotations

(TAs) that have been matched during the previous search

from further processing. Thus, dimensions matched for

tumor sizes will not by considered during the search

specified by criteria with label OtherDimension.

4. Automated performance metrics
evaluation

Comparison of results produced by a pipeline of UIMA

annotators to a “gold standard” or results of two different

NLP systems is a frequent task, and should be automated.

Creating a uniform methodology that would not just

simplify the comparison, but would also facilitate the

identification of common sources of errors and measure

performance improvements gained by correcting these

errors, is crucial in the NLP research and development

process.

Using FESL as an information extraction mechanism, we

developed such a methodology that includes several

steps:

- defining the comparison criteria

- extracting the relevant features

- extracting relevant information from two sources to

be compared into a spreadsheet-compatible format

- comparative analysis of extracted information

Only the first step has to be done manually; all others can

be completely automated.

4.1 Defining the comparison criteria

The definition of the comparison criteria between two
CAS structures is a critical step in the evaluation process.
Each CAS structure can have its own type system, and the
information represented by an individual type from one
type’s system does not necessarily mirror the information
stored in the corresponding type of a different type system.
In fact, its constituent parts could be spread across
multiple types. For complex types (types that include
other types and are also a part of the comparison process),
the relevant constituents to be used in the definition of
equality must be defined. The result of this step is a set of
FESL configuration files and set of custom comparison
Excel spreadsheet templates (CST). The FESL
configuration files specify the feature extraction, whereas
the templates implement the comparison criteria.

It is within the CST’s that the comparison between two
CAS structures is executed. Information from both
structures is loaded into a CST, and then the comparison is
implemented with a set of macros that perform the
following:
- compare two corpora based on the user defined

equality criteria
- calculate performance metrics such as precision,

recall and F-score.
In addition they could include macros to take into account
errors in the “gold standard” or estimate the performance
gain by fixing a specific algorithm or implementation
errors in automated annotators.

4.2 Feature extraction

Feature extraction is performed using a custom UIMA
CAS consumer that uses a FESL configuration file and a
CAS structure as its input and outputs delimited files with
feature values. This CAS consumer contains code which
interprets and executes the FESL configuration. A sample

55

of such an implementation will be released into Open
Source as part of the Apache UIMA incubator project.
The fundamental semantic rules implemented by FESL
were covered in section 3. Features are extracted from
both sources that are being compared, resulting in two
delimited files that are merged into a single file. This
process uses the offsets of annotations within the
document to guide the merger. The merged file can be
easily imported into a custom Excel spreadsheet for
further analysis, as discussed in section 4.1. In our
environment, the creation of a spreadsheet from two
delimited files is completely automated. Figure 6 shows
typical content of a merged file with feature values
extracted from two sources. We used a vertical bar (“|”)
character as the value separator, since our data can never
contain one—for use with other data sets, this can be
customized accordingly:

Figure 6: Merged results of feature extraction

4.3 Comparative Analysis

Comparative analysis usually includes several steps –
calculation of performance metrics, error analysis, and
evaluation of the most effective ways of improving
accuracy (e.g. identification of types of errors and
corrections that would maximize accuracy). As was
mentioned earlier, the calculations are done automatically
by macros, while error analysis and evaluation, for the
most part, must be done manually. One way that the
evaluation can be partially automated is that one of the
implemented macros allows errors to be classified
according to a code (e.g., errors in the gold standard vs.
errors in the automatic annotations) and performance
metrics recalculated based on these error codes.

5. Using feature extraction for machine
learning

Machine learning algorithms build and apply models to
extract pertinent information from sources such as a text
documents or images (Mitchell, 1997). In addition to the
machine learning algorithm, the process of defining of
ML feature set itself is a critical factor in building
accurate models of the information to be identified. In
general, extensive experimentation with a variety of
parameters is done to create models which perform with
the desired accuracy for a particular task.

The complexity of feature extraction varies, but it is
desirable to have a comprehensive mechanism to rapidly
extract them. CFE is such a mechanism for textual data
sources. In section 3 we described FESL and its semantics,

which can be used to specify which features should be
extracted. In this section we will describe some details as
they pertain to feature extraction within the machine
learning domain.

In particular, information from a surrounding context of a
specific term has to be taken into account, and
additionally, that context can be constrained by multiple
conditions specific to the task. Design of FESL takes such
considerations into account by allowing specification of
fairly complex and precise criteria for locating and
extracting particular pieces of information. For Word
Sense Disambiguation (WSD), in addition to the FESL
configuration, we developed a CAS consumer that
generates machine learning models and AEs that evaluate
the models within a classification task.

One of the steps in building models for machine learning

for textual data is generation of parameter sets from a text

corpus. The syntax and semantic of FESL, as previously

described, is sufficient for this task. The generated

parameter set contain individual machine learning

features (MLFs - not to be confused with UIMA features)

whose symbolic names are constructed from values

extracted according to FESL specification. In cases where

more then one UIMA feature value is extracted for a

particular MLF, the extracted values are concatenated to

produce a MLF symbolic name. For instance when

extracting size information from a context of a term to be

disambiguated we could produce an MLF that is

presented as “L1_Size_53_58_25_cm” which is a

combination of an annotation type that the information

was extracted from (Size), numeric extents for three

dimensions (53, 58, 25) and a measurement unit (cm). It

should be noted that prefix “L1” indicates that FESL

configuration specified to include a position of a MLF

relative to the term into the MLF name. A position is

characterized by direction and distance, thus “L1” should

be read as “first size annotation to the left from the term to

be disambiguated”. In cases where neither the distance

nor the direction is required to be a part of an MLF name it

will be prefixed with “X0”. Figure 7 shows a typical

content of an MLF file for WSD:

Figure 7: Sample of MLF file for WSD

6. Conclusion

In this paper, we proposed CFE (Common Feature

Extraction), a methodology and system for testing and

evaluating complex NLP applications executed within the

UIMA framework. The core of the system is a declarative

$ head set1-SizeDim-report.txt

18|24|4.0|cm|18|24|4.0|cm|gold/doc0.fve|medtas/doc0.fve

40|47|12.0|cm|40|47|12.0|cm|gold/doc0.fve|medtas/doc0.fve

106|118|6.5|cm|106|118|6.5|cm|gold/doc0.fve|medtas/doc0.fve

112|118|2.0|cm|112|118|2.0|cm|gold/doc0.fve|medtas/doc0.fve

249|261|3.8|cm|249|261|3.8|cm|gold/doc0.fve|medtas/doc0.fve

255|261|2.5|cm|255|261|2.5|cm|gold/doc0.fve|medtas/doc0.fve

275|281|5.0|cm|275|281|5.0|cm|gold/doc0.fve|medtas/doc0.fve

182|187|30|cm|182|187|30|cm|gold/doc10.fve|medtas/doc10.fve

211|216|20|cm|211|216|20|cm|gold/doc10.fve|medtas/doc10.fve

72|85|0.05|cm|72|85|0.05|cm|gold/doc100.fve|medtas/doc100.fv

e

$ cat ml_feature.txt

X0_Dimension_12_cm

X0_Size_45_50_12_cm

X0_Dimension_45_cm

X0_Size_4_6_5_cm

X0_Dimension_10_cm

X0_Size_20_35_10_cm

56

language FESL, and a UIMA component that processes

FESL specifications, using them to guide extraction of

data from a UIMA CAS in a completely generalized way,

and providing a method for subsequent processing to

format the output as needed for any downstream use. In

addition, CFE can be used to rapidly specify and extract

features to build models for machine learning algorithms.

The flexibility and ease-of-use of the system enables easy

experimentation with different models in the machine

learning space. CFE was used in quite different tasks:

experimenting with large numbers of feature sets to build

models for word sense disambiguation, evaluating a

sizable set of parameters for dictionary lookup and

evaluating the automatic filling of hierarchical knowledge

models. The comparison spreadsheets proved to be

invaluable in determining which algorithmic

improvements would result in the most substantial

improvements in precision and recall.

For a next step, a GUI for generating FESL configuration

files is planned. Other possible extensions are automating

the process of building refined models and automatically

evaluating them. The CFE system, the FESL declarative

language specification and the UIMA component to

interpret it will be released into Open Source as part of the

Apache UIMA incubator project.

7. Acknowledgements

We thank Rie K. Johnson for her support and Wei Guan

for experimenting with CFE.

8. References

Coden A.R., Savova G.K., Buntrock J. D., Sominsky I.L.,

Ogren P.V. , Chute C.G., de Groen P.C. (2007) Text

Analysis Integration into a Medical Information

Retrieval System: Challenges Related to Word Sense

Disambiguation: Medinfo 2007

Mitchell Tom. (1997). Machine Learning, McGraw Hill

Ogren, P.V. (2006). Knowtator: A Protégé plug-in for

annotated corpus construction. Rochester, MN.

Abstract for HLT-NAACL 2006.

Savova G.K., Coden A.R, Sominsky I.L., Johnson R.K.,

Ogren P.K., de Groen P.C. and Chute C.G. (2008). Word

Sense Disambiguation across Two Domains:

Biomedical Literature and Clinical Notes. To appear in

Journal of Biomedical Informatics

57

	uima_ws_lrec_proceedings.pdf
	Towards Enhanced Interoperability
	for Large HLT Systems:
	UIMA for NLP
	Workshop Programme
	Workshop Organisers
	Workshop Programme Committee

	Table of Contents

	papers
	covers
	Towards Enhanced Interoperability for
	Large HLT Systems:
	UIMA for NLP
	Workshop Programme
	Workshop Organisers
	Workshop Programme Committee

	Table of Contents

	uima_prceed.pdf
	uima-proc1.pdf
	UIMA_Proceedings
	Towards Enhanced Interoperability for
	Large HLT Systems: UIMA for NLP
	Workshop Programme
	Workshop Organisers
	Workshop Programme Committee

	Table of Contents

	uima_papers
	4_Full_Paper
	11_Full_Paper
	5_Full_Paper
	6_Full_Paper
	9_Full_Paper
	nyberg
	10_Full_Paper
	8_Full_Paper
	7_Full_Paper
	Introduction
	Heart of Gold
	Design principles
	Session and annotation management
	Wrapped NLP components
	Integration through transformation
	Performance
	Integrating shallow and deep processing
	Output: semantics representation
	Sub-architectures
	Applications
	Related Work

	UIMA Integration Scenarios
	Summary and Outlook
	Acknowledgments
	References

	1_Full_Paper

	UIMA_Proceedings
	Towards Enhanced Interoperability for
	Large HLT Systems: UIMA for NLP
	Workshop Programme
	Workshop Organisers
	Workshop Programme Committee

	Table of Contents

	CFE_sominsky-A4

