Workshop Programme

14:30 — 15:00 Linguistic richness and technical aspects of an incremental finite-
state par ser
Hrafn Loftsson, Eirikur Rognvaldsson

15:00 - 15:30 Partial parsingin asimple MT system
Petr Homola, Vladisav Kubon

15:30 — 16:00 Shallow parsing in sentiment analysis of product reviews

Aleksander Buczynski, Aleksander Wawer
16:00 — 16:30 coffee break

16:30 — 17:00 Why isthiswrong? — Diagnosing erroneous speech recognizer
output with a two phase par ser
Bernd Ludwig, Martin Hacker

17:00 — 17:30 Chunking and dependency parsing
Giuseppe Attardi, Felice Dell'Orletta

Workshop Organisers

Sandra Kibler, Indiana University, USA
Jakub Piskorski, Joint Research Center, European Commission, Ispra, Italy
Adam Przepidérkowski, Polish Academy of Sciences, Warsaw, Poland

Workshop Programme Committee

Salah Ait-Mokhtar, Xerox Research Centre Europe, Grenoble, France
Gosse Bouma, Rijksuniversiteit Groningen, The Netherlands
Anténio Branco, University of Lisbon, Portugal
Erhard Hinrichs, University of Tubingen, Germany
Hannah Kermes, University of Stuttgart, Germany
Vladislav Kubori, Charles University, Prague, Czech Republic
Sandra Kibler, Indiana University, USA
Petya Osenova, Bulgarian Academy of Sciences and Sofia University, Sofia, Bulgaria
Jakub Piskorski, Joint Research Center, European Commission, Ispra, Italy
Adam Przepiérkowski, Polish Academy of Sciences, Warsaw, Poland
Ulrich Schéfer, DFKI GmbH, Saarbriicken, Germany
Wojciech Skut, Google Inc., Mountain View, USA
Anssi Yli Jyra, CSC — Scientific Computing Ltd., Espoo, Finland

Table of Contents

Hrafn Loftsson, Eirikur Rognval dsson:
Linguistic richness and technical aspects of an incremental finite-state parser

Petr Homola, Vladislav Kubon:
Partial parsinginasimple MT system

Aleksander Buczynski, Aleksander Wawer:
Shallow parsing in sentiment analysis of product reviews

Bernd Ludwig, Martin Hacker:
Why isthiswrong? — Diagnosing erroneous speech recognizer output
with atwo phase parser

Giuseppe Attardi, Felice Dell'Orletta:
Chunking and dependency parsing

14

19

27

Attardi, Giuseppe
Buczyriski, Aleksander
Dell'Orletta, Felice
Hacker, Martin
Homola, Petr

Kubon, Vladislav

L oftsson, Hrafn
Ludwig, Bernd
Rdégnvaldsson, Eirikur
Wawer, Aleksander

Author Index

27
14
27
19

19

14

Linguistic richness and technical aspects of an incremental finite-state parser

Hrafn Loftsson*, Eirikur Rognvaldsson'

*School of Computer Science, Reykjavik University
Kringlan 1, Reykjavik IS-103, Iceland
hrafn@ru.is

tDepartment of Icelandic, University of Iceland
Arnagar(’)ur vid Sudurgdtu, Reykjavik I1S-101, Iceland
eirikur@hi.is

Abstract
We describe the linguistic richness and the technical aspects of an incremental finite-state parser for Icelandic. We argue that our parser
outputs a linguistically rich annotation which in many simple sentences amounts to full parsing. Additionally, we provide arguments
for various technical design and implementation decisions regarding the parser. Our description may be used as guidelines for other

researchers developing similar parsers.

1. Introduction

Syntactic analysis for natural languages is often divided
into two categories: full parsing, in which a complete
analysis for each sentence is computed, and partial (or
shallow) parsing, where sentence parts or chunks are ana-
lysed without building a complete parse tree. The aim
of partial parsing is “to recover syntactic information ef-
ficiently and reliably from unrestricted text, by sacrificing
completeness and depth of analysis” (Abney, 1996).

In many natural language processing (NLP) applications,
it can be sufficient to analyse sentence parts or phrases.
This can be the case, for example, in applications like in-
formation extraction, machine translation, and some types
of grammar checking, in which identification of phrases is
more important than a global parse. Additionally, in cases
of low quality input or spoken language, a partial parsing
method can be more robust than a full parsing method, be-
cause of noise, missing words, and mistakes in the input (Li
and Roth, 2001).

We have developed an incremental finite-state parser, Ice-
Farser, for parsing Icelandic text. IceParser, the first parser
published for the Icelandic language, is designed to be used
both as a stand-alone application and as an integrated part
of an NLP toolkit.

In (Loftsson and Roégnvaldsson, 2007a), we briefly de-
scribed the annotation scheme used by the parser, its in-
dividual modules, evaluation results, and error analysis. In
this paper, we describe in detail the linguistic richness (in
Section 2.) and the technical aspects (in Section 3.) of Ice-
Parser.

2. Linguistic richness

In this section, we describe the main features of our anno-
tation scheme and show how it is applied. We argue that
through the interplay of phrase structure annotation and
syntactic functions annotation, accompanied by relative po-
sition indicators for arguments, we obtain a linguistically
rich annotation which in many simple sentences amounts
to full parsing.

2.1. The annotation scheme

When designing a parser for a natural language, it is im-
portant to outline an annotation scheme. In the context
of shallow parsing this includes deciding what kind of
chunks/phrases and grammatical functions to annotate, and
writing guidelines (general principles) on how to perform
the annotation (Voutilainen, 1997). Additionally, since “the
correct analysis” is not always clear, detailed instructions
may be needed where the general principles are not unam-
biguously applicable.

Voutilainen points out that the annotation scheme (or the
grammatical representation, as he calls it) can be speci-
fied with the help of a grammar definition corpus (GDC).
A GDC is a representative collection of sentences, consis-
tently analysed using the guidelines and the detailed in-
structions. The purpose of the GDC is to “provide an un-
ambiguous answer to the question how to analyse any utter-
ance in the object language” (Voutilainen, 1997). Further-
more, the GDC can be used to help with the development of
the parser itself, because the parser should at least be able
to annotate correctly the sentences in the GDC.

We have designed a shallow annotation scheme (a thor-
ough description of which can be found in (Loftsson and
Rognvaldsson, 2006)) that follows the dominant paradigm
in treebank annotation, i.e. it is “the kind of theory-neutral
annotation of constituent structure with added functional
tags” (Nivre, 2002). During the design, we focused on mak-
ing the annotation rich enough to be of use in various NLP
applications, in particular, grammar correction. In addition
to the annotation scheme, we constructed a GDC, a cor-
pus consisting of 214 sentences, selected from the Icelandic
Frequency Dictionary (IFD) corpus (Pind et al., 1991). The
selected sentences represent the major syntactic construc-
tions in Icelandic. This GDC was used as the development
corpus for IceParser.

It is assumed that input text, to be annotated according
to our scheme, has been morphologically tagged using
the detailed part-of-speech (POS) tagset of about 700 tags
described in (Pind et al., 1991). Although these tags

are morphological in nature, they also carry a substantial
amount of syntactic information and the tagging is detailed
enough for the syntactic function of words to be more or
less deduced from their morphology and the adjacent words
(Rognvaldsson, 2006).

Thus, for instance, a noun in the nominative case can rea-
sonably safely be assumed to be a subject, unless it is pre-
ceded by the copula vera ‘to be’ which is in turn preceded
by another noun in the nominative, in which case the sec-
ond noun is a predicative complement. A noun in the ac-
cusative or dative case can in most cases be assumed to be a
(direct or indirect) object, unless it is immediately preceded
by a preposition. As is well known, Icelandic also has ac-
cusative and dative subjects, and even some nominative ob-
jects (Thrdinsson, 2007), but these can easily be identified
from their accompanying verbs. We have compiled a list of
those verbs which the parser consults.

2.1.1. Phrase structure annotation

According to our annotation scheme, two labels are at-
tached to each constituent. The first one denotes the begin-
ning of the constituent, the second one denotes the end (e.g.
[NP...NP]). The main labels are AdvP, AP, NP, PP and VP
— the standard labels used for phrase annotation (denoting
adverb, adjective, noun, preposition, and verb phrase, re-
spectively).

Additionally, we use the labels CP, SCP, InjP, and MWE for
marking coordinating conjunctions, subordinating conjunc-
tions, interjections, and multiword expressions (of which
we have a list), respectively. Furthermore, we use the labels
APs and NPs, for marking a sequence of adjective phrases
(agreeing in gender, number and case) and noun phrases
(agreeing in case), respectively.

Our scheme subclassifies VPs. A finite verb phrase is la-
belled as [VP ... VP] and consists of a finite verb, option-
ally followed by a sequence of AdvPs and supine verbs.
Other types of VPs are labelled as [VPx ... VPx], where
x can have the following values: i, denoting an infinitive
VP; b, denoting a VP which demands a predicative com-
plement (i.e primarily a verb phrase consisting of the verb
vera); s, denoting a supine VP; p, denoting a past participle
VP; g: denoting a present participle VP. Our VPs do not
comprise verbal arguments and hence are strictly speaking
not verb phrases, but rather bare verbs or verbal clusters.
We also distinguish between four kinds of MWEs, i.e. ex-
pressions that function as i) a conjunction (MWE_CP), ii)
an adverb (MWE_AdvP), iii) an adjective (MWE_AP), and
iv) a preposition (MWE_PP).

2.1.2. Syntactic functions annotation

From a linguistic point of view, our constituent structure
bracketing is of course rather primitive and in many ways
incomplete, compared to the description in (Thréinsson,
2007), for instance. The structure it marks is relatively flat,
and, since it is designed for partial parsing, recursiveness is
not shown. Thus, many strings that in a complete parse tree
would be grouped together in a single multi-level structure
are shown as two or more distinct chunks.

Two such examples are shown below (the morphological
tags from the input text are underlined):

(1) [NP nidurstodur (results) nvfn NP] [NP pessara
(these, gen.pl.) favfe rannsékna (research, gen.pl.) nvfe
NP]

‘The results of this research’

(2) [NP husin (the houses) nhfng NP] [PP { (in) ap
[NP fazdingarbz (hometown) nkep minum (mine) fekep
NP] PP] [VPb voru (were) sfg3fp VPb] -
‘The houses in my hometown were ...’

In (1), the NP pessara rannsokna (gen.pl.) ‘this research’ is
a genitive qualifier of the NP nidurstodur ‘results’. In (2),
the PP 7 feedingarbe minum ‘in my hometown’ modifies the
NP hiisin ‘the houses’. The constituent structure bracketing
does not indicate any connection between the two NPs in
(1), or between the NP and the PP in (2).

The syntactic functions annotation (functional tags), how-
ever, substitutes for the lack of hierarchical constituent
structure to a considerable extent. We use curly brackets
for denoting the beginning and the end of a syntactic func-
tion, as carried out by (Megyesi and Rydin, 1999). Four of
the function labels we use, *SUBIJ, *OBlJ, *IOBJ, *COMP,
are relatively standard, denoting a subject, an object, an in-
direct object, and a predicative complement, respectively.
To deal with certain important characteristics of Icelandic
syntax, we have added four nonstandard labels to mark NPs
bearing different functions; *OBJAP, *OBJNOM, *QUAL,
*TIMEX, denoting an object of an AP, a nominative object,
a genitive qualifier, and a temporal expression, respectively.
Additionally, for some of the syntactic function labels, we
use relative position indicators (“<” and “>”"). For example,
*SUBJ> means that the verb is positioned to the right of
the subject, *SUBJ< denotes that the verb is positioned to
the left, while *SUBJ is used when the accompanying verb
cannot be located, either because it is missing (in gapping
structures, for instance) or because the distance between the
subject and the verb is more than a parser can cope with.
The motivation behind using the indicators is to simplify
grammar checking at later stages. Similar indicators are,
for example, used in the Constraint Grammar Framework
(Karlsson et al., 1995).

By using the syntactic function labels and the relative
position indicators, we manage to show the most important
relations between phrases. Thus, in a sequence of two
adjacent NPs with one of them in the genitive case, as in
(1), the genitive NP is marked as *QUAL in order to show
that it forms a syntactic unit with the other (governing) NP,
as demonstrated in (3):

(3) [NP nidurstodur (results) nvfn NP] {*QUAL [NP
pessara (these, gen.pl.) favfe rannsékna (research, gen.pl.)
nvfe NP] *QUAL}

In a complete sentence, this string as a whole will be
marked as a subject, an object, etc., according to its role in
the sentence, as shown in (4):

(4) {*SUBJ> [NP nidurstodur (results) nvfn NP] {*QUAL
[NP pessara (these, gen.pl.) favfe rannsékna (research,
gen.pl.) nvfe NP] *QUAL} *SUBJ>} [VPb eru (are)

sfg3fn VPb] {*COMP< [AP [AdVP mjog (very) aa AdvP]
oventar (surprising) lvfnsf AP] *COMP<}
‘The results of this research are very surprising’

2.1.3. The output of IceParser

IceParser generates output according to the annotation
scheme described above'. In many simple sentences, such
as in (4), the annotation made using this scheme in fact
amounts to a full parse. The phrase structure annotation
and the syntactic functions annotation, together with the
relative position indicators, give us all the information we
need about the structure and the internal dependencies in
this sentence. In more complex sentences, of course, the
parsing may not be as complete as in this one. This is espec-
ially evident in cases of long distance dependencies and in
sentences with embedded clauses and clauses with “gaps”
of some kind, such as relative clauses.

IceParser makes no attempt at resolving PP attachment am-
biguities — all PPs are shown as independent constituents.
In the case of a PP following a sentence-initial NP, as in (2)
above, we could make use of the fact that Icelandic is a V2
language, which does not allow more than one constituent
preceding the finite verb (Thrdinsson, 2007). Hence, a PP
following an NP in front of a finite verb must be a part of
this NP. We could of course show this by closing the func-
tion tag of the NP after the PP, but we have not implemented
this yet.

2.2. Use of IceParser in grammar correction

Even though IceParser is designed and implemented as a
partial parser, we believe that its output is sufficiently de-
tailed to be of great use in many NLP applications, such
as in information extraction, grammar correction, and ma-
chine translation. Here we will only briefly illustrate its
potential use in grammar checking tools.

Among the most error-prone features of Icelandic gram-
mar is morphological agreement and morphological gov-
ernment of various types. Verbs agree in person and num-
ber with their subject; predicative adjectives agree in gen-
der, number, and case with the subject of the clause; all
inflected words within a noun phrase agree in gender, num-
ber, and case; verbs govern the case of their subjects and
objects; and so on.

In order to detect errors having to do with agreement or
morphological government, it is especially important to nail
down the relationship between verbs and their arguments. It
has been shown that IceParser does a good job in correctly
identifying subjects and objects (F-measure for subjects
and objects is 90.5% and 88.2%, respectively (Loftsson and
Rognvaldsson, 2007a)).

In designing the parser, we deliberately chose to make only
minimal use of the morphological information furnished by
the POS tags in the input text. This was done in order to be
able to use the parser in detecting grammatical errors. It
is clear that if the parser relies too heavily on the morpho-
logical features, errors in the input will both result in pars-
ing errors and also severely undermine the usefulness of the

!Strictly speaking, our annotation scheme is independent from
IceParser, i.e. the scheme is designed with a general partial parser
in mind.

parser in grammar checking. Therefore, the parser mainly
uses case features, but other nominal features such as gen-
der and number only in exceptional cases.

Once it has been decided which arguments and predicative
complements belong to a certain verb, it can be checked
whether the subject NP and the verb agree in person and
number. If the verb takes an adjectival complement, it can
be checked whether the subject and the complement agree
in gender and number.

Since the case features of the morphological tags are used
in the parse, it might seem that the parser cannot be used
in detecting errors in the case government of verbs, for in-
stance. However, the case feature is mainly used to dis-
tinguish between subjects (bearing nominative case, except
with certain verbs of which we have a list as mentioned
above) and (direct and indirect) objects (bearing oblique
case, i.e. accusative, dative, or genitive). Thus, the distinc-
tion between the three oblique cases is not crucial for the
parse. Most case errors that we find in texts involve some
mixup between the oblique cases, rather than between the
nominative and one of the oblique cases. Hence, the parser
can be used in detecting such errors.

Of course, full parsing, with pronoun resolution etc., would
enable us to detect more grammatical errors than our
shallow parsing. However, we feel confident that our
method will bring us a long way towards useful NLP tools
for Icelandic, due to the linguistic richness of the morpho-
logical tags and the syntactic annotation scheme.

3. Technical aspects

In this section, we discuss some technical aspects of Ice-
Parser. Our aim is to provide arguments for various tech-
nical design and implementation decisions, i.e. with regard
to the development methodology used, the utilisation of the
lexical analyser generator tool JFlex, optimisation, and the
integration of IceParser into our NLP toolkit.

3.1. Development methodology

At the very beginning of the parsing project, we decided to
base IceParser on the incremental finite-state approach, in
which a parser comprises a sequence of finite-state trans-
ducers (Grefenstette, 1996; Abney, 1997). The purpose
of the transducers is to add syntactic information into run-
ning text in an incremental manner. This method is some-
times referred to as the constructive approach to distinguish
it from the reductionist approach by (Koskenniemi et al.,
1992).

The reason for selecting this approach was mainly three-
fold. First, no treebank exists for Icelandic, and using
a data-driven parsing method was therefore not an op-
tion. Secondly, earlier incremental finite-state parsing work
has proven successful for various languages, e.g. Span-
ish (Molina et al., 1999), Swedish (Megyesi and Rydin,
1999), German (Miiller, 2004), and French (Ait-Mokhtar
and Chanod, 1997). Lastly, parsers built using finite-state
methods are usually robust and fast, because they are, in
fact, just a pipeline of lexical analysers.

Incremental finite-state parsers are developed by specify-
ing patterns, in the form of regular expressions, for match-
ing specific syntactic constructions (substrings) in the input

text. Syntactic markers or labels can then be inserted into
the input text by associating an action with the appropriate
pattern. The syntactic patterns are usually handwritten and
thus often demand both computer science knowledge (with
regard to regular expressions and finite automata) and lin-
guistic knowledge (of the language being parsed). In fact,
our team consists of a computer scientist and a linguist.
Input to IceParser is POS tagged text, using the tagset men-
tioned in Section 2.1. The parser consists of two main com-
ponents: a phrase structure module (13 transducers) and a
syntactic functions module (9 transducers). The purpose of
the modular architecture “is to facilitate the work during
development, to allow different uses of the parser and to re-
flect the different linguistic knowledge that is built into the
parser” (Megyesi and Rydin, 1999). In both modules, the
output of one transducer serves as the input to the following
transducer in the sequence.

Table 1 lists the 22 transducers (in the order in which they
are executed) along with a short description of their pur-
pose. The transducers in the upper half of the table belong
to the phrase structure module, and the ones in the bottom
half belong to the syntactic functions module. Please refer
to (Loftsson and Rognvaldsson, 2007a; Loftsson, 2007b)
for a detailed description of all the transducers used in Ice-
Parser.

3.2. [Utilisation of JFlex

The Xerox Finite-State Tool (XFST) (Karttunen et al.,
1996) is often used to develop finite-state parsers (cf.
(Megyesi and Rydin, 1999; Ait-Mokhtar and Chanod,
1997)). The XFST includes extensions to the standard
regular expression calculus, which simplify the creation
of finite-state transducers for syntactic processing. When
using the XFST for parser development, the development
team defines syntactic patterns, in the form of extended reg-
ular expressions, which are then compiled into finite-state
transducers. When running the resulting parser (i.e. the set
of transducers) on input text, the transducers are interpreted
by a run-time engine built into the tool.

We decided not to use the XFST for the development of
IceParser. There are mainly two reasons for this decision.
First, since the transducers are interpreted by the XFST, its
run-time engine needs to be distributed to all parties inter-
ested in using the parser. Hence, licensing issues may com-
plicate the distribution of the parser. Secondly, we wanted
our parser to be an integrated part of our NLP toolkit (Lofts-
son and Rognvaldsson, 2007b), all modules of which are
written in Java. In order to simplify the integration of Ice-
Parser into the toolkit, and to simplify distribution of the
parser, we thus decided to write the parser in a utility which
produces Java code.

Our parser is written using the lexical analyser generator
tool JFlex (http://jflex.de/). Each transducer is written in
a separate specification file, which is compiled into Java
code using JFlex. The resulting Java code is a determin-
istic finite-state automaton, along with actions (Java code)
to execute for each matched pattern. The purpose of the
actions is to insert syntactic labels into substrings of the in-
put text. The patterns for each transducer are written using
the regular expressions language of JFlex. The only non-

standard operator of JFlex is ~a, which matches every-
thing up to (and including) the first occurrence of the input
matched by a.

As an illustration of the rule and action format of
JFlex, consider the following example, taken from the
Phrase. MWEPI1 transducer which recognises specific
MWE:s consisting of the preposition fyrir followed by spe-
cific adverbs:

o

{
String Open=" [MWE_PP ";
String Close=" MWE_PP] ";
}

o

AdverbPart = {WS}+{AdverbTag}
PrepPart = {WS}+{PrepTag}

Pair = [fFlyrir{PrepPart} (aftan|austan
| framan|nedan|nordan|ofan|sunnan
|utan|vestan) {AdverbPart}

{Pair} {out.write (Opent+yytext ()+Close);}

The code included in %{ and %} is copied directly into the
generated Java source code.

Two regular definitions?, AdverbPart and PrepPart, define
the adverb part and the preposition part of the <preposition,
adverb> pair, respectively. For example, the adverb part
consists of one or more white spaces ({ WS }+) followed by
an AdverbTag. AdverbTag is a name defined in a special
file, which is included by most of the transducers (PrepPart
is defined similarly):

AdverbTag = aal[me] ?{WS}+

i.e. the letters aa optionally followed by the letters m or e
and postfixed with one or more white spaces. Finally, the
name Pair is defined as the preposition fyrir followed by
specific adverbs.

Actions are included inside curly brackets. Thus, when
the generated lexical analyser recognises the pattern Pair
the action is simply to put the appropriate brackets and
labels around it (obtained by the function call yytext()).
For example, for the MWE fyrir aftan ‘behind’ the result is:

(5) [IMWE_PP fyrir ao aftan aa MWE_PP]
(ao and aa are the POS tags denoting preposition and
adverb, respectively.)

Note that the action described above is a simple implemen-
tation of the left to right longest match markup replace op-
erator, described in (Karttunen et al., 1996). This operator
is a part of the XFST, in which it is specified by using the
following syntax:

A @->B ... C

A transducer using this operator then inserts the strings
(markers) B and C around the longest string matched by
regular expression A.

Regular definitions are a sequence of definitions of the form:
d; -> r;, where each d; is a distinct name and each r; is a regular
expression which may refer to names d; ... d;—1.

Name Purpose

Phrase. MWE Marks MWEs: common bi- and trigrams.

Phrase. MWEP1 | Marks MWE:s: specific <preposition, adverb> pairs.
Phrase. MWEP2 | Marks MWE:s: specific <adverb, preposition> pairs.
Phrase_AdvP Marks adverb, conjunction, and interjection phrases.
Phrase_AP Marks adjective phrases.

Case_AP Adds case information to adjective phrases.
Phrase_APs Groups together a sequence of adjective phrases.
Phrase_NP Marks noun phrases.

Phrase_ VP Marks verb phrases.

Case_NP Adds case information to noun phrases.
Phrase_NPs Groups together a sequence of noun phrases.
Phrase_PP Marks prepositional phrases.

Cleanl Corrects special kind of annotation errors.
Func_TIMEX Marks temporal expressions.

Func_QUAL Marks genitive qualifiers.

Func_SUBJ Marks subjects.

Func_COMP Marks complements.

Func_OB]J Marks direct objects.

Func_OBJ2 Marks indirect objects.

Func_OBIJ3 Marks dative objects of complement adjective phrases.
Func_SUBIJ2 Marks “stand-alone” nominative noun phrases.
Clean2 Cleans up, e.g. superfluous white spaces.

Table 1: A brief description of all the transducers.

3.3. Optimisation

In the first version of IceParser (and presumably in most in-
cremental finite-state parsers), the output file of one trans-
ducer is used as the input file to the next transducer in the
sequence. This version processes about 14,900 word-tag
pairs per second (running on a Dell Precision M4300, Intel
Core 2 Duo CPU, 2.2 GHz).

Note that, by writing the parser in Java/JFlex, we have full
control of the source code. This has enabled us to build an
optimised version of IceParser. In the optimised version,
instead of making the transducers read and write to files,
we make them read from, and write directly to, memory.
The following Java function parse illustrates how the out-
put of one transducer is used as input to the next transducer
in the sequence, without reading and writing to files.

0) parse(String text) {

StringReader sr=new StringReader () ;
StringWriter sw=new StringWriter();
advp=new Phrase_AdvP (sr);

ap=new Phrase_AP (sr);

advp.yyreset (sr);

advp.parse (sw) ;

sr=new StringReader (sw.toString());
sw=new StringWriter();

ap.yyreset (sr);

)ap.parse (sw) ;

H O 0 J o U b W N .
O — — — — — — — — — .

}

Line 0) is the signature of the function parse, which is
called once for every line in a file containing the text to
be parsed. Lines 1), 2), 7), and 8) create instances of

the StringReader and StringWriter Java classes. Lines 3)
and 4) create instances of the Phrase_AdvP and Phrase_AP
classes, whose source files were automatically created by
the JFLex tool from a corresponding regular expression
specification file (as discussed in Section 3.2.). Lines 5)
and 9) reset the corresponding lexical analyser to read from
a new input stream. Lines 6) and 10) call the parse method
in the corresponding transducers (see below). Moreover,
lines 6), 7), and 9) show how the output of the Phrase_AdvP
transducer is used as input to the Phrase_AP transducer.
The parse method of the transducers tries to match the in-
put to its patterns and carry out the associated action. Its
implementation is simple:

parse(java.io.Writer _out)

{

out = _out;
while (!zzAtEOF)
yylex () ;

}

Note that methods starting with the letters yy (like yyreset()
and yylex()) and variables starting with the letters zz (like
7zzAtEOF) are automatically generated by the JFlex tool.
The out variable, which is an instance of the Writer class,
is used in the actions to transduce the output (as shown in
the last line of the code example for the Phrase_ MWEP1
transducer in Section 3.2.).

This optimised version of IceParser annotates the whole
POS tagged IFD corpus, consisting of 590,297 word-tag
pairs (36,922 sentences), in just over 23 seconds. This is
equivalent to about 25,200 word-tag pairs per second, re-
sulting in a speed increase of about 70% compared to the
first version of the parser.

3.4. Integration into our NLP toolkit

Since IceParser is written in Java, we were able to inte-
grate it easily into our NLP toolkit, IceNLP. The toolkit
works in the following manner. First, the input text is to-
kenised. Secondly, sentence segmentation is carried out.
Thirdly, POS tagging for each input sentence is performed
(using IceTagger, a linguistic rule-based tagger (Loftsson,
2007a)), and, lastly, each POS tagged sentence is partially
parsed with IceParser.

The optimised version of IceParser is used in IceNLP. A
POS tagged sentence is not written to an output file, but is
instead fed directly to IceParser in the manner described in
Section 3.3. The result is an efficient combined POS tagg-
ing and partial parsing utility?.

4. Conclusion

In this paper, we have described the linguistic richness and
the technical aspects of IceParser, an incremental finite-
state parser for Icelandic. We discussed the linguistic rich-
ness of the output generated by the parser and argued that
for many simple sentences the output amounts to full pars-
ing. Additionally, we described technical aspects of the
parser, in particular, various design and implementation de-
tails. Our description may be used as guidelines for other
researchers developing similar parsers.

5. Acknowledgements

Thanks to the Institute of Lexicography at the University of
Iceland, for providing access to the IFD corpus used in this
research.

The development of IceParser was partly supported by the
Icelandic Research Fund, grant 060010021, “Shallow pars-
ing of Icelandic text”.

6. References

S. Abney. 1996. Part-of-Speech Tagging and Partial Pars-
ing. In K. Church, S. Young, and G. Bloothooft, edi-
tors, Corpus-Based Methods in Language and Speech.
Kluwer Academic Publishers.

S. Abney. 1997. Partial Parsing via Finite-State Cascades.
Natural Language Engineering, 2(4):337-344.

S. Ait-Mokhtar and J.-P. Chanod. 1997. Incremental
Finite-State Parsing. In Proceedings of Applied Natural
Language Processing, Washington DC, USA.

G. Grefenstette. 1996. Light Parsing as Finite State Filter-
ing. In Proceedings of the ECAI ’96 workshop on “Ex-
tended finite state models of language”, Budapest, Hun-
gary.

F. Karlsson, A. Voutilainen, J. Heikkild, and A. Anttila.
1995. Constraint Grammar: A Language-Independent
System for Parsing Unrestricted Text. Mouton de
Gruyter, Berlin, Germany.

L. Karttunen, J.-P. Chanod, Grefenstette, G., and
A. Schiller. 1996. Regular expressions for language
engineering. Natural Language Engineering, 2(4):305—
328.

3Please visit http://nlp.ru.is for tagging and parsing
Icelandic text.

K. Koskenniemi, P. Tapanainen, and A. Voutilainen. 1992.
Compiling and using finite-state syntactic rules. In Pro-
ceedings of the 14" International Conference on Com-
putational Linguistics, Nantes, France.

X. Li and D. Roth. 2001. Exploring Evidence for Shallow
Parsing. In Proceedings of the 5" Conference on
Computational Natural Language Learning, Toulouse,
France.

H. Loftsson and E. Rognvaldsson. 2006. A shallow syn-
tactic annotation scheme for Icelandic text. Technical
Report RUTR-SSE06004, Department of Computer Sci-
ence, Reykjavik University.

H. Loftsson and E. Rognvaldsson. 2007a. IceParser: An
Incremental Finite-State Parser for Icelandic. In Pro-
ceedings of NoDaLiDa 2007, Tartu, Estonia.

H. Loftsson and E. Régnvaldsson. 2007b. IceNLP: A Nat-
ural Language Processing Toolkit for Icelandic. In Pro-
ceedings of Interspeech 2007, Special Session: “Speech
and language technology for less-resourced languages”,
Antwerp, Belgium.

H. Loftsson. 2007a. Tagging Icelandic Text using a Lin-
guistic and a Statistical Tagger. In Human Language
Technologies 2007: The Conference of the North Amer-
ican Chapter of the Association for Computational Lin-
guistics, Rochester, NY, USA.

H. Loftsson. 2007b. Tagging and Parsing Icelandic Text.
Ph.D. thesis, University of Sheffield, Sheffield, UK.

B. Megyesi and S. Rydin. 1999. Towards a Finite-State
Parser for Swedish. In Proceedings of NoDaLiDa 1999,
Throndheim, Norway.

A. Molina, F. Pla, L. Moreno, and N. Prieto. 1999.
APOLN: A Partial Parser of Unrestricted Text. In Pro-
ceedings of SNRFAI99, Bilbao, Spain.

F-H. Miiller. 2004. Annotating Grammatical Functions
in German Using Finite-State Cascades. In 20" In-
ternational Conference on Computational Linguistics,
Geneva, Switzerland.

J. Nivre. 2002. What kinds of trees grow in Swedish soil?
A Comparison of Four Annotation Schemes for Swedish.
In Proceedings of the 15¢ Workshop on Treebanks and
Linguistic Theories, Sozopol, Bulgaria.

J. Pind, F. Magndsson, and S. Briem. 1991. Islensk
ordtionibok [The Icelandic Frequency Dictionary]. The
Institute of Lexicography, University of Iceland, Reyk-
javik, Iceland.

E. Rognvaldsson. 2006. The Corpus of Spoken Icelandic
and its Morphosyntactic Annotation. In Treebanking for
Discourse and Speech. Proceedings of the NODALIDA
2005 Special Session on Treebanks for Spoken Language
and Discourse, Copenhagen, Denmark.

H. Thréinsson. 2007. The Syntax of Icelandic. Cambridge
University Press, Cambridge.

A. Voutilainen. 1997. Designing a (Finite-State) Parsing
Grammar. In E. Roche and Y. Schabes, editors, Finite-
State Language Processing. MIT Press.

Partial Parsing in a Simple MT System

Petr Homola, Vladislav Kubon

Institute of Formal and Applied Linguistics
Malostranské namésti 25
CZ-110 00 Praha 1
Czech Republic
{homolalvk} @ufal.mff.cuni.cz

Abstract
The paper describes an architecture for a hybrid approach to the machine translation of closely related languages. It learns from the
previous experiments performed for closely related Scandinavian, Slavic, Turkic and Romanic languages. The main part of the paper
introduces a rule-based shallow parsing component for Czech which tries to analyze parts of input sentences. It thus solves to a certain
extent the problem of morphemic ambiguity of Czech word forms. All results of the shallow parser are translated into the target language
(Slovak) and a ranker based on a stochastic model of Slovak chooses the best translation. The results presented and discussed in the last
section of the paper indicate better translation quality compared to the existing MT system for the same language pair.

1. Introduction

Shallow parsing is a term covering a wide variety of tech-
niques, whose aim is to deliver a partial syntactic structure
of an input sentence in an efficient way. It has been used for
various application areas, including information retrieval,
document search, dialogue systems etc. All applications
have one thing in common — they aim at exploiting the
shallow parsing for isolating syntactically relevant units us-
ing relatively simple means. In this paper we would like
to address the issue of exploiting a shallow parsing formal-
ism in a hybrid machine translation system with statistical
post-processing.

1.1. MT between related languages

Although the automatic translation of closely related lan-
guages is a subject considered by many linguists as slightly
inferior compared to the full-fledged MT of unrelated lan-
guage pairs, it is at the same time a stimulating field pro-
viding a number of interesting research topics. It has
been investigated recently for numerous language groups
— for Slavic langauges in (Marinov, 2003) and (Homola
and Kubori, 2004), for Scandinavian languages in (Dyvik,
1995), for Turkic languages in (Altintas and Cicekli, 2002)
and for languages of Spain in (Corbi-Bellot et al., 2005).
The MT of closely related languages not only provides a
translation quality unattainable by neither stochastic nor
rule-based general MT systems (cf. the results presented in
(Hajic et al., 2003) or in (Corbi-Bellot et al., 2005), with a
correct translation of about 90% of the text in both cases),
it may also serve as a kind of testing ground for methods
which may be exploited in full-fledged MT systems.

The MT systems for closely related language mentioned
above are all based on “shallow” methods. The close relat-
edness of languages from the same language group guaran-
tees that there are usually only minor syntactic differences
which can be handled by shallow parsing of a source lan-
guage or by “shallow transfer”, a method used in (Corbi-
Bellot et al., 2005). Let us present some linguistic phe-
nomena where shallow parsing represents an adequate tool
solving the translation problems. The concrete examples
are taken from Balto-Slavic langauges, a language group

which has proved to be suitable for experiments with MT
between closely related languages.

1.1.1. 'Word order problems

Shallow parsing may play an important role in solving the
problem of a different word-order in Slavic nominal groups.
With congruent attributes, Russian, Czech and Slovak pre-
fer in most cases the order <Adj N>, adjective noun, while
Polish typically uses the order <N Adj> for adjectives defin-
ing a “species” of the nominal head, while the order <Adj
N> is reserved for adjectives defining a “feature” of the
noun. This problem requires word-order adjustments dur-
ing the translation. The knowledge of what actually be-
longs to the nominal group, provided by a shallow parsing
module, is very important, although it helps only partially.
The general solution of this problem is very complicated;
full solution would require even semantic analysis of the
source text, a phenomenon definitely beyond the intended
scope of a simple MT system exploiting the similarity of
related languages.

1.1.2. Differences in the system of genders

Unlike most of the Slavic languages, their close relative
Lithuanian language (Baltic langauges have similar syntac-
tic properties as Slavic langauges and thus they are likely
candidates for “shallow MT”’) does not have the neuter gen-
der. This poses no problem for nouns, since it can be han-
dled easily by the bilingual dictionary, but it is a serious
problem for adjectives and adjectival pronouns that syntac-
tically depend on a noun in neuter gender in the source lan-
guage. If the text is translated word for word (i.e., no shal-
low parsing is used), no dependencies between words are
created. If a neuter noun with depending adjectives occurs
in the source sentence, the morphological tag specifying
gender is changed only for the noun. All adjectives keep
their morphological tags unchanged and thus they are a
source of translation errors. When a shallow parser module
is employed, most occurrences of this problem are solved
by the shallow syntactical analysis of noun phrases.

1.1.3. Prepositional constructions

Even between the closely related languages it is very of-
ten the case that some prepositions require a different case
than their counterparts in the target language. For exam-
ple, the Czech preposition pro [for] (and the Slovak prepo-
sition pre) requires the use of the accusative case, while
the corresponding Polish preposition dla (and the Russian
preposition jy1s1) requires the genitive case. The shallow
parser helps to identify the whole prepositional phrase and
thus it is possible to adapt the case of the nominal head
of the phrase to the case required by the preposition. The
parser may be able to help even with more complicated phe-
nomenon when a preposition used in the source language is
not used in the target one and it’s function is expressed by
a case of the nominal head of the phrase.

1.2. Named entity recognition

Named entities (NE) are atomic units such as proper names,
temporal expressions (e.g., dates) and quantities (e.g., mon-
etary expressions). They occur quite often in various texts
and carry important information. Hence, proper analysis of
NEs and their translation has an enormous impact on MT
quality (see (Babych and Hartley, 2004)).

NE translation involves both semantic translation and pho-
netic transliteration. Each type of NE may be handled in
a different way. For instance, person names should not un-
dergo semantic translation (only transliteration is required),
while certain titles and part of names should (e.g. for Czech
and English first lady Laura Bush — prvai ddma Laura
Bushovd). In case of organizations, application of regular
transfer rules for NPs seems to be sufficient (e.g. again for
Czech and English, Ustav formdlni a aplikované lingvistiky
— Institute of Formal and Applied Linguistics), although
an idiomatic translation may be probably preferable some-
times.

In the following paragraphs we are going to present an ap-
proach solving many of the above mentioned issues. It
is based on regular expressions that process typed feature
structures. The grammar framework, similarly as the for-
mally weaker platform SProUT (Bering et al., 2003), uses
finite-state techniques and unification, i.e., a grammar con-
sists of pattern/action rules, where the left-hand side is
a regular expression over typed feature structures (TFS)
with variables, representing the recognition pattern, and the
right-hand side is a TFS specification of the output struc-
ture.

2. An architecture of the MT system

As Czech and Slovak are very similar at all linguistic lev-
els, the architecture of the system differs from most rule-
based or hybrid MT systems. In particular, no full-fledged
analysis is needed. A full syntactic analysis cannot be
done with sufficient precision as for now, and the errors
we would introduce by trying to create a full syntactic tree
for the sentence would lower the quality of the translation
significantly (as reported in (Oliva, 1989) for a Czech-to-
Russian MT system). Thus we have adopted the simplis-
tic and rather naive approach of ignoring syntactic differ-
ences and focusing on morphology and lexics. Neverthe-
less, since Czech is a language with rich inflection, which

implies a very high degree of morphological ambiguity, it
seemed helpful to integrate a partial (‘shallow’) parser into
the system. This module became a must-have component as
we have decided not to use the stochastic tagger in the sys-
tem because it causes too many errors that have a negative
impact on the subsequent phases of the translation process.
The main goal of the partial parser is to restrict the ambi-
guity of morphological annotation by using local context.
For example, the adjective hlavni “main” has 27 different
tags in Czech which would result in many different forms
in Slovak (hlavny, hlavnd, hlavné, hlavni etc.) because the
target language does not exhibit the same degree of case
syncretism of soft adjectives. Fortunately, this immense
ambiguity can often be constrained if the adjective is fol-
lowed by a noun that governs it. Due to the agreement,
only the intersection of possible tags of both words is valid
in the given local context.

The partial analysis is followed by lexical transfer. In this
phase, lemmas of all words are translated to their Slovak
equivalents according to a bilingual dictionary. This dic-
tionary contains no additional morphological information.
Since the partial parser produces complex syntactic struc-
tures, they have to be linearized so that we obtain the target
sentence. The linearization is a reverse process of parsing
which means that the complex structures are decomposed
while preserving the original word order in the source lan-
guage. Finally, all words are morphologically processed
(word forms are generated from lemmas and tags).

In the following subsections, we describe the components
and data structures they use in detail.

2.1. Feature structures

In the system, the basic data structure for representing lin-
guistic data is a feature structure. It is an attribute-value-
matrix (AVM); the values of its attributes are atoms, strings
or complex values (sets or embedded feature structures).
All feature structures in the system are typed, i.e., there is a
global type hierarchy and each feature structure is assigned
a type, for instance:

(1) |adv
LEMMA ‘quickly’
POS adv

Each linguistically significant entity has a set of relevant
features. The value of a feature may be underspecified, i.e.,
its value may not be fully known until a more specific con-
text is given (e.g., the morphological analyzer classifies the
word IBM as a noun but specifies neither number nor case
for it). Ambiguous feature values usually get resolved after
having taken context into account.

The most typical operation on feature structures is unifi-
cation which is a combination of mutually compatible at-
tribute values. What is often used in the rules is a par-
tial unification, i.e., only specified attributes are unified
(e.g. case, gender, number), which reflects the linguistic
notion of agreement between a head and some of its de-
pendents.

2.2. Chain graphs

The basic data structure that represents text segments and
their local contexts is a chain graph. A chain graph is a
continuous graph with designated initial and end nodes. It
represents all hypotheses that are valid up to a certain point
in the parsing process. The application of syntactic rules
is implemented by adding new edge to the graph. For ex-
ample, implementing the rule of an adjective that depends
on a subsequent noun and agrees with it in gender, number
and case, means finding two adjacent edges in the chain
graph (for the adjective and its governing noun, respec-
tively) and adding a new edge that spans the found edges,
if both words agree in the required attributes. The origi-
nal edges are marked as used by a rule which means that
they will be removed from the graph after the application
of all possible rules. At the end of the parsing process, the
remaining edges represent a partial parse of the source seg-
ment (the parsing process is described in detail in (Colmer-
auer, 1969)).

There are some simple workarounds that allow for a more
effective processing of chain graphs like reducing morpho-
logical ambiguity by means of shackles, removing of falsi-
fied hypotheses etc. (see below).

The initial chain graph of the Czech sentence “I thought
that I would be a writer” is a linear sequence of edges la-
belled with morphologically annotated words of the source
sentence. After the application of grammar rules, the chain
graph is extended with new edges (see Figure 2). The last
step is to remove deprecated edges, i.e., all edges that were
spanned over are deleted from the graph. Furthermore, all
edges that do not belong to a path from the initial node to
the end node are removed as well. As one can easily see in
Figure 2, there is only one remaining edge which spans the
whole sentence.

The use of chain graphs bears one specific problem. Since
we do not aim to parse whole sentences, the result of the
parser usually are not long edges from the initial node to
the end node, but rather edges that cover simple noun and
prepositional phrases. If such edges overlap and there is
no other edge that would cover both of them, there is no
path in the graph from the initial graph to the end graph,
resulting in an empty graph. This is an inherent property
of the formalism, described in more detail in (Colmerauer,
1969). We do not solve this problem explicitly, suggest-
ing to translate such sentences once more with the shallow
parser switched off.

2.3. Rules

2.3.1. The structure of the rules

The grammar for analysis and synthesis consists of declar-
ative rules that prescribe how to combine phrases to com-
plex structures or how to decompose them. In our system,
all rules are context-free.

A rule can be applied if its right-hand side matches the cat-
egories of a subchain in the chain graph and all conditions
associated with the rule are met. The conditions are de-
fined by means of unification over the associated feature
structures and/or their attributes (which can be atomic val-
ues or recursively embedded features structures). In such a
case, a new edge or a subchain of new edges is added to the

chain graph which spans the edges that are covered by the
right-hand side of the rule. The feature structure the new
edge is labelled with is usually based on one of the feature
structures of the covered edges and extended by means of
unification according to the conditions associated with the
rule (an exception may be, for example, a feature structure
for coordination).

2.4. NP/PP rules

NP/PP rules are used to identify simple noun and preposi-
tional phrases and their internal syntactic structure. A sim-
ple but very frequent example may be the combination of an
adjective and a noun that are adjacent and agree in gender,
case and number.

Rules used for partial (‘shallow’) analysis do not usually
reflect the relationship (mainly dependencies) between the
main verb and its complements. Such techniques are used
for instance for named entity recognition. Here is an exam-
ple of a simple NP/PP rule!:

(2) PP —PNP, | CASE= | CASE & T PREP = |

(pp => p np / R (
(~ (case) (case))
(~ (prep))

))

The rule attaches a preposition to a noun phrase. The first
part (before the comma) declares the categories of the sub-
chain the rule will be tentatively applied to. The bold font
denotes that the feature structure of the right element will
be propagated as the head (the core of the feature structure)
of the phrase. It takes a preposition and a noun phrase to
the right of it that agree in case which is declared in the
other part of the rule — the conditions. Thus the resulting
feature structure is the feature structure of the noun phrase
extended with a new attribute — prep — which is unified
with the feature structure of the preposition.

2.5. Helper rules

The remaining rules concern mainly verb phrases. However
these rules typically have no linguistic motivation, their
goal is to constrain morphological ambiguity by using lo-
cal context. For example, a noun phrase adjacent to cer-
tain verb forms may sort out some of the morphological
tags. This approach is obviously not bullet-proof, some-
times such a rule applies although both words are not re-
lated to each other. Nevertheless in most cases, it helps
to constrain morphological ambiguity. For example, in the
sentence

(3) Auta Jezdila
cars-NEUT,PL,NOM go-LPART,IMPF,NEUT,PL
rychle.
quickly

“The cars were moving quickly.”

"We use the LFG notation ((Bresnan, 2002)) although the rules
are interpreted in a slightly different way (see below).

myslel (V) jsem (I)

Ze (Conj)

budu (I)

spisovatelem (N)
[) []

Figure 1: Initial chain graph

(myslel—jsem)— (Ze—budu—spisovatelem)

Figure 2: Chain graph with new edges

the word jezdila can be translated as jazdila or jazdili if the
context is unknown since the form of the /-participle is dif-
ferent in Slovak for fem.pl and neut.sg whereas there is a
syncretism in Czech. Assuming that the preceding noun
(auta) is the subject of the verb form helps to sort out irrel-
evant tag for both words — for the noun, it is sg.gen and
pl.acc (the correct tag is pl.nom).

In general, the result of the parsing process up to here is a
set of features structures that cover continuous segments of
the input sentence. In a full-fledged MT system, the result
would be a set of feature structures that cover the whole
sentence.

2.5.1. Named entities

The recognition of named entities is an additional module
that helps to constrain morphological ambiguity. It is im-
plemented in the same formalism as described above, how-
ever most rules have a clear semantic meaning.

In the sequel, we give an example of a grammar fragment
which is capable of recognizing Czech date expressions of
the format 12. listopadu 2006 “November 12th, 2006”. The
first (unary) rule marks a feature structure as being seman-
tically significant (in the

(4) MONTH — NP, T LEMMA = listopad’” &
TMONTH="11"

(5) ORD — CARD NOTE, | LEMMA = fullstop

(6) DATE — ORD MONTH, T DAY = | lemma &
T CASE = gen

(7) DATE_WITH_YEAR — DATE CARD, | YEAR =
| lemma

The symbol CARD denotes cardinal numbers, ORD de-
notes ordinal numbers. These categories come from a pre-
processing phase which takes place between morphological
analysis and parsing. The result of the parser would be the
following feature structure (we give only semantically rel-
evant features):

(8) |date_with_year

DAY 12
MONTH 11
YEAR 2006

NB: A full semantical corectness would, of course, require
to check the number whether it is in the appropriate range
according to the month. We assume that the semantics of
named entites is correct in the text, i.e., the rules only cover
syntax.

In simple cases, for each lemma of the source language the
bilingual glossary contains its counterpart in the target lan-
guage, typically with additional morphological information
(such as gender which may differ in both languages). Fur-
thermore, the glossary contains structural transfer rules for
phraseologisms etc. Here is an example of a simple lexical
entry:

(t_vp —> vp (
(~ (lemma) ! ’'come’)
(™ (t_lemma) = "kommen’)

))

3. Principles of the partial rule-based

syntactic parsing

In this section, we describe the parser from a more gen-

eral perspective than it is used in the presented system.

The power of the parser component has also been tested in

our recent experiments with the Czech-to-German language

pair and it turned out that it is also capable of performing

deep syntatic analysis (including valence).

3.1. Tasks of the parser

The main task of the shallow parser in an MT system is to
deliver an information about the sentence structure to the
transfer module so that language specific structural prop-
erties could be handled and transferred properly. Without
the parser, morphological differences may only be consid-
ered which is, of course, not sufficient for most language
pairs. Hence the parser may provide an add-on value which
is supposed to improve the target sentence. If the source

10

sentence is left untouched by the parser (because it is too
short or too complex), the system translates it as if there
were no parsing module.

The output of the parser is a set of c-trees. It is important to
mention that a c-tree does not represent the structure of the
sentence as such but a concrete rule application sequence.
What is passed to the transfer module are f-structures that
are assigned to constituent phrases during the parsing pro-
cess.

We would like to underline once again that the shallow
Czech grammar is not supposed to parse whole sentences.
Of course, if the syntactic structure of the sentence is sim-
ple enough, the result will be one tree (or a set of trees)
covering the whole sentence. Nevertheless in most cases,
the result is a set of trees which only represent fragments
of the sentence. One reason for such behavior may be non-
projectivity which is very frequent in languages with free
word order. But projective sentences also may be parsed
only partially since the grammar focuses on the level of
noun and prepositional phrases. The coverage of verbal
phrases is rather small, the rules on this level are meant
to capture only the syntactic construction which may cause
serious problems in the target sequence.

3.2. The computational formalism

The transformational formalism used is based on a chunk
parser. What is very important is the fact that the deriva-
tional process is context-free (in the sense of Chomsky’s
hierarchy) which has the crucial consequence for Slavonic
languages that it is not able to handle non-projective con-
structions (at least not directly).

In the following subsections, we give a brief overview of
what should be coped with within the grammar.

3.2.1. Ambiguous input

The input of the parser can be morphologically ambiguous.
In such a case, the parser tries to use all available data to
construct a complete tree. If it succeeds, all complete trees
create the result set whereas all input items which are not
contained in a complete tree are discarded.

It is necessary to parse the whole sentence in order to dis-
ambiguate it morphologically. Even then, some words may
keep more than one morphological tag (due to case syn-
cretism). In case of shallow parsing only, the morphologi-
cal ambiguity seems to be one of the most serious problems.
The best case scenario would be to get an disambiguated in-
put. Unfortunately, at the moment the only possibility is to
use a stochastic tagger which introduces too many errors
that make it impossible for the parser to recognize impor-
tant dependencies. It is a general problem of highly in-
flected languages that their taggers work with lower preci-
sion and at the same time it is impossible to disambiguate
the input text morphologically by means of shallow rules
only (as shown, e.g., for Czech in (Zéékové, 2002)).

3.2.2. Agreement

One of the essential rule principles is the agreement of mor-
phological categories between the governor and its depen-
dent. For example, an adjective which depends on a noun,
has to agree with it in gender, case and number. We un-
derstand the term agreement in broader sense, i.e., a depen-

dent agrees with its governor if a set of conditions which
are defined for the particular type of syntactic construcion,
is satisfied. In most cases, the conditions are simply equiv-
alences of category values, as in the following phrase:

) mladsi sestre
younger-FEM,SG,DAT sister-FEM,SG,DAT
“to the younger sister”

Nevertheless, the conditions may be more complicated
sometimes, for instance, in Polish noun phrases if the gov-
ernor is in dual form?:

(10) czarnymi oczyma
black-NEUT,PL,INS eyes-NEUT,DU,INS

“with black eyes”

(11) w swoim reku
in REFL-P0OSS,SG,LOC hands-FEM,DU,LOC

“in his/her hands”
Another example can be found in Russian:

(12) nBa GoabmIUx ropojia
two big-MASC,PL,GEN towns-MASC,SG,GEN

“two big towns”

Thus we see that a precise definition of agreement depends
on the syntactic type and also on morphological properties.
For instance, we say that an adjective agrees with a noun in
dual if the following conditions are satisfied:

1. CASE.q4; = CASE, oun
2. GENDER.g4; = GENDER 047
3. NUMBER,y4; = ‘pI’ & NUMBER,,,,,, = ‘dual’

Another example concerning non-trivial agreement be-
tween subject and verb (in Spanish or Slovenian):

(13) los checos amamos. . .
the Czech-MASC,PL like-1SG

“we Czech people like...”

(14) Slovenci volimo. ..
Slovenes-MASC,PL like-1SG

“we Slovene people like...”

For this reason, we use predefined patterns to identify
agreement between sentence elements.

3.3.

Let us make a couple of short notes on the underlying im-
plementation of the formalism. Both feature structures and
rules are written in form of (Lisp-like) s-expressions that
are automatically trans-compiled to LFG-like rules. The
implementation has been inspired mostly by LFG ((Bres-
nan, 2002)) and the SProUT framework ((Becker et al.,
2002)).

Implementation of the formalism

There are rests of dual in Polish for pairwise nouns.

11

Apart from rules used to build syntactic trees, we use in our
grammar some rules the aim of which is to modify the chain
graph or to control the parsing process. Since the formalism
is declarative, the control rules use a workaround to achieve
a particular modification of the graph. Let us briefly explain
at least the most important one of these rules.

As has been already described above, the input of the
parser is typically morphologically highly ambiguous and
the main task of the parser is to disambiguate the sentence
(or at least to reduce its ambiguity). Let us consider the
sentence Stary hrad stoji na kopci “There is an old castle
on the hill”. The phrase stary hrad is morphologically am-
biguous (nominative and accusative). After having recog-
nized this phrase as the subject of the main verb, we know
that the case is nominative in this context. And since there
is no other reading where it would be accusative, we want
to remove this wrong reading. In fact, it is removed auto-
matically by the algorithm of the parser. But what would
happen if we had the bare phrase staré hrady? There are
two possible readings (nominative and accusative) which
cannot be resolved without context. Nevertheless, there are
still other meanings for each of the words independently
(unregarding the dependence between them). In this case,
the contextually incorrect edges would not be removed al-
though the parser has analyzed the phrase. This is one
negative property of the parser framework which has to be
solved explicitly. We use a workaround: we insert a dummy
edge (shackle) between adjacent edges. If there is at least
one analysis which connects two words from adjacent edge
bunches, the parser marks the shackle as used, i.e., it will
be removed by the system later. As a side effect of this, the
‘wrong’ edges do not belong to a valid path from the initial
node to the end node any more and will be deleted, too.

4. Statistical postprocessing and evaluation

An essential part of the whole MT system is the statistic
postprocessor. The main problem with our simple MT pro-
cess described in the previous sections is that both morpho-
logical analyzer and transfer introduce a huge number of
ambiguities into the translation. It would be very compli-
cated (if possible at all) to resolve this kind of ambiguity
by hand-written rules. That is why we have implemented a
stochastic post-processor which aims at selecting one par-
ticular sentence that is best in the given context.

We use a simple language model based on trigrams (trained
on word forms without any morphological annotation)
which is intended to sort out “wrong” target sentences
(these include grammatically ill-formed sentences as well
as inappropriate lexical mapping). The current model has
been trained on a corpus of 18.8 million words which have
been randomly chosen from the Slovak Wikipedia®.

Let us present an example of how this component of the
system works. In the source text we had the following
Czech segment (matrix sentence):

(15) Spolecnost ve zprdve
company-FEM,SG,NOM in report-FEM,SG,LOC
uvedla
inform-LPART,FEM,SG

3http://sk.wikipedia.org

“The company stated in the report, ...”

The rule-based part of the system has generated two target
segments:

1. Spoloc¢nost’ vo zprdve uviedli,

2. Spolocnost’ vo zprdve uviedla.

The word uvedla is ambiguous (fem.sg and neu.pl). Ac-
cording to the language model, the ranker has (correctly)
chosen the second sentence as the most probable result.
There are also many homonymic word forms that result in
different lemmas in the target languages. For example, the
word pak means both “then” and “fool-pl.gen”, the word #7i
means “three” and the imperative of “to scrub”, Zenu means
“wife-sg.acc” and “(I'm) hurrying out” etc. The ranker is
supposed to sort out the contextually wrong meaning in all
these cases.

We have evaluated the system on approx. 300 text segments
from technical and news domain. We use smaller text seg-
ments than whole sentences, i.e., we translate matrix and
embedded sentences separately for efficiency reasons (the
ranker has less sequences to evaluate). The metrics we
are using is the Levenshtein edit distance between the au-
tomatic translation and a reference translation. There are
three basic possibilities of the outcome of translation of a
segment.

1. The rule-based part of the system has generated a ‘per-
fect’® translation (among other hypotheses) and the
ranker has chosen this one.

2. The rule-based part of the system has generated a ‘per-
fect’ translation but the ranker has chosen another one.

3. All translations generated by the rule-based part of the
system need post-processing.

In the first case, the edit distance is zero, resulting in accu-
racy equal to 1. In the second case, the accuracy is 1 — d
with d meaning the edit distance between the segment cho-
sen by the ranker and the correct translation divided by the
length of the segment. In the third case, the accuracy is
calculated as for (2) except that we use the reference trans-
lation to obtain the edit distance.

Given the accuracies for all sentences we use the arithmetic
mean as the translation accuracy of the whole text. The ac-
curacy is negatively influenced by several aspects. If a word
is not known to the morphological analyzer, it does not get
any morphological information which means that it is prac-
tically unusable in the parser. Another possible problem is
that a lemma is not found in the dictionary. In such a case,
the original source form appears in the translation, which
of course penalizes the score. Finally, sometimes the mor-
phological synthesis component is not able to generate the
proper word form in the target language (due to partial in-
compatibility of tagsets for both languages). In such a case,
the Slovak lemma appears in the translation.

“By ‘perfect” we mean that the result does not need any human
post-processing.

12

In our test data, 35% of segments have been translated per-
fectly. For 12% of segments, the system has generated a
perfect translation but the ranker has chosen a different one.
In general, the accuracy of the translation is 96.45%. With
the original architecture (i.e., using a tagger only), the ac-
curacy is 93.92%. When we left out the parser, the result
was 96.10%.

5. Conlusions

The results achieved in the experiments with machine trans-
lation between two very closely related languages (Czech
and Slovak) described in this paper seem to support the
hypothesis that a rule-based shallow parser in combination
with a stochastic ranker of the target language sentences
generated by the system performs better than the simpler
architecture used in previous experiments, which exploited
the stochastic tagger and a direct translation of lemmas and
morphological tags. In the future we would like to improve
the results of the system by solving at least some of the
issues mentioned in the previous sections by means of the
presented shallow parser and to extend the system to other
language pairs of more or less similar languages.

Acknowledgments

The research presented in this paper has been supported by
the grant No. 1ET100300517 of the GAAV CR.

6. References

Kemal Altintas and Ilyas Cicekli. 2002. A Machine Trans-
lation System between a Pair of Closely Related Lan-
guages. In Proceedings of the 17th International Sym-
posium on Computer and Information Sciences (ISCIS
2002), pages 192—196, Orlando, Florida.

B. Babych and A. Hartley. 2004. Selecting translation
strategies in MT using automatic named entity recog-
nition. In Proceedings of the Ninth EAMT Workshop,
Valetta, Malta.

M. Becker, W. Drozdzynski, H.U. Krieger, J. Piskorski,
U. Schaefer, and F. Xu. 2002. SProUT — Shallow Pro-
cessing with Typed Feature Structures and Unification.
Proceedings of ICON 2002.

C. Bering, W. Drozdzynski, G. Erbach, C. Guasch, P. Ho-
mola, S. Lehmann, H. Li, H.-U. Krieger, J. Pisko-
rski, U. Schaefer, A. Shimada, M. Siegel, F. Xu, and
D. Ziegler-Eisele. 2003. Corpora and evaluation tools
for multilingual named entity grammar development.
Proceedings of the International Workshop: Multilingual
Corpora - Lingusitic Requirements and Technical Per-
spectives, Lancaster, UK.

Joan Bresnan. 2002. Lexical-functional syntax. New York.

Alain Colmerauer. 1969. Les systemes Q ou un formal-
isme pour analyser et synthétiser des phrases sur ordina-
teur. Technical report, Mimeo, Montréal.

Antonio Corbi-Bellot, Mikel Forcada, Sergio Prtiz-Rojas,
Juan Antonie Perez/Ortiz, Gema Remirez-Sanchez, Fe-
lipe Sanchez Martinez, Inaki Alegria, Aingeru Mayor,
and Kepa Sarasola. 2005. An Open-Source Shallow-
Transfer Machine Translation Engine for the Romance

Languages of Spain. In Proceedings of the 10th Confer-
ence of the European Association for Machine Transla-
tion, Budapest.

Helge Dyvik. 1995. Exploiting Structural Similarities
in Machine Translation. Computers and Humanities,
28:225-245.

Jan Haji¢, Petr Homola, and Vladislav Kubon. 2003. A
simple multilingual machine translation system. In Pro-
ceedings of the MT Summit IX, New Orleans.

Petr Homola and Vladislav Kuboii. 2004. A translation
model for languages of acceding countries. In Proceed-
ings of the IX EAMT Workshop, La Valetta. University of
Malta.

Svetoslav ~ Marinov. 2003. Structural ~ Sim-
ilarities in MT: A Bulgarian-Polish case.
http://www.gslt.hum.gu.se/ svet/courses/mt/termp.pdf.

Karel Oliva. 1989. A parser for Czech implemented in Sys-
tems Q. Technical report, MFF UK, Prague.

Eva Zatkova. 2002. Parcidlni syntaktickd analyza
(Cestiny). Ph.D. thesis, Fakulta informatiky Masarykovy
univerzity, Brno.

13

Shallow parsing in sentiment analysis of product reviews

Aleksander Buczynski, Aleksander Wawer

Institute of Computer Science, Polish Academy of Sciences
Ordona 21, 01-237 Warsaw, Poland
Aleksander.Buczynski @uw.edu.pl, axw @ipipan.waw.pl

Abstract
The article discusses a practical application of shallow parsing to sentiment polarity analysis of product reviews in Polish. Examples on
how partial parsing can help the task on different levels are presented, ranging from disambiguation between mophosyntactic interpre-
tations with different sentiment polarity, through detection of structures expressing negation or lack of a certain sentimentally polarised
property, to capturing idioms. All the stages are expressed and implemented in the same, coherent shallow parsing formalism.

1. Introduction

The article presents an attempt to apply shallow parsing to
improve the accuracy of automatic recognition of product
review sentiment polarity (Turney, 2002) in Polish. Exam-
ples of application on various levels are presented, rang-
ing from disambiguation, through detection of negation, to
capturing idioms. All the stages are expressed and imple-
mented in the same, coherent shallow parsing formalism.
Section 2. contains the data overview, including the pre-
processing technique. Section 3. briefly introduces Spejd,
the shallow parsing formalism and engine used for experi-
ments. Section 4. presents the connection between marking
consistency grammar structures and disambiguating senti-
ment polarity. Section 5. shows how to improve the results
by identifying constructions describing negation or lack of
a certain sentimentally polarised property. Finally, section
6. describes an attempt to cover idiomatic expressions in
the same formalism.

2. Data Overview

The evaluation dataset consists of 4175 product or ser-
vice reviews downloaded from various Polish e-commerce
websites and Internet shops. Reviewed products included
books, games, printers, monitors, cameras, phones, cosmet-
ics, tools, holidays.

Each review has a corresponding numeric score (number of
stars), assigned by the review’s author. Most of the web-
sites have scores ranging from 0 (worst) to 10 (best), but
some are based on 5 or 6 point scale. For evaluation pur-
poses, in order to obtain a common, coherent metrics, we
decided to rescale all scores into three categories: negative
(-1), neutral (0), positive (+1).

As it often happens with data collected from the Internet,
reviews were typed in a rather loose manner, sometimes
omitting Polish diacrits which futher increases ambiguity of
the input on top of the “natural” ambiguity of language. A
dedicated procedure has been applied to guess the missing
diacrits, which improved the detection ratio of identified
positive sentiment words by 5% and the number of negative
words by 3%.

As a baseline, we took the bag of words approach, disre-
garding grammar and word order. We do not account for
presence of a particular lexeme, but rather presence of a

specific category of lexems. Such an abstraction originates
in content analysis systems, most notably the classic Gen-
eral Inquirer (Stone, et al 1966). Lexical categories used in
this work include two sets of lexemes (dictionaries): 1580
positive and 1870 negative ones. A string is considered to
have a positive/negative sentiment if at least one of its mor-
phosyntactic interpretations belongs to a positive or nega-
tive dictionary, respectively.! After the addition of missing
diacrits, the application of the lexicons resulted in senti-
ment tags for 19370 words in the reviews (13768 positive
and 5602 negative).

Baseline accuracy was calculated by running a C5.0 clas-
sifier (a commercial successor of C4.5 (Quinlan, 1993)) on
the tagged reviews, taking as input variables the number of
positive and negative tags in a review. Such a classifier pre-
dicted the sentiment of the reviews with accuracy of 74,9%.

3. Shallow Parsing of Polish

For detecting syntactic structures we decided to use Spejd
— atool for simultaneous morphosyntactic disambiguation
and shallow parsing (Przepidrkowski, 2007). The Spejd
formalism is essentially a cascade of regular grammars.
Unlike in the case of other shallow parsing formalisms,
the rules of the grammar allow for explicit morphosyntac-
tic disambiguation statements, independently or in connec-
tion with structure-building statements, which facilitates
the task of the shallow parsing of ambiguous and/or erro-
neous input. An example of a simple Spejd rule is:

Match:
Eval:

[pos~~prep] [base~"co|kto"];
unify(case,1,2);
group (PG, 1,2);

The rule means: 1) find a sequence of two tokens such that
the first token is an unambiguous preposition, and the sec-
ond token is a form of the lexeme CO ‘what’ or KTO ‘who’;
2) if there exist interpretations of these two tokens with the
same value of case, reject all interpretations of these two
tokens which do not agree in case; 3) if the above unifica-
tion did not fail, mark the identified sequence as a syntac-
tic group of type PG (prepositional group), whose syntactic

!Therefore it is theoretically possible for the same string to
have both positive and negative sentiment.

14

Table 1: Examples of pairs of words in Polish with different
sentiment polarity, which have common forms. Tags :spos
and :sneg denote sentiment value. Lack of tag means
neutral sentiment.

obraz (image) obraza (insult:sneg)
ok (ok:spos) oko (eye)
ptytka (tile, CD/DVD) | plytki (shallow:sneg)
Iub (or) lubi¢ (to like:spos)
kupa (poo:sneg) kupi€ (to buy)
wina (guilt:sneg) wino (wine)

head is the first token and whose semantic head is the sec-
ond token.

Although Spejd was originally designed for morphosyntac-
tic disambiguation, it is also highly flexible. Therefore we
extended the morphosyntactic tagset with a semantic cate-
gory (sentiment), expressing properties of positive or
negative sentiment (spos and sneg respectively). We
called this hybrid approach Sentipejd.

4. Sentiment disambiguation

Since both morphosyntactic tagging and partial con-
stituency parsing involve similar linguistic knowledge,
shallow parsing can be a powerful tool for simulta-
neous morphosyntactic disambiguation, as discussed in
(Przepidrkowski, 2007). But different morphosyntactic in-
terpretations often imply also different semantic interpre-
tations, including sentiment polarity (especially when it
comes to disambiguating between different base forms).
Therefore, a tool for disambiguating between various mor-
phosyntactic interpretations can also help to disambiguate
the sentiment polarity of an interpreted unit.

For example, strings like obraz and obrazy can be forms
of the word obraza (insult), which has a definitely negative
sentiment polarity, as well as obraz (image, painting), with
no sentiment connotations at all. Table 1 shows a few more
examples of such ambiguities in Polish.

For testing the application of shallow parsing to sentiment
disambiguation, we used a preliminary shallow grammar
of Polish, developed at the Polish Academy of Sciences,
Institute of Computer Science. The grammar is written in
the Spejd formalism, allowing to encode structure building
and disambiguation in the same rules. It contains 58 rules
for syntactic group identification. Among these, the rules
identifying noun groups turned out to be particularly useful
for sentiment analysis, because of their case unification or
strict requirements.

Let us examine the sentence:

Najlepszy obraz uzyskamy, podlaczajac go do cyfrowego
wyjscia karty graficznej.?

(The best image we achieve, connecting it to a digital output
of graphic card.)

Najlepszy is definitely a superlative form of singular adjec-
tive ‘good’, but can be assigned four possible combinations
of case and gender:

’Diacrits were missing in the original input and have been
added in preprocessing.

e NOM:M1
e NOM:M2
e NOM:M3
e ACC:M3

The string obraz can be:

e cither a form of the word OBRAZ (image) in nomina-
tive or accusative case,

e or a genitive of the word OBRAZA (insult).

After the grammar identifies “Najlepszy obraz” as a noun
group, it enforces case, number and gender unification be-
tween the words constituting the group. The result is:
Najlepszy obraz

:adisg: image:subst:sg:nom:m3
image:subst:sg:acc:m3

good:adj:sg:nom:m3:sup:spos
good:adj:sg:acc:m3:sup:spos
Although the interpretations are still somewhat ambiguous
(the parser has not yet decided whether the phrase is nomi-
native or accusative), for sentiment analysis it is important
that the invalid interpretation of “obraz” as a genitive form
of ‘insults’ has been discarded, therefore removing the only
interpretation with negative sentiment polarity, which could
lead to a wrong conclusion about the sentiment of the whole
review.

Let us consider another example:

Troche zajmuje mu odczyt ptytki.

(Some [time] takes him reading the CD.)
The word “ptytki” has eight interpretations, four with the
base form PLYTKA:SUBST:

® SG:GEN:F
e PL:NOM:F
® PL:ACC:F
e PL:VOC:F
and four with base form PLYTKI:ADJ:
e SG:NOM:M1
e SG:NOM:M2
e SG:NOM:M3
e SG:ACC:M3

Spejd has identified the pronoun “mu” as a NG, and
following that — part of the sentence “odczyt plytki”
as a NG with a genitive postmodifier. The rule iden-
tifying the latter group has decided to discard all non-
genitive interpretations for “plytki”, correctly leaving only
PLYTKA:SUBST:SG:GEN:F.

On the test data the aforementioned shallow parsing rules
allowed to assign correct, unambiguous sentiment tags to
144 semantically ambiguous segments, generating no false
positives or negatives. Although comparing to the total
number of sentiment tags it may not seem much, one has
to take into consideration that the grammar used is indeed
very shallow and still in developement.

15

5. Sentiment Phrases
5.1. Rules extraction

Our rules for sentiment extraction were created semi-
automatically with the help of statistical methods of col-
location extraction. First, a list of word bigrams with the
highest value of Frequency biased Symmetric Conditional
Probability (Buczynski, 2006) was created, to find colloca-
tions which are both common in the corpora and strongly
dependent. A simple heuristics was used to discard proper
names from the results — if all occurences of both words
forming a collocation started with a capital letter, the pair
of words was considered a proper name. Then, the remain-
ing collocations were manually generalised into two kinds
of rules — sentiment reversibility and feature extraction.

5.2. Sentiment reversibility

We paid special attention to structures expressing reversion
or cancellation of sentiment polarity. Although the work
presented here is a pioneering effort for Polish, the problem
of recognising phrase level sentiment polarity reversal has
been addressed in English (Whitelaw et al, 2005). Several
of the rules presented below could be implemented using
a window based approach, but the precision of such tech-
niques can be problematic in inflected languages.

For our experiments we used the following types of senti-
ment modifying structures:

Negation — reversing the polarity as from “polecam” (‘I
recommend’) to “nie polecam” (‘I don’t recommend’).
The example generic rule captures also statements in-
cluding the optional verb ‘to be’ ([base~bycl]?),

like “nie jest dobry” (‘isn’t good’):

Match: [orth~nie/1i]
[base~byc]?
[sentiment~spos];
Eval:
word (3, neg:sneqg, "nie " base);

Nullification — expressing lack of a certain quality or
property (usually of negative sentiment), for example
“nie mam zastrzezefi” (‘I have no objections’) or “zero
wad” (‘zero defects’). An example of a nullification

rule? is:

Match:
([base~"bez |brak|zero]|zaden"]
| [orth~nie/i] [base~miec])
[base~zaden]?
[sentiment~sneqg];

Eval: word (2, spos,);
The second, optional specification in match
([base~zaden]?) serves capturing typical

double negative constituents, expressing a single
negation. Negative concord is quite common in Polish

3The rule is very generic and does not force any case require-
ments or unification. It performed well on the reviews data, but
for other aplications it may be more suitable to split the rule into
a few more sophisticated ones.

(Przepiorkowski, 1997), and also in the product
reviews, for example “nie mialem zadnego problem”
(‘I didn’t have no problem’)*

Limitation — a limiting expression tells us that an ex-
pression of positive or negative sentiment has only a
very limited extend, therefore hinting that the general
sentiment of the review is the opposite of the expres-
sion. Examples: “jedyny problem” (‘the only prob-
lem’), “jedyna zaleta” (‘the only advantage’).

Match: [base~"jeden|jedyny|1"]
[sentiment~sneqg];
Eval:

agree (case number gender,1,2);

word (2, spos,);

Negative modification — an adjective of negative senti-
ment preceeding a noun of usually positive sentiment,
for example “koszmarna jako$¢” (‘nightmarish qual-
ity’), “nieprzyjemne do§wiadczenie” (‘unpleasant ex-

perience’)’

Match:
[sentiment~sneg && pos~adj]
[sentiment~spos && pos~subst];

Eval:
agree (case number gender,1,2);
word (2, sneg,);

5.3. Feature extraction

Among the captured collocations, many were product spe-
cific, like “wysoki kontrast” (‘high contrast’) or “duzy

ySwietlacz” (‘large display’). We have chosen to ignore
these, to make the rules product-independent. However,
there seem to be sentiment polarised features that are com-
mon for many different products. The following features

were included in the rules:

e high/low price,
e high/low quality,
e casy/difficult to use.

5.4. Captured Structures

The set of rules described above captured 1774 structures.
Table 2 presents the most common of them. Although the
structures provide only less than 10% of all sentiment tags,
they often change the polarity of tags, therefore having a
significant impact on the results. As shown in Table 3,
the structures increased the classification accuracy by up
to 2,5% comparing to the baseline bag of words approach,
using the same c5.0 classifier.

“In the early version of the system, double negation used to
cancel itself, therefore not giving any improvement over the bag
of words approach.

51t is worth noting that the structures captured by the opposite
of the rule, ie. a positive modifier of a negative subject, are very
hard to assign an unambiguous sentiment polarity.

16

Table 2: Most commonly applied Sentipejd rules.

Value Count %

negation of positives 493 | 27,8%
negation of negatives 341 19,2%
nullification of negatives 320 18,0%
feature: ease of use 147 8.3%
nullification of positives 146 8,2%
limitation of negatives 119 6,7%

6. Idioms

This section deals with multiword entries, including
phraseological units and idioms, with non compositional
sentiment value. The calculation of sentiment present in
such structures in then a matter of accurate and efficient
recognition, which can be reduced to a more general ques-
tion - of how to encode and recognize multiword entries in
Polish, an inflected language.

In principle, encoding of multiword expressions for nat-
ural language processing falls in two general groups
(Moszczynski, 2006): encode them in an existing formal
grammar, such as Debusmann (Debusmann, 2004) or use a
specialized formalism such as IDAREX (Segond, 1995) or
Phrase Manager (Pedrazzini, 1994). A formal grammar ap-
proach makes the lexicon of multiword sentiment expres-
sions heavily dependant on a particular grammar, which
might make its reusability questionable. The expressive
power of such grammars might be largely unused in the
context of sentiment analysis. The other method, special-
ized formalisms, seems more promising, but the overview
of existing approaches proves that none of them meets
the requirements of Polish. IDAREX, which is a regular
grammars based formalism, does not allow for handling
expressions that have a very variable word order and al-
low many modifications. Expressing sentiment-bearing id-
ioms in IDAREX has to include all the possible variations
which leads to a description that suffers from overgener-
ation. Moreover, IDAREX does not support unification.
This fact alone renders it unsuitable for any reliable recog-
nition, as Polish requires to enforce agreement between
constituents of a phraseological expression. Phrase Man-
ager is not suitable for Polish multiword structures as it en-
forces membership of such a structure to predefined syntac-
tic classes, which in turn leads to an unnecessary overhead
and classes proliferation.

We found out that the sentiment carrying idioms can be
conveniently described in the same Spejd formalism as the
polarity reversing structures. Examples of commonly used
non-compositional sentiment phrases used in dialogs in-
volve popular euphemistic expressions such as ‘have some-
body somewhere’:

Match: [base~mied]
[base~"to|ty|ten" && case~acc]
[pos~~adv]?
[base~gdzies];

Eval: leave (case~acc, 2);

set (qub:sneg, , 4);

where somewhere is an euphemism for a more abusive

“arse”, the negative meaning being only recognizable in the
context of the whole expression.

Sentiment carrying non-compositional expressions are very
infrequent in the reviews, nevertheless a careful examina-
tion revealed several such multiword structures. The two
most common examples are presented below:

e ‘Almost makes a great difference’ (meaning: to fail to
meet some requirements):

Match:
[base~prawie]
[base~robié¢ & person~ter]
[base~"duzy|spory|wielki"]
[base~rdéznica && case~acc];
Eval:
unify (case number gender, 3,4);
leave (case~acc, 4);
word (qub:sneqg,
"prawie robi duza rdbéznice");

e ‘Nothing to add, nothing to lessen’ (meaning: per-
fectly, accurately):

Match: [base~nic]
[base~dodaé¢ && pos~inf]
([pos~interp] ns?)?
[base~nic]
[base~ujaé¢ && pos~inf];
Eval: word(qub:spos,

"nic doda¢ nic ujac");

The recognition of sentiment carrying multiword structures
or idioms might not introduce substantial improvements on
product review sentiment recognition accuracy, as the re-
views language is very simple, and idioms are very rare
(few occurences per idiom in the sample). However, it
seems that the recognition of sentiment-bearing idiomatic
expressions can contribute to sentiment analysis in other
language domains, like informal dialogs or literary lan-
guage. Once properly encoded, the same set of rules for
idiom recognition can be used across multiple domains.
However, introducing new domains may require extending
the idiom set.

7. Results

For evaluation purposes, we grouped the shallow parsing
rules into four disjoint sets: disambiguation (described in
4.), sentiment reversibility (5.2.), feature extraction (5.3.)
and idioms (6.). Table 3 displays impact of each set on the
classifier accuracy, including ‘bag of words’ (empty ruleset,
baseline approach) and all rules (all sets combined).

On the test data, disambiguation actually lowered the ac-
curacy of the classification. An examination of the results
revealed that the disambiguation rules are sometimes too
strict, not taking into account errors often made by the re-
viewers. The most significant improvement was achieved
by detecting sentiment reversing structures.

17

Table 3: Accuracy of ¢5.0 classifier on reviews, depending
on the shallow parsing ruleset used.

Method | Accuracy

Bag of words 74,49%
Disambiguation 74,47%
Reversibility 77,01%
Feature extraction 74.56%
Idioms 74,49%

All rules 77,05%

8. Conclusions and Future Work

In the paper we presented an approach to improve auto-
matic sentiment polarity extraction from noisy and am-
biguous product reviews in Polish by shallow parsing tech-
niques. We demonstrated that shallow parsing can affect
the accuracy of sentiment classification compared to a base-
line bag of words approach. The most significant improve-
ment has been achieved by detecting negation-like struc-
tures which reverse sentiment polarity. On less noisy data
morphosyntactic disambiguation of the phrases can also
help by removing certain sentiment ambiguities. Finally,
although idioms with clear sentiment polarity were rare in
the data set under consideration, they can be described and
recognised in the same formalism. Further reasearch is
needed to investigate the usability of the formalism in id-
ioms recognition on different types of corpora.

The work so far focused on considering product review as
a whole, assigning general sentiment polarity to a product.
It remains an open question how shallow parsing can con-
tribute to extracting attitudes towards specific properties or
dimensions of a product.

9. References

A. Buczynski. 2006. Wybrane zastosowania programu
Kolokacje do badari lingwistycznych. A. Duszak, E.
Gajek, U. Okulska, Korpusy w angielsko-polskim
jezykoznawstwie kontrastywnym. Teoria i Praktyka.
Krakéw 2006, pp. 427-448.

R. Debusmann. 2004. Multiword expressions as de-
pendency subgraphs. In Proceedings of the ACL
2004 Workshop on Multiword Expressions: Integrating
Processing, Barcelona, Spain.

R. Moszczynski. 2006. Formalisms for encoding Polish
multiword expressions. Report 994 of IPI PAN (Institute
of Computer Science, Polish Academy of Sciences).

S. Pedrazzini. 1994. Phrase Manager: A System for
Phrasal and Idiomatic Dictionaries. Georg Olms Verlag,
Hildeseim, Zurich, New York.

A. Przepiérkowski, A. Kupsé. 1997. Negative Concord in
Polish. Research Report 828 of IPI PAN. Institute of
Computer Science, Polish Academy of Sciences.

A. Przepiorkowski, A. Buczynski. 2007. Shallow Pars-
ing and Disambiguation Engine. Proceedings of the 3rd
Language and Technology Conference, Poznan, Poland.

J. R. Quinlan. 1993. C4.5: Programs for Machine Learn-
ing. Morgan Kaufmann Publishers.

F. Segond, E. Breidt. 1995. IDAREX: Formal descrip-
tion of German and French multi-word expressions with
finite state technology. Technical Report MLTT-022,
Rank Xerox Research Centre, Grenoble.

P. J. Stone, D.C. Dunphy, M. S. Smith, D. M. Ogilvie.
1966. The General Inquirer: A Computer Approach to
Content Analysis. MIT Press.

P. Turney. 2002. Thumbs Up or Thumbs Down? Seman-
tic Orientation Applied to Unsupervised Classification of
Reviews. Proceedings of the 40th Annual Meeting of the
ACL, pp. 417-424.

C. Whitelaw, N. Garg, S. Argamon. 2005. Using Ap-
praisal Groups for Sentiment Analysis. Proceedings of
the 14th ACM international conference on Information
and knowledge management. Bremen, Germany.

18

Why is this Wrong? — Diagnosing Erroneous Speech Recognizer Output with a
Two Phase Parser

Bernd Ludwig, Martin Hacker

Chair for Artificial Intelligence (University of Erlangen-Nuremberg)
Haberstrae 2, D-91058 Erlangen
ludwig@cs.fau.de, hacker@cs.fau.de

Abstract
A major problem of understanding language in spoken dialog systems is to detect recognition errors in the output of a speech recognizer.
Such a capability is the basis of implementing repair strategies that allow a dialog system to handle communication about misunder-
standings similarly to other clarifications. In this paper we present a two-phase approach that combines chunk and dependency parsing
and takes the global syntactic structure of recognizer output into account. This enables us to identify dependencies between chunks and
detect syntactical errors caused by word confusions in case dependency constraints are violated. Finally, we apply these diagnostics to
dialog modeling and discuss how the resulting error information can be used by clarification strategies.

1. Introduction

A major problem of understanding language in spoken dia-
log systems is to detect recognition errors in the output of a
speech recognizer. While the signal processing community
works on improvements of feature extraction algorithms in
order to decrease the average word error rate of a speech
recognizer, less attention is paid to the linguistic side of er-
rors and how to detect them.

The capability to locate errors in a speech recognizer out-
put (word chain, word lattice, or word confusion matrix)
enables a dialog system to engage in clarification dialogs
on acoustic misunderstandings. Our paper presents a study
how to identify these misunderstandings.

As an example application for this paper, we choose a nat-
ural language dialog system for controlling digital equip-
ment for home entertainment, such as TV sets or DVD play-
ers. In this domain, a typical utterance is

Die Sparte Serie auf RTL ist ausgewdhlt.
(The genre series is selected for RTL).

Normally, speech recognizers will misrecognize some
words producing hypotheses which may be inconceivable
to a human hearer and — in particular — to an automatic di-
alog system. Figure 1 lists hypotheses for the above utter-
ance. As discussed in detail later, they are ill-formed and
every German native speaker will ask a number of questions
in order to clarify the misunderstandings.

The contribution of this paper is a parsing algorithm that
computes error diagnostics similar to those a native speaker
would find. The paper then explains how such diagnostics
can be used in a dialog system for clarification sub-dialogs.
The paper is structured as follows: First, we discuss some
corpus studies that exemplify the way in which humans
communicate about misunderstandings on the acoustic,
syntactic, and semantic level. In the section to follow, we
report on other computational approaches to localize and
identify errors in ill-formed utterances. Then we explain
our two-phase approach that combines a chart-based chunk
parsing step with a constrained-based dependency step to
a global syntactic analysis which results in a data structure

containing possible readings of the input or detailed error
reports with respect to a given topological model. This sec-
tion is followed by a worked example. We conclude with
a presentation of the system’s performance, with a discus-
sion of the results and with an analysis of open issues and
an outlook to future work.

2. Clarification of Misunderstandings

Current (commercial) state-of-the-art systems do not im-
plement strategies revealed in corpus analyzes, but rather
heuristic approaches to clarifications. Often, feature ex-
traction that is needed for implementing recovery or clar-
ification strategies is difficult to compute. Secondly, the
features are unclear themselves. Researchers report dif-
ferent feature sets they used in their studies (e.g. Gabsdil
and Lemon (2004), Bohus and Rudnicky (2005), Skantze
(2004)). Mostly, the features are not specified semantically,
so it is very hard to compare them. Ginzburg (1998) pro-
vides an overview of types of clarifications which may fol-
low an utterance.

In contrast to such ad-hoc technical solutions for clarifica-
tion strategies, our approach is to find operational seman-
tics for these strategies and for algorithmic detection of fea-
tures that allow to diagnose non-understanding and misun-
derstanding errors at run-time. In our view, clarification
has to be implemented differently and separately on all lev-
els of perception of and reacting to an utterance. A similar
approach is discussed in Schlangen (2004).

2.1. Clarification of Acoustic and Syntactic
Information

Acoustic and syntactic errors are hard to distinguish in
speech recognizer output. Often enough, they are generated
during the speech recognition process — either because the
speech recognizer did not classify correctly or because the
user transgressed the lexical and grammatical limitations of
the recognizer’s language model. Examples of such utter-
ances are:

Boulevard Bio nimm anschauen (Boulevard Bio
take watch)

19

ich mochte eine komddie laufen werden (I want a
comedy run will)

These types of error are the focus of our paper.

2.2. Clarification of Semantic Information
Another type is misunderstanding on the semantic level:

ich mochte eine komodie auswdhlen (I want to
select a comedy).

ich mochte eine komodie aufnehmen (I want to
record a comedy).

Such misunderstandings may be caused by acoustic prob-
lems as well, but cannot be detected on syntactic level as
both utterances are grammatically perfect. They are only
detectable with information about context and therefore be-
yond the scope of this paper.

2.3. (Clarification of Pragmatic Information

The same holds for pragmatic misunderstandings. For clar-
ifications of pragmatics the context or state of the dialog
has to be considered in parallel to the state of the applica-
tion which is addressed in the interaction. Pragmatic mis-
understandings are discussed e.g. in Krum et al. (2005) or
Ludwig (2006) and are beyond our scope as well.

2.4. Error Classification

In a corpus of spoken user input collected with the EM-
BASSI dialog system (see Gorz and Ludwig (2005)), the
utterance

Die Sparte Serie auf RTL ist ausgewdhlit. (The genre series
is selected for RTL).

is recognized as shown in Figure 1. None of the five hy-
potheses computed by the speech recognizer contains the
transcription (see above).

Although some words are recognized correctly, every na-
tive speaker of German would not find a hypothesis out
of the five to be conceivable as a complete sentence. The
speaker would argue that in each hypothesis there are se-
quences of words that are conceivable for themselves, but
along with the other sequences of the hypothesis they can-
not be integrated in a way that a hearer can make sense out
of the hypothesis. The reason for that observation is that in
a correct sentence there are several grammatical functions
that have to be fulfilled by certain phrases. To give an exam-
ple, in the simplest case there must be a verb phrase serving
as predicate, a noun phrase serving as subject and (depend-
ing on the verb) other noun phrases serving as direct and
indirect object. Having identified these, the hearer is able
to construct a hypothesis for the meaning of the utterance.
However, in the hypotheses in Figure 1 some of the func-
tions are missing (e.g. a predicate in hypothesis 1 and 2),
some are fulfilled more than once (e.g. the predicate in hy-
pothesis 3, 4, and 5), and some are located in unusual posi-
tions (e.g. what in hypothesis 4). These facts are obstruc-
tive for the hearer to understand the hypothesis.

In most dialog systems, there is a work-around for the very
complicated problem addressed above: those sequences of
words that have meaning in isolation are extracted from the

hypothesis and syntactic functions are ignored completely.
This approach works well of course when the speech rec-
ognizer made no severe errors. However, if an error af-
fects a word that is crucial for the meaning of the utter-
ance (or the underlying intention of the user — such as the
non-understanding of the finite verb ist as in the example
above), the approach fails as a work-around. Its perfor-
mance degrades further when errors in recognition lead to
conflicting information (e.g. VOX versus ARD in hypothe-
sis 5). In such cases, it is hard for the dialog system to take
a decision.

3. Related Work

In the literature, the analysis of clarification dialogs has
always attracted the interest of many researchers. While
there are many corpus studies on which patterns are used
for clarification in human-human dialog (Ginzburg (1998)
provides an overview of types of clarifications which may
follow an utterance), it is difficult to define an efficient and
tractable decision procedure for error classification and se-
lection of an appropriate repair strategy. Indeed, there is
even no consensus about an adequate feature set. However,
researchers report different feature sets they used in their
studies (e.g. Gabsdil and Lemon (2004), Bohus and Rud-
nicky (2005), Skantze (2004)). Mostly, the features are not
specified semantically, so it is hard to compare them.

Our approach differs from the cited publications in that
we want to classify errors in natural language output of a
speech recognizer by employing as much knowledge about
language use as possible instead of abstracting immediately
to data that involves the (error prone) interpretation of the
recognizer output. Another main difference is that the cited
approaches lead to an acceptance or rejection of the user
utterance as a whole. However, we are interested in finding
the type of misunderstanding in order to provide a compu-
tational basis for (interactive) clarification also on parts of
an utterance.

In the area of speech recognition, confidence scores are de-
fined by an entropy-based measure of confusion in a word
graph. While the idea of word confusion graphs goes back
at least to Mangu et al. (2000) for the purpose of minimiz-
ing the word error rate of a speech recognizer, Hakkani-
Tiir and Riccardi (2003) report about experiments to use
posterior probabilities or posterior entropy as a confidence
measure and to localize errors in positions with confidence
below a given threshold. In Falavigna et al. (2002) anti
models for phones are proposed as another possibility to
compute confidence scores.

The approach in this paper takes the main ideas just out-
lined into account, but anti models are built on a word or
even POS basis in order to highlight linguistic instead of
acoustic information.

Hogan (1998) aimed to use data-driven methods to build a
simple model of grammaticality in language and to com-
pare it with machine translated text with the hope of uncov-
ering ungrammatical sequences of words. The corpus used
in this study consisted of about 300,000 words. Our analy-
ses show that this size is not sufficient for providing a sta-
ble language model. In addition, HOGAN was interested in
finding differences in the distribution of existing trigrams

20

die sparte gelaufen ab elf uhr gewdhlt

die sparte gelaufen ab elf uhr ausgewdhlt
die sparte gelaufen das will vox gewdhlt
die sparte gelaufen was wahle vox gewdahlt
die sparte gelaufen ard wahle vox gewdhlt

(the genre run from 11 clock selected)
(the genre run from 11 clock selected)
(the genre run that want VOX selected)
(the genre run what choose VOX selected)
(the genre run ARD choose VOX selected)

Figure 1: 5 best hypotheses for a speech signal as generated by a speech recognizer

PP —>
P:1 position = prepos,
P:1 kasrek = NP:2 kasus,
PP:0 = P:1.

P NP. DP

—> DET NP.
DET:1 kasus = NP:2 kasus,
DET:1 numerus = NP:2 numerus,

DET:1 genus = NP:2 genus,
DP:0 = NP:2.

Figure 2: Example chunk rules producing prepositional phrases and definite noun phrases

within the “correct” and the machine translated text. Our
focus on the contrary is to identify trigrams that are rare
in the language model, but occur in ill-formed input and
therefore can serve as indicators for errors.

While conventional parsers are constructed for parsing and
completely disambiguating grammatically error free input,
our goal is fault-tolerant parsing of sentences that include
syntactic errors. For diagnostics the parser must provide
useful information about what is wrong. Furthermore the
language model should be robust as we are concerned with
spoken language as input. However, efficient parsing is es-
sential for applying the method in real time dialog systems.
The demand of robustness and the phenomenon of variable
word order in German sentences ask for the use of a de-
pendency grammar because other ones like phrase struc-
ture grammar are hardly able to deal with those. Another
argument in favor of dependency grammars is that error di-
agnostics call for information about semantic relations pro-
vided by a dependency analysis.

There is a number of dependency parsers for German, but
none of them meets all demands of error handling, robust-
ness and time complexity. Schroder (2002) and Foth et al.
(2004) present a parser that is based on a Weighted Con-
straint Dependency Grammar (WCDG). Tests show that—
even for short sentences—parsing takes too long for real
time needs. Regrettably, the parser works case-sensitive,
that is it detects nouns only if they are capitalized (in accor-
dance with German spelling). However, this information is
not available in spoken language. Without this restriction
the parser would even take longer. For every sentence a
lot of violations of defeasible grammar constraints are re-
ported. As a whole they may give a rough clue for rat-
ing syntactic correctness, but most violations are not con-
structive for error diagnostics (compare Figure 3). What
is more, some of them indicate topological errors. How-
ever, these never result from acoustic misunderstandings,
but only from the parser choosing a wrong interpretation,
provided that the word order of the utterance is correct.

4. The Two-Phase Parsing Approach

The parsing is composed of two phases: In a preprocess-
ing step a chunk parser generates a chart graph containing
all possible chunks (compare Figures 2 and 9) on a speech
recognizer output, that is a word chain or a word confusion
graph. In a second phase a dependency parser searches the

002 : 7.500e-01 : Schlagzeile
006 : 9.950e-01 : mod
008 : 9.950e-01 : mod
010 : 9.950e-01 : mod
012 : 9.970e-01 : Komplementdistanz
008 : 9.999¢-01 : direction
010 : 9.999¢-01 : direction

Figure 3: Non-constructive violations returned by NATS
parser (cf. Schroder (2002) and Foth et al. (2004)) when
parsing the first hypothesis from Figure 1.

schmecken (subj(NP_nom))
schmecken (subj(NP_nom),iobj(NP_dat))
schmecken (subj(NP_nom),obj(NP_acc))
schmecken (subj(NP_nom),p-obj(PP_nach_dat))

Figure 4: Readings of the verb schmecken (to taste) and
their complements

chart graph for a path that can be parsed according to a rule-
based linguistic model. If no path can be found that fits
the model, it chooses a path as close to the model as possi-
ble. The deviation from the linguistic model is described by
conflicts caused during the parsing process. This descrip-
tion serves as input to a subsequent diagnostics procedure
specified in section 5.

The underlying linguistic model is based on a dependency
grammar combined with a topology model. The gram-
mar contains subcategorization rules and lexical data as
shown in Figure 4 to describe admissible relations between
chunks. These relations are called dependencies. They
imply a certain grammatical function between a super-
ordinated chunk, the regent, and a subordinated chunk, the
dependent. Unlike common dependency theories that de-
fine relations on word level, our approach lifts the relations
to a higher level, the chunk level. As chunk graphs contain
atomic chunks for every word, all relations between words
can be redefined on chunk level. But additionally, partial
parses from the chunk parser can be utilized as short cuts
for the search process and abstractions within parse trees.

As dependency grammars do not make statements on word
order, we need a topology model that describes admissible
linearizations of certain parse trees. It is based on topo-

21

(predicative_noun, VL,x) — (R, left)
(predicative_noun,—~VL, finiteVerb) — (RB,right)
(predicative_noun,— VL, = finiteVerb) — (R,left)
(predicative_noun,—VL,x) — (VFF,right)

Figure 5: Topology rules specifying target fields for depen-
dents (depending on their grammatical function, the verb
order and the regent’s properties)

NP_es < NP_ACC : 0
NP_NOM < NP_DAT : 2

Figure 6: An absolute and a weighted precedence rule

logical field theory in German linguistics that subdivides
every sentence into five fields (see Altmann and Hofmann
(2004)). Similarly to Gerdes and Kahane (2001), who sup-
pose that every word (here: chunk) induces a new sub-
field, we defined a dynamic hierarchical field model that is
capable of handling complex phenomena like subordinate
clauses, scrambling and partial verb fronting. While target
field rules (see Figure 5) specify in which field a certain
dependent can be located, precedence rules (see Figure 6)
constrain the relative order of chunks within a field. Unlike
the common ones, our topology model works interactively
since the field boundaries can be extended outwards when
a new chunk is assigned to the field. Thus, whensoever a
partial parse is to be extended by a new dependency, we
can validate that the position of the new dependent fits the
topological structure built up by the previous dependencies.
The dependency parser works top down using an A* search
algorithm to find a path fitting the linguistic model best. For
this, it must work fault-tolerant as to a certain degree also
erroneous dependencies must be taken into account. The
deviation from the linguistic model can be described by a
set of conflicts of the following three types:

e Incongruency: A dependency is presumed while fea-
tures of the dependent do not exactly meet the specifi-
cations. E. g. in the hypothesis

he sleep
he can be interpreted as subject to sleep though regent

and dependent do not correspond in number.

e Vacant grammatical function: A mandatory grammat-
ical function is not fulfilled because there is no ade-
quate chunk not occupied by another function. E. g.

he gives to her

causes a conflict because there is no chunk like it that
can serve as direct object to gives.

e Spare chunk: At the end of the parsing process there
is a chunk whose grammatical function could not be
identified. E. g. the hypothesis

he sleeps it

contains the chunk it that cannot be incorporated into
a semantic interpretation of the whole sentence.

Efficient parsing as it was postulated in section 3. can be

achieved by relaxing the parser’s precision: As we only
need to find out if the input is erroneous, exact resolution
of ambiguities is only required for error-related sequences.
For all other ones it is sufficient to validate that there are
admissible interpretations, no matter which one to choose.

5. Error Diagnostics

A subsequent diagnostics procedure analyzes the set of con-
flicts detected by the parser. It decides whether the speech
recognizer output is accepted or rejected or whether an er-
ror model can be used to locate and analyze the confusion
with the objective of correcting the sentence automatically
or by means of a clarification dialog. Assuming that the
linguistic model contains the original utterance, all those
conflicts are caused by acoustic confusions. There are five
types of errors a speech recognizer can produce (the exam-
ples refer to the utterance I don’t understand you):

e Simple confusion: A word is replaced by another one:
I don’t understand who
e Omission: A word is omitted or replaced by a break:
don’t understand you

e Insertion: A word not contained in the utterance is
inserted:

I don’t understand it you

e Contraction: A sequence of words is replaced by a
single word:

I don’t understanding
e Separation: A single word is replaced by a sequence:

I don’t thunder stand you

In order to find out location and type of the confusion we
need an error model that allows us to infer confusions from
conflicts. However, in most cases there is no clear relation
between cause and effect: A single confusion can cause
more than one conflict. Often conflicts are bidirectional,
that is either the dependent or the regent can be an erro-
neous word. In the end, several confusion types can cause
same conflict. For an adequate handling of these ambigu-
ous relations, we need a statistical error model.

6. Worked Example

In this section, we discuss all the steps involved in process-
ing the 5 best hypotheses in Fig. 1 resulting in a localization
and analysis of the detected errors.

The first step is to transform the single hypotheses into a
joint word confusion graph as shown in Fig. 7. In this
word confusion graph, sub-sequences of words are iden-
tified that are very unusual for German. The result of this
step is a disambiguated word chain with markers for criti-
cal regions. In these regions, syntactic errors are likely to
be found. First of all, a chunk parsing step tries to find all
chunk readings for the given hypotheses or the whole word
confusion graph. An extract of the chunk graph for the in-
put in Fig. 8 can be seen in Fig. 9. This chart graph is the
basis for the following dependency analysis. This step aims

22

(0,1,die) (1,2,sparte) (2,3,gelaufen) (3,4,wdhle) (4,5,ard) (5,6,was) (6,7,gewdhlt)
(3,4,das) (4,5,vox) (5,6,uhr) (6,7,ausgewdhlt)
(3,4, ab) (4,5,elf)
Figure 7: Word Confusion Graph
(0,1,die) (1,2,sparte) (2,3, UNSURE) (3,4, ab) (4,5,elf) (5, 6,uhr) (6,7, UNSURE)

Figure 8: Initial chart containing all error localization labels

at identifying how all chunks are related taking topological
fields for German and the subcategorization frames of the
involved words into account.

For going step by step through the second parsing phase we
discuss another example from the home entertainment do-
main illustrating clearly the linguistic background and how
error diagnostics can be made. The original utterance was

Ich mdochte morgen abend einen Krimi im Fernsehen an-
schauen (Tomorrow night I would like to watch a detec-
tive story on TV)

The 5 best hypotheses of the parser—none of them contains
the transcription—were

HI1: mich mochte morgen abend einen krimi im fernsehen
anschauen (tomorrow night me would like to watch a
detective story on TV)

H2: ich mdochten morgen abend einen krimi im fernsehen
anschauen (tomorrow night I would like to watch a

detective story on TV)
[’would” being second-person plural]

H3: ich mochte morgen abend einen krimi im ersehnt an-
schauen (tomorrow night I would like to watch a de-

tective story on desired)

H4: ich mochte sorgen abend einen krimi im fernsehen an-
schauen (sorrow night I would like to watch a detective

story on TV)

HS5: ich mochte morgen haben einen krimi im fernsehen an-
schauen (tomorrow have I would like to watch a detec-

tive story on TV)

In this example, parsing the word confusion graph would
result in automatic correction of the sentence because it in-
cludes the transcription as a path. As no other path can be
parsed without any conflicts, the search algorithm will def-
initely choose the transcription as best interpretation.
Parsing each word chain independently illustrates how error
detection works if the error cannot be eliminated. First of
all, the dependency parser performs the following steps:

1. Possible sentence readings and verb orders are taken
into account. One of them is statement with Verb-
Zweit-Stellung (verb-second order). This reading calls
for the finite verb to constitute the left bracket!. Fi-
nite verb candidates are mochte, fernsehen and an-
schauen. The former obtains the highest priority as
the left bracket is expected to be early in the sentence.

'The left bracket is one of the five topological fields in German
linguistics. For detailed information on German verb order and
topological fields see Altmann and Hofmann (2004).

2. The verb form mdchte is an first-person singular modal
auxiliary with subcategorization frame

verbal_part(infinitive), subj(first-person sing. NP)

The topology model allows the infinitive to be in the
right bracket or the Vorfeld. As the left bracket has al-
ready been located in step 1, the Vorfeld is constituted
by ich, which cannot be an infinitive. Thus fernse-
hen and anschauen are the candidates for the infinitive
constituting the right bracket. This time the latter ob-
tains higher priority.
3. It has the subcategorization frame

object(NP)

For the transcription, ich would be assigned to the sub-
ject slot and einen Krimi to the object slot while mor-
gen abend would be interpreted as time supplement to
the verb and im fernsehen as location adjunct to either
the verb or the object.

However, for each hypothesis one of these assign-
ments can only be done at the cost of a conflict. Hence
the A* search tests the other alternatives of step 1 and
2, but as none of them provides a conflict-free solu-
tion, the primary interpretation is rated best.

For the individual hypotheses, the parser detected the fol-
lowing conflicts:

H1: incongruency: subject mich (me) has accusative case
instead of nominative

H2: incongruency: subject ich (I) differs from the verb in

person and number

H3: Spare chunk: ersehnt (desired)

Vacant grammatical function: no noun for P im (on)

H4: Spare chunk: sorgen (sorrow)

Spare chunk: abend (night)

H5: Spare chunk: haben (have)

For H1 the error can be localized in the word mich (me).
An adequate repair strategy was either to guess that mich
(me) was originally nominative or to ask the speaker for the
subject: Wer oder was? (who or what?)

For H2 the system is unsure if the error is located in the
subject or in the verb. Either both were originally first-
person singular or both were second-person plural. If an
error marker (compare Figure 8) was found at exactly one
of both positions, it is possible to disambiguate this error
diagnosis, with the same conclusions as for H1. If not, the
risk is too high to choose the wrong alternative. Therefore
it is better to ask for the subject.

23

(0,2,DIE SPARTE,DP, I (2,3, GELAUFEN)

[[DET:1 [[kas NOM] [[P:1
[num SING]
[gen FEM]]1] [NP:2
[NP:2 (4) [[kas NOM]
[num SING]
[gen FEM]]] [PP:0
[DP:0 (4)11)

(3,6,AB ELF UHR,PP,I
(1) [[pos prepos]

(6,7,GEW"AHLT)

[kasrek DAT]]]

(3) [[kas DAT]
[num SING]
[gen FEM]]]
(1)11)

Figure 9: Extract from the chart resulting from parsing an utterance of the data set.

For H3 it is likely that the spare chunk ersehnt originally
fulfilled the vacant grammatical function (and thus de-
scribed the location of the detective story). The adequate
question to the speaker was either wo? (where?) or in wem
oder was? (on whom or what?)

Diagnostics are more complicated for H4. As both chunks
are adjacent, it is likely that both words form a single word
or chunk in the original utterance. But as they serve as sup-
plement (which is facultative and therefore not included in
the subcategorization frame) their grammatical function is
unknown. Hence a specific question cannot be formulated.
Only if the system expected the user to tell something about
time, it is reasonable to guess that the missing phrase is
about time. In this case it could try to ask: wann? (when?)
Howeyver, the latter does not work for H5 because here a
part of the time specification (fomorrow) is complete apart
from the other one (night). Hence an adequate strategy was
either to ignore the missing chunk (that is to suppose it to
be irrelevant for the meaning of the utterance), to reject the
whole sentence (Sorry, could you repeat?) or to formulate
a position-oriented question (Sorry, could you repeat the
word you said after morgen?).

7. Evaluation on a Small Test Corpus

For evaluating the parser on word chains, we used a sub-
set of the EMBASSI corpus (see Gorz and Ludwig (2005))
containing 5 best hypotheses (as shown in Figure 1) for
each of 53 utterances. 87% of the transcriptions were rec-
ognized as error free while 80% of the wrong hypotheses
were classified as erroneous. The latter is due to the fact
that not all confusions by the speech recognizer result in
syntactic errors. If we leave out hypotheses that are gram-
matically correct but contain semantic misunderstandings,
96,6% are recognized as syntactically erroneous. Taking
only one best hypothesis per utterance (that is the favorite of
the speech recognizer), both recognition rates rise to 94%.
Localizing the error on the basis of syntactic conflicts turns
out to be more difficult. Even if we only take those hy-
potheses into account that cause a single conflict, for only
49% the error position can correctly and unambiguously be
identified. In contrast, for 36% the conflict is not tangent to
the misunderstood word.

Taking a look at the individual utterances we can clearly
see that it is hardly possible to find the error by means of
parsing when the stem of the finite verb is affected by the
misunderstanding. This is due to the fact that the finite verb
determines the most important semantic relations in a sen-
tence and that its subcategorization frame differs for differ-
ent verbs. Hence the syntactic interpretation of the utter-
ance tends to be completely wrong if the finite verb cannot

be identified correctly. The same holds for an infinite main
verb if it rules other chunks in the utterance, e. g. if the
finite verb is an auxiliary.

Besides, error diagnostics that are useful for repair strate-
gies seem hardly practicable if an hypothesis contains more
than one misunderstanding. Particularly in short utterances
multiple errors often effectuate that a substantial part of the
semantic structure is not accessible.

An analysis of time perfermance on a 2,2 GHz machine
showed that 90% of all tested hypotheses were processed
within considerably less than one second. The average time
for these examples was 0,19 secs. All hypotheses out of the
remaining 10%—some of them took up to 23 seconds—
were erroneous. They can be skipped by a time limit that
guarantees the applicability of the method in real-time dia-
log systems without lowering the quality.

8. Open Issues and Further Work

While the evaluation indicates that the approach is practi-
cable in general, some questions remain open.

8.1. Suggestions for Better Diagnostics

More detailed error diagnostics—particularly if more than
one conflict occurs—would require an elaborate statistical
error model trained by large amounts of data. In order to
provide more significant indications for error positions, the
syntactical information given by conflicts should be com-
bined with the statistical information given by error local-
ization labels as shown in Figure 8. An important question
to answer is if this could raise the rate of correctly local-
ized errors to a level that makes a clarification worthwhile
compared to a complete rejection.

Additionally, an evaluation is to be done on word confu-
sion graphs as their use could lead to automatic correction
provided that they contain every word of the utterance.

Up to now, our work was confined to independent utter-
ances. However, in dialog systems contextual information
is essential for interpretation of utterances. Considering
context means to integrate our approach with a semantic
analysis. Thereby also considerable improvements could
be achieved both in efficiency and error detection, if de-
pendencies between chunks are only considered if there is
an adequate semantic relation between the words according
to a semantic model. E.g.the verb lesen (to read), that is
allowed to rule an accusative object according to our lin-
guistic model, would be restricted by the semantic model
as the object must be something readable like a book. Of
course, every semantic model would restrict the coverage
to a small thematic domain.

24

What is more, a syntacto-semantic framework of expecta-
tion could be defined depending on the domain in order to
disambiguate error diagnostics. E. g. a dialog system for in-
formation on train schedules would expect the user to tell
something about date, time, departure and destination. If
one of the appropriate functions cannot be assigned in an
erroneous sentence, it is likely to be affected by the error.

8.2. Hard Issues for Parsing Spoken Language

Two linguistic phenomena disregarded in this paper are el-
lipsis and coordination. While non-elliptic coordinations
could easily be integrated into our language model by re-
defining the second element as an dependent of the first
one and so forth, ellipses are very hard to detect and re-
solve: how can we decide whether an ellipsis results from
a misunderstanding or is intended by the speaker? For the
purpose of resolution we need contextual information that
is not only propagated from previous utterances but also in-
terchanged between the coordination parts.

Up to now, our language model focusses on literary lan-
guage, although the input of a natural language dialog sys-
tem is a matter of spoken language. However, the grammar
of spoken language turns out hard to describe. When talk-
ing spontaneously, a human speaker is only able to plan the
syntactical structure up to a limited horizon given by his
attention window. Due to the fact that the speaker cannot
retroactively correct what he said, some ungrammaticality
arises. Accepting this kind of deviation from the grammat-
ical and topological restrictions of the model would be the
key for a better handling of spoken language.

Some issues like self corrections (cf. Spilker et al. (2000)),
enclitics, colloquial language or domain-specific terms can
be handled by a preprocessing step. E. g. titles of telecasts
that may extend on several words can be transformed into a
special category TITLE that is handled as an independent
or appositional noun phrase.

8.3. Portability to Other Languages

The general principle of this approach is also applicable
to other languages as for every natural language a depen-
dency grammar model can be built. The difference when
switching to another language lies in the chunk rules and
the subcategorization data. Beyond these adaptions, a new
topology model must be built because the phenomenon of
verb phrase fragmentation—which motivated the theory of
topological fields—is a special peculiarity of German.

If finding speech recognition errors becomes easier or
harder depends on the language. In general, natural lan-
guages can be classified according to their variability in
word order: Grammatical functions of words can either be
marked by flection or by word order. Languages with rich
morphology like Latin prefer the former and thus can offer
variable word order to a great extent. Languages with low
capability of flecting words like English need to use the lat-
ter and therefore to highly restrict word order to avoid vast
ambiguity. On that axis between flection and variable word
order, German is located somewhere in the middle.
Grammatical functions marked by topology are less vul-
nerable to speech recognition errors than those marked by
morphology because a word’s position cannot be misunder-

stood, while inflected forms of a word usually only differ
in single phonems or syllables that can very easily be con-
fused. Thus we can assume that localizing and analyzing
speech recognition errors would be easier in languages with
restricted word order like English because the parser would
have to take far fewer possible confusions into account. On
the other hand, error diagnosis seems less practical for lan-
guages like Russian or Latin. However, if we only want
to find out if an hypothesis is correct or not, we may get
even better results for these languages as the effect of a con-
fused word form cannot be compensated by the ambiguity
of other word forms.

In order to find out if these assumptions prove true in prac-
tice further studies need to be performed.

8.4. Using Diagnostics for Clarification Strategies

In this section, we sketch briefly how the error diagnos-
tics help the dialog system in initiating a clarification dia-
log. The following table shows what information the dialog
system can extract from the (parsed) word confusion graph
(see Figures 7, 8, and 9):

chunk interpretation

(0,2) DP chunk is the only hypothesis. It is correct.

(2,3) PPART chunk is the only hypothesis, but in this position
it is grammatically ill-formed.

(3,6) PP chunk ab elf Uhr is grammatically correct, but there
are several alternatives; so the risk for choosing it is
very high even if the acoustic score of this reading is the
highest available (see Figure 1).

(6,7) The readings for the PPART chunk are semantically
synonymous (in this domain). So, there is little risk in
choosing any of them.

The topological information computed in phase two of the
parsing process delivers the following diagnostics:

chunk interpretation

(0,2) DP chunk may be the subject in the utterance. However,
it is semantically incomplete as genre lacks an
apposition (which genre?). This fact is another
indication that chunk (2,3) is misrecognized.

(2,3) PPART chunk may be the (elliptical) predicate.
However, none of its case frames can be filled by any
other chunk. So, the risk is high for this interpretation.

(6,797 PPART chunk may be the (elliptical) predicate. The risk
for this option is low as (0,2) fills the subject case frame.

While deciding how to react on the utterance, the dialog
system must be aware that (3,6) is very confusing. This
indicates that a large part of the whole utterance may be
misrecognized. The critical part even extends to (2,3) as
discussed above. Therefore, a cautious strategy would be
to reject the utterance as a whole and to answer:

Sorry, I didn’t understand. Could you repeat, please?

A more risky strategy would assume the subject chunk (0,2)
and the elliptical predicate (6,7) to be stable enough. So, the
system could try to clarify the type of genre in chunk (2,3):

Which genre do you want to select?

This strategy also includes a clarification of (3,6) because
it assumes the chunk to be a complement to the DP or the
predicate. It further assumes the user to repeat this part of

25

T
"naive_recall _first.gnu" ——

8.8

8.4

e.2 -

Figure 10: z-axis: percentage of errors in the transcription,
y-axis: percentage of errors localized by error labels

the utterance as well. However, the risk for something dif-
ferent to happen is high. Therefore, this strategy potentially
increases the risk for the whole clarification to fail.

9. Summary

The discussion of clarification strategies indicates further
research directions: Do native speakers really interpret ill-
formed sentences in a similar way to that presented here?
Do they take similar decisions for how to continue a dialog
in case they feel there is some misunderstanding?

While these are open issues for dialog research, the paper
shows that progress can be achieved in the parsing phase:
Our approach constructs a possible reading of user input
and computes error diagnostics that are not related to arti-
facts of the parsing strategy or the grammar (formalism),
but to a model of how native speakers analyze and under-
stand utterances. The resulting analysis eases the tasks for
modules in later steps of the natural understanding process.
We showed that the analysis delivers valuable criteria for a
dialog module. In case of misunderstandings it can gener-
ate more “natural” continuations than common slot-filling
approaches do. The reason is again that the diagnostics are
not related to the artifacts of the technical aspects of the
dialog system, but to the human usage of spoken language.
The evaluation of our approach to parsing proved to be re-
liable. We can show that almost all grammatical errors can
be localized as indicated by Figure 10.

10. References

Hans Altmann and Ute Hofmann. 2004. Topologie fiirs Ex-
amen. Linguistik fiirs Examen. VS Verlag fiir Sozialwis-
senschaften, Wiesbaden, Germany, 1. edition.

Dan Bohus and Alexander I. Rudnicky. 2005. Sorry, I
didn’t catch that! - an investigation of non-understanding
errors and recovery strategies. In Laila Dybkjaer and
Wolfgang Minker, editors, Proceedings of SIGDIAL
2005, pages 128-143, Lisbon.

Daniele Falavigna, Roberto Gretter, and Giuseppe Riccardi.
2002. Acoustic and word lattice based algorithms for
confidence scores. In Proceedings of ICSLP 2002.

Kilian Foth, Michael Daum, and Wolfgang Menzel. 2004.
A broad-coverage parser for german based on defeasible
constraints. In Beitrdge zur siebten Konferenz zur Verar-
beitung natiirlicher Sprache, pages 45-52.

Malte Gabsdil and Oliver Lemon. 2004. Combining acous-
tic and pragmatic features to predict recognition per-
formance in spoken dialogue systems. In Proceed-
ings of 42nd Annual Meeting of the Association for
Computational Linguistics (ACL 2004), pages 344-351,
Barcelona.

Kim Gerdes and Sylvain Kahane. 2001. Word order in
German: A formal dependency grammar using a topo-
logical hierarchy. In Meeting of the Association for Com-
putational Linguistics, pages 220-227.

Jonathan Ginzburg. 1998. Clarifying utterances. In J. Hul-
stijn and A. Nijholt, editors, Proceedings of the 2nd
Workshop on the Formal Semantics and Pragmatics of
Dialogue.

Giinther Gorz and Bernd Ludwig. 2005. Speech dialogue
systems — a pragmatics-guided approach to rational in-
teraction. KI — Kiinstliche Intelligenz, 10(3):5-10.

Dilek Hakkani-Tiir and Giuseppe Riccardi. 2003. A gen-
eral algorithm for word graph matrix decomposition. In
Proceedings of the International Conference on Acous-
tics, Speech, and Signal Processing.

Deirdre Hogan. 1998. Statistical methods for identify-
ing umgrammaticality in texts. Master’s thesis, Com-
puter Science Department, Trinity College, University of
Dublin.

Ulf Krum, Hartwig Holzapfel, and Alex Waibel. 2005.
Clarification questions to improve dialogue flow and
speech recognition in spoken dialogue systems. In Pro-
ceedings of Interspeech 2005.

Bernd Ludwig. 2006. Tracing actions helps in under-
standing interactions. In Jan Alexandersson and Alistair
Knott, editors, Proceedings of SIGDIAL 2006, Sydney.

Lidia Mangu, Eric Brill, and Andreas Stolcke. 2000. Find-
ing consensus in speech recognition: Word error mini-
mization and other applications of confusion networks.
Computer Speech and Language, 14(4):373-400.

David Schlangen. 2004. Causes and strategies for re-
questing clarification in dialogue. In Michael Strube and
Candy Sidner, editors, Proceedings of the 5th SIGdial
Workshop on Discourse and Dialogue, pages 136—143,
Cambridge, Massachusetts, USA, April 30 - May 1. As-
sociation for Computational Linguistics.

Ingo Schroder. 2002. Natural Language Parsing with
Graded Constraints. Ph.D. thesis, Dept. of Computer
Science, University of Hamburg.

Gabriel Skantze. 2004. Exploring human error recovery
strategies: Implications for spoken dialogue systems.
Speech Communication, 45(3):325-341.

Jorg Spilker, Martin Klarner, and Giinther Gorz. 2000.
Processing self corrections in a speech to speech system.
In Proceedings of the 18th conference on Computational
linguistics, pages 1116—1120, Morristown, NJ, USA. As-
sociation for Computational Linguistics.

26

Chunking and Dependency Parsing

Giuseppe Attardi, Felice Dell’Orletta

Dipartimento di Informatica, Universita di Pisa
largo B. Pontecorvo 3, I-56127 Pisa, Italy
attardi @di.unipi.it, dellorle @di.unipi.it

Abstract
Since chunking can be performed efficiently and accurately, its use is attractive as a preprocessing step in full parsing stages. For instance
chunk data might be provided to a statistical dependency parser to improve its accuracy. We present a set of experiments meant to select
a set of features that provides the greatest improvement to a Shift/Reduce statistical dependency parser. We report on the accuracy gains
that such parser can obtain using features from gold chunks, from chunks produced using a statistical chunker and from approximate
chunks obtained by detecting noun phrases through regular expression patterns. A parser exploiting features from approximate chunks
is applied to a chunking task and its accuracy in chunking is compared to that of a specialized statistical chunker.

1. Introduction

Chunking or shallow parsing segments a sentence into a se-
quence of syntactic constituents or chunks, i.e. sequences
of adjacent words grouped on the basis of linguistic prop-
erties (Abney, 1996).

This process can be carried out efficiently and thus chunk-
ing can be useful in several tasks, for instance Termi-
nology Discovery, Named Entity Recognition (Carreras &
Marquez, 2005) and Text Mining (Banko et al., 2007), and
also as an intermediate step providing input to further full
parsing stages (Shivan & Ann, 1996).

Chunking can be considered an example of Partial Pars-
ing. Partial parsing was introduced to overcome the lim-
itations of current full deep parsing techniques, trying to
recover syntactic information efficiently and reliably from
unrestricted text, by sacrificing completeness and depth of
analysis (Abney, 1996).

The major critiques of full parsing techniques are lack
of robustness for many NLP application and inability to
identify good parse trees in noisy surroundings. Recent
progress in statistical dependency parsing (see for instance
the CoNLL 2007 Shared Task on multilingual dependency
parsing (Nivre at al., 2007)) shows that dependency parsing
can be made robust enough and also capable of achieving
high accuracy in the analysis of multiple languages.

In this paper we will discuss whether providing chunk data
to a statistical dependency parser can benefit its accuracy by
presenting some experiments showing which kind of output
from the chunker appears to be more effective in improving
the accuracy of a dependency parser for English.

We first present a set of experiments meant to evaluate sev-
eral possible features extracted from gold chunks and to de-
termine which ones improve most the parser accuracy. We
then verify whether these improvements are still preserved
when using the output of a statistical chunker instead of the
gold chunks.

Chunking exploits POS tags produced by previous process-
ing steps and hence using a chunker leads to a more com-
plex layered parser architecture. But since the parser it-
self may have access to the same information that the chun-
ker uses to infer the chunks, one may wonder whether the
parser might itself subsume the task of the chunker.

We will show that indeed the addition of simple chunker-
like features allows the parser to achieve an accuracy close
to that from using gold chunk data.

In particular we define a simple feature extracted from noun
phrase boundaries induced through regular expression pat-
terns applied to the input of a dependency parser.

The above information pre-segments the text and bene-
fits the dependency parser accuracy thus avoiding both the
propagation of errors introduced by the use of further statis-
tical chunkers and the cost of an additional pre-processing
step.

The only drawback is that these rules are language-
dependent and hence must be adapted for each language.
Finally we analyze the degree of accuracy that a state-of-
the-art dependency parser can achieve in a chunking task
and compare it to that of a specialized statistical chunker.

2. Goal of the paper

The goal of the paper is to investigate the relationship be-
tween chunking and dependency parsing, in particular:

e to investigate whether a chunker can provide useful
information to improve the accuracy of a dependency
parser

e to investigate whether a dependency parser can pro-
duce as accurate chunks as those produced by a spe-
cialized statistical chunker.

The first issue has been analyzed for constituency parsers
by Hollingshead, Fisher and Roark (2005).

We study it for dependency parsers, and in particular we use
a deterministic Shift/Reduce dependency parser, because
its speed and efficiency are comparable to those of shal-
low parsers. The second issue indeed makes sense only if
these conditions are met.

3. Related Work

Hollingshead, Fisher and Roark (2005) compare high-
accuracy context-free constituent parsers with high-
accuracy finite-state chunkers on several shallow parsing
tasks. Specifically, they compare the Charniak parser

27

/NS NN

[NPThe computer] [VPprocesses] [NP13.3 million operations].

Figure 1: Chunked phrase and its dependency tree.

(Charniak & Johnson, 2005) with their own state-of-the-art
chunker, concluding that there is no accuracy or robustness
benefit to shallow parsing with finite-state models over us-
ing constituent parsers.

Vice-versa, but less surprisingly, they show large improve-
ments in combining the output of high-accuracy context
free parsers with the output of shallow parsers on shal-
low parsing tasks, but of course at significant higher per-
formance costs.

Ciaramita and Attardi (2007) report on experiments by
adding semantic features to a dependency parser. Two of
these features are similar to chunk features: the EOS (End
Of Segment) feature, similar to the distance to the end of a
chunk, and the IOB tag, which however are only provided
for Named Entities recognized in the text. Using these fea-
tures, alone or in combinations, they report an improve-
ment in error reduction in the LAS up to 5.8% with a parser
trained on the WSJ Penn Treebank sections 2-21 (Marcus
et al., 1993).

4. Chunk Information in Context Free
Parsing

With respect to the dependency tree of a sentence, chunks
have some properties which may provide useful hints to a
parser.

For example all tokens in a chunk are linked through depen-
dency chains to a single token which can be thus identified
unambiguously as the head of the chunk (Federici et al.,
1996). In the case of English, this is often the rightmost
word of the chunk, in particular for noun phrases.

External links addressing a target in a chunk, point to the
the head of the chunk. Figure 1 shows an example of a
chunked phrase and its dependency tree.

The first set of experiments aims at investigating how best
to exploit chunk information in a statistical dependency
parser, selecting a set of features that provides the largest
accuracy gain.

To this end we use “gold chunks” both in training and in
testing. The chunks are those provided in the training set of
the CoNLL 2005 Shared Task (Carreras & Marquez, 2005).
They were produced with a state-of-the-art statistical chun-
ker (Carreras & Marquez, 2003).

For our parsing experiments we used the WSJ sections
02-11 of the Penn Treebank II (Marcus et al., 1993),
which were also used as the English training corpus in
the CoNLL 2007 Shared Task on multilingual dependency
parsing (Nivre at al., 2007), so that our scores can be com-
pared with those of current state-of-the-art parsers.

Feature | Tokens \

FORM -101 head(-1)

POS 2 -1 0 1 2 3 leftChild(-1)
leftC'hild(0)

CPOS -1 0 prev(-1)

DEPREL | -1 leftChild(-1) rightChild(-1)
le ftChild(0)

Table 1: Feature model for the baseline MaltParser.

4.1. Feature Model Selection

The first set of experiments was designed to evaluate the
possible benefits of chunk data in parsing. We considered
representing such information by means of the following
four features types:

IOB: Inside, Outside, Beginning of chunk, in the standard
1OB notation;

EOC: Distance to the end of the chunk;
TYPE: Type of the chunk;

NUMB: Number of the chunk within the sentence.

The IOB tag indicates whether a token is at the beginning,
inside or outside a chunk (tokens outside of any chunk are
mostly punctuation signs and conjunctions in ordinary co-
ordinated phrases). TYPE denotes one of the 11 types of
chunks defined in the CoNLL-2000 task (Sang & Buch-
holz, 2000).

In order to test which combination of these features was
most effective, we used MaltParser (Nivre, Hall & Nilsson,
2006), a dependency parser which can be tailored selecting
a specific set of features.

MaltParser is a classifier-based Shift/Reduce parser, which
processes input tokens advancing on the input with Shift
actions and accumulates processed tokens on a stack with
Reduce actions.

The features of a number of tokens are considered at each
step in the parsing algorithm as input to a classifier in order
to decide the next action to perform. This set is called the
feature model.

The features extracted for learning from the annotated cor-
pus are: Form (the lexical form of the token), PosTag (the
part of speech), CPosTag (the coarse part of speech) and
DepRel (the dependency label).

As a baseline for English we used the same feature model
chosen for English in (Hall et al., 2007), for their submis-
sion to the CoNLL 2007 Shared Task.

Table 1 describes concisely the feature model, listing which
features are extracted from which tokens: positive numbers
refer to input tokens while negative numbers refer to tokens
on the stack, leftChild(x) refers to the leftmost child of
token x, rightChild(x) to the rightmost child of token z,
head(x) to the head of x and prev(z) to the token preced-
ing x in the sentence.

We tested seven feature models, created by adding to the
baseline model the four features individually as well as
three combinations: IOB/NUMB, i.e. a pair of IOB tag

28

Model | LAS | UAS |
baseline 85.06 | 86,23
NUMB 85.66 | 87,11
10B 86.75 | 88.01
EOC 87.03 | 88.24
TYPE 87.10 | 88.36
IOB/NUMB 86.29 | 87.75
EOC/TYPE 88.01 | 89.10
IOB/NUMB + EOC/TYPE | 86.50 | 87.89

Table 2: Parser accuracy with the addition of various chunk
features.

and chunk number, EOC/TYPE, a pair of distance to end of
chunk and chunk type, and finally both the last two pairs.
Differently from (Hollingshead, Fisher & Roark, 2005), we
do not use a combination of parser and chunker results, but
the chunker outputs are used directly as features.

Table 2 list the results obtained, measured in terms of la-
beled attachment score (LAS) and unlabeled attachment
score (UAS).

All features provide improvements with respect to the base-
line model. Knowledge about chunks can be helpful to a
Shift/Reduce dependency parser, since it typically operates
with a limited lookahead and hence has only a narrower vi-
sion of the phrase being analyzed than for instance a Maxi-
mum Spanning Tree parser (McDonald et al., 2005).

In English the last word in a chunk often coincides with
the head of the chunk. Most words inside the chunk will
depend on it and this will be the only word in the chunk to
depend on words external to the chunk.

Hence the ability to identify the head of a chunk may help
the parser for instance in: a) directing links from internal
tokens to the head, b) avoiding creating links from outside
the chunk.

The EOC feature is quite informative in this respect since
it represents the distance to the head and indeed the
EOC/TYPE combination achieves the highest score.

From these observations and from the observation that
only noun phrases occurred frequently as chunks of length
greater than two, we tested a variant of EOC computed only
for noun phrases (EOC/NP), which achieved these scores:
87.65% LAS and 88.85% UAS. Hence, the EOC/NP alone
gets a LAS and UAS scores that are not statistically signif-
icantly different from the best.

In a similar vein, Ciaramita and Attardi (2007) exploit the
information derived from a Named Entity tagger to improve
the accuracy of a dependency parser.

The semantic features extracted from the Named Entity tag-
ger in their models exploit the named entity tag, the IOB tag
and the distance from the end of the segment (EOS). IOB
and EOS provide similar improvements, slightly better than
named entity tags. The authors remark in fact that IOB tags
break the text into segments and “with respect to the rest
of the tree, segments tend to form units, with their own in-
ternal structure. Intuitively, this information seems relevant
for parsing. These locally structured patterns could help
particularly simple algorithms like ours, which have lim-
ited knowledge of the global structure being built.”

Feature Tokens

FORM -101

POS 2-101

FORM bigram | <-2,-1> <-1,0> <0,1>
POS bigram <-2,0> <-1,0> <0,1>
POS trigram <-2,-1,0>

Table 3: Chunker features.

’ Chunks \ Precision \ Recall \ F-measure ‘

all 95.10% 96.05% | 95.57
NP 95.07% 94.62% | 94.84

Table 4: Accuracy of Maximum Entropy chunker.

In our experiments the single feature producing the greatest
improvements turned out to be EOC/NP, which is similar to
EOS, but includes also determiners, adjective, etc.

So we decided to use the EOC for noun phrases in all fur-
ther experiments.

5. Using a Statistical Chunker in
Dependency Parsing

A more realistic experiment is to replace “gold chunks”
with the output of a statistical chunker in order to check
whether the benefits of chunking are preserved even when
chunks are computed statistically.

5.1. Chunker

We developed a Maximum Entropy chunker that assigns
an IOB tag to each word in a sentence, based on generic
features like the lexical form of the tokens, the POS tags,
bigrams and trigrams of POS tags and words.

Table 3 describes the feature used by the chunker.

For training the chunker the same corpus annotated with
“gold chunks” was used as in the previous section.

Table 4 shows the accuracy of the chunker in terms of preci-
sion, recall and F-measure on the test set used in our pars-
ing experiments. The accuracy is typical of state-of-the-
art chunkers like the one by Carreras and Marquez (2003)
which achieved an F-measure of 93.74 at the CoNLL-2000
shared task.

The first row shows the accuracy on all types of chunks,
while the second provides the values on chunking only
noun phrases.

Since the chunker has linear complexity in the length of the
sentence, its use will not increase the overall parser com-
plexity.

5.2. Parsing Accuracy with Statistical Chunker

Table 5 shows the results of the experiments using Malt-
Parser. The first row is a baseline with no chunk data, the
second using EOC/TYPE features and gold chunks. The
last two lines report experiments using the EOC feature for
just NP-chunks, obtained either from gold annotations or
from a statistical chunker.

With the use of statistically computed chunks, we observe
only a slight improvement with respect to the baseline, but a

29

Model | Data | LAS | UAS |
baseline 85.06 | 86.23
EOC/TYPE | gold | 88.01 | 89.10
EOC/NP | gold | 87.65 | 88.85
EOC stat | 85.18 | 86.50
EOC/NP | stat | 85.41 | 86.70

Table 5: MaltParser accuracy with gold or statistical chunk
features.

significant drop with respect to the accuracy achieved using
the EOC feature extracted from “gold chunks”.

6. Comparing a Statistical Chunker and a
Dependency Parser

We now turn to comparing the accuracy of a specialized
chunker to that of a dependency parser in the NP-chunking
task.

We will try to assess whether a dependency parser can be as
accurate as a special purpose finite-state shallow parser, as
Hollingshead, Fisher and Roark (2005) showed in the case
of a constituent parser.

We needed a tool for extracting chunks from a dependency
tree similar to those produced by the the script chunklink
(Buchholz, 2000) used in the CoNLL-2000 Shared Task
(Sang & Buchholz, 2000).

This was not only difficult because constituent trees and
dependency trees are quite different, but also because some
of the choices in chunklink were hard to interpret. Some
of them were questionable, for instance the words tagged
NN, but considered out-chunk (O-) or VP chunks having as
heads words tagged NN.

Such anomalies occur frequently in the data set provided
by the CoNLL-2000 Shared Task and are somehow ac-
knowledged in (Sang & Buchholz, 2000), when they cite
Ramshaw and Marcus (1995):

While this automatic derivation process intro-
duced a small percentage of errors on its own,
it was the only practical way both to provide the
amount of training data required and to allow for
fully-automatic testing.

Despite the incompatibilities between the chunks extracted
from dependency trees and those extracted by chunklink,
in the next section we will attempt a comparison between
the accuracy of a specialized chunker and of a dependency
parser in the chunking task.

6.1.

There is an upper bound to the accuracy of chunks we can
obtain from dependency parse trees due to inaccuracies of
our chunks extractor: this limit is given in the first line of
Table 6 where chunks are extracted from the correct parse
trees.

The table also lists the percentages of precision, recall and
F-measure obtained on NP-chunks extracted using three
parsers augmented with chunk information: the first with
no chunk data, the second with gold chunk data and the

Accuracy of a Dependency Parser at Chunking

Chunks precision [recall [F |
gold tree 94.84% | 94.62% | 94.73
none 92.97% | 91.27% | 92.11
EOC/NP stat 93.86% | 91.85% | 92.84
EOC-102 93.46% | 92.64% | 93.05
ME chunker 95.07% | 94.62% | 94.84

Table 6: Accuracy of dependency parser at chunking.

’ Chunks \ precision \ recall \ F ‘
none 95.58% | 95.04% | 95.31
EOC/NP stat 96.25% | 95.28% | 95.76
EOC-102 96.49% | 95.88% | 96.18

Table 7: Accuracy of dependency parser at chunking with
respect to chunks extracted from gold dependency trees.

third with simulated chunk data, using the model EOC-102
presented in the next section.

The parser using EOC-102 chunks achieves an F-measure
which is 1.7% less than the upper bound, 1.8% less than the
statistical chunker and is even better than the one obtained
using the statistical chunk informations (EOC/NP stat). We
expect that such small difference might disappear by mak-
ing our chunk extractor more similar to chunklink.

The results by the parser are quite acceptable, but one
should consider that our chunk extractor from dependency
trees is not fully consistent with the behavior of chunklink.
In fact, results are much better if we compute the accuracy
with respect to chunks obtained with our extractor from
gold dependency parse trees, as shown in table 7.

7. Approximate Chunking

In the previous sections we showed that pre-segmenting the
text into chunks and determining the head of the chunk,
greatly benefited the accuracy of a dependency parser.
However, such benefits were not preserved when gold
chunks were replaced by statistically extracted chunks.

In this section we present a method to obtain similar ben-
efits as those provided by chunks in a dependency parsing
task, as shown earlier, avoiding though the use of either
gold chunks or statistically extracted chunks.

7.1.

We consider approximate noun phrases which can be rec-
ognized deterministically with a simple finite-state parser.
Ambiguous cases, for instance due to the presence of con-
junctions, are discarded.

A simple noun phrase (NP-simple) is a sequence of words
ending with a noun (i.e. a token having one of the following
POS: NN, NNS, NNP, NNPS) possibly followed by a pos-
sessive ending. Adjectives, adverbs, pronouns, nouns and
determiners may precede the noun according to the follow-
ing pattern:

Simple Noun Phrases

RB+DT? (JJ|JJR|JJIS|CD|VBD |PRP\$)
((NN |NNS |NNP | NNPS) POS?) +

30

Model [LAS | UAS |
baseline 85.06 | 86.23
NP-simple | 85.78 | 87.03

Table 8: MaltParser accuracy with NP-simple features.

Detection of simple noun phrases can be easily incorpo-
rated within the feature extraction processing steps of the
parser, avoiding the addition of a separate preprocessor and
the potential introduction of extra errors.

When extracting deterministically NP-simple chunks, uti-
lizing the regular expression seen above, the only cases of
extra errors that can be introduced are the sequences Noun
Noun not belonging to the same chunk but assembled in our
NP-simple chunks. In these cases we miss pointing some
pseudo EOC cases. Actually these cases are not very fre-
quent, in fact in our test set they are present only 6 times on
4880 tokens, while in the training set 673 times on 436.916
tokens.

We will show how it is possible to obtain significant im-
provements in the dependency parser accuracy exploiting
the pre-segmentation and the chunk head indication in the
NP-like chunk.

7.2. Experimental Results

In the experiments with NP-simple chunks we used the
same training and test as in the previous experiments.

The feature used to represent chunks is EOC, which had
proved most effective with gold chunks. For the tokens
contained in an NP-simple chunk, the feature represents the
distance from the end of the chunk; for the other tokens the
feature is just the POS of the token. Since this EOC is only
an estimate and only for NP chunks, we call it pseudo EOC
(EOC-pseudo).

Similarly to the experiments based on the NP chunks, the
EOC-pseudo feature was extracted from two tokens on the
stack and from three tokens on the parser input. The results
of this experiment are shown for MaltParser in Table 8.
These results show a great improvement with respect to
both the baseline and to those obtained using the statisti-
cal chunker. These demonstrate how the NP-simple chunk
pre-segmentation and the determination of the final token
crucially contribute to the improvement of the Shift/Reduce
parser accuracy.

As stated before, such information provides a more com-
prehensive view of the remaining part to be analyzed rather
than that of a dependency Parser based on the Shift/Reduce
model. The latter is intrinsically unable to produce such re-
sults. Having used a non-ambiguous segmentation allow us
to obtain really homogeneous train and test sets, differently
from the experiments performed with the statistical parser.
It was therefore avoided the necessity to introduce a greater
quantity of information in the system through the introduc-
tion of a further training-set for the statistical chunker.
Having realized that using NP-simple chunks improves a
dependency parser accuracy, we decided to verify whether
we could reduce the number of features extracted from NP-
simple chunks without much loss in accuracy.

Model Tokens | LAS | UAS |
EOC-10123 | -10+1 +2+3 | 85.78 | 87.03
EOC-101 -10+1 85.29 | 86.50
EOC-102 -10+2 85.96 | 87.13
EOC-103 -10+43 85.86 | 86.99
EOC034 0+3 +4 85.20 | 86.25
EOC-12 -142 85.59 | 86.80
EOC-13 -143 85.61 | 86.78
EOC-10 -10 85.82 | 86.89
EOCO03 0+3 85.49 | 86.62
EOCO 0 85.78 | 86.82

Table 9: Models using EOC-pseudo features and corre-
sponding accuracy scores.

Table 9 lists the feature models that we tested and the cor-
responding accuracy scores. For each model we report the
tokens for which the EOC-pseudo features are extracted.
The simplest model EOCO, which exploits the EOC-pseudo
information only from the next input token, achieves a
score which is not statistically different from the best re-
sult. More surprisingly, the score is higher than most of
those obtained using features extracted from “gold chunks”
as reported in an earlier section.

The best model, EOC-102, exploits information from the
token on top of the stack, the next input token and the sec-
ond input token.

This is the model we used in the chunk extraction exper-
iments in the previous section. However, this choice is
somewhat arbitrary, since there is a statistically significant
difference (p — value < 0.05) only between the best model
and the last two ones. Statistical significance was computed
using the compare script (Bikel, 2006), with 10.000 itera-
tions.

Apparently, the EOC feature on token +1 is less relevant
once the value for token O is known: indeed whenever the
value of EOC for token 0 is positive, the value for token +1
is determined.

8. Conclusions

While chunking can be a useful tool in itself, we have
shown that it is of marginal utility as a preprocessing step
to full dependency parsing.

Vice versa, dependency parsing can provide quite good ac-
curacy at chunking and can provide also richer syntactic
information on sentences for many language processing ap-
plications.

With the current availability of efficient and accurate de-
pendency parsing technologies, dependency parsing should
be considered as a valid and more sophisticated alternative
to chunking in many applications requiring language pro-
cessing.

Sagae, Miyao and Tsujiii (2007) for example have shown
that constituent parsing can benefit from exploiting depen-
dency constraints.

Chunking is an example of a task which has been some-
times delegated to a preprocessing stage in order to sim-
plify the task of the parser by reducing the complexity of

31

the data to analyze (Shiuan & Ann, 1996) or the number of
features to deal with.

Parsers still rely on preprocessors for simple syntactic tasks
like POS tagging, or they might rely on semantic analyzers
for Named Entity Recognition. While this sounds appropri-
ate from a software engineering perspective, it also breaks
the sources of information in an artificial way.

Since most of these preprocessors are now based on sta-
tistical machine learning methods, an alternative approach
would be to create a combined system which, instead of
combining the outputs of the individual processors, collects
the features that each one would extracts and learns directly
from those.

This might have been impractical up to recently because of
the explosion of the feature space, but it can be feasible by
using methods that are capable of performing feature induc-
tion, like those using latent variables (Titov & Henderson,
2007).

Acknowledgments

This work has been supported in part by a grant from Fon-
dazione Cassa di Risparmio di Pisa and by a donation from
Yahoo! Research.

9. References

S. Abney. 1996. Tagging and Partial Parsing. In K. Church,
S. Young, and G. Bloothooft (eds.), Corpus-Based Meth-
ods in Language and Speech.

G. Attardi. 2006. Experiments with a Multilanguage
Non-Projective Dependency Parser. In Proceedings of
CoNNL-X 2006. http://desr.sourceforge.net.

M. Banko, M.J. Cafarella, S. Soderland, M. Broadhead and
O. Etzioni. 2007. Open Information Extraction from the
Web. In Proceedings of the 20th IJCAL.

D. Bikel. 2006. Randomized Parsing Evaluation Com-
parator. http://www.cis.upenn.edu/"dbikel/software.html
#comparator.

S. Buchholz. 2000. http://ilk.uvt.nl/"sabine/chunklink/
README .html.

S. Buchholz and E. Marsi. 2006. Introduction to CoNNL-
X Shared Task on Multilingual Dependency Parsing. In
Proceedings of CoNNL-X 2006.

X. Carreras and L. Marquez. 2003. Phrase Recognition by
Filtering and Ranking with Perceptrons. In Proceedings
of RANLP-2003.

X. Carreras and L. Marquez. 2005. Introduction to the
CoNLL-2005 Shared Task. In Proceedings of CoNLL-
2005.

E. Charniak and M. Johnson. 2005. Coarse-to-Fine n-Best
Parsing and MaxEnt Discriminative Reranking. In Pro-
ceedings of ACL 2005.

M. Ciaramita and G. Attardi. 2007. Dependency Parsing
with Second-Order Feature Maps and Annotated Seman-
tic Information. In Proceedings of IWPT 2007 .

S. Federici, S. Montemagni and V. Pirrelli. 1996. Shallow
Parsing and Text Chunking: a View on Underspecifica-
tion in Syntax. In Proceedings of the Workshop On Ro-
bust Parsing. (ESSLLI-1996).

J. Hall, et al. 2007. Single Malt or Blended? A Study in
Multilingual Parser Optimization. In Proceedings of the
CoNLL Shared Task Session of EMNLP-CoNLL 2007

K. Hollingshead, S. Fisher and B. Roark. 2005. Comparing
and Combining Finite-State and Context-Free Parsers. In
Proceedings of HLT/EMNLP 2005.

R. McDonald, F. Pereira, K. Ribarov and J. Haji¢. 2005.
Non-projective Dependency Parsing using Spanning
Tree Algorithms. In Proceedings of HLT-EMNLP 2005.

M. Marcus, B. Santorini and M. Marcinkiewicz. 1993.
Building a Large Annotated Corpus of English: The
Penn Treebank. Computational Linguistics, 19(2): 313—
330.

J. Nivre, J. Hall and J. Nilsson. 2006. MaltParser: A
Data-Driven Parser-Generator for Dependency Parsing.
In Proceedings of the fifth Int. Conf. on Language Re-
sources and Evaluation (LREC2006).

J. Nivre, J. Hall, S. Kiibler, R. McDonald, J. Nils-
son, S. Riedel and D. Yuret. 2007. The CoNLL 2007
Shared Task on Dependency Parsing. In Proceedings of
EMNLP/CoNLL-2007.

L.A. Ramshaw and M.P. Marcus. 1995. Text Chunking Us-
ing Transformation-Based Learning. In Proceedings of
the Third ACL Workshop on Very Large Corpora.

E. Tjong Kim Sang, S. Buchholz. 2000. Introduction to the
CoNLL-2000 Shared Task: Chunking. In Proceedings of
CoNLL-2000.

E. Tjong Kim Sang, F. De Meulder. 2003. Introduction to
the CoNLL-2003 Shared Task: Language Independent
Named Entity Recognition. In Proceedings of CoNLL-
2003. 142-147.

K. Sagae, Y. Miyao and J. Tsujii. 2007. HPSG Parsing with
Shallow Dependency Constraints. In Proceedings of the
45th Annual Meeting of the ACL.

PLi Shiuan and C. Ting Hian Ann. 1996. A Divide-and-
Conquer Strategy for Parsing. In Proceedings of IWPT
1996. 57-66.

I. Titov and J. Henderson. 2007. Constituent Parsing with
Incremental Sigmoid Belief Networks. In Proceedings of
ACL 2007.

32

