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Abstract
In this paper we present an experimental toolbox for automatic tree-to-tree alignment based on local classification andalignment in-
ference. The aligner implements a recurrent architecture for structural prediction using history features and a sequential classification
procedure. The discriminative base classifier uses a log-linear model which enables simple integration of various features extracted from
the data. The Lingua-Align toolbox provides a flexible framework for feature extraction including contextual properties and implements
several alignment inference procedures. Various settingsand constraints can be controlled via a simple frontend or called from external
scripts. Lingua-Align supports different treebank formats and includes additional tools for conversion and evaluation. In our experiments
we can show that our tree aligner produces results with high quality and outperforms unsupervised techniques proposed otherwise. It
also integrates well with another existing tool for manual tree alignment which makes it possible to quickly integrate additional training
material and to run semi-automatic alignment strategies.

1. Introduction
Most data-driven machine translation (MT) approaches are
based on knowledge extracted from parallel corpora. In
recent years one could see a shift towards the integration
of syntactic information into such systems. This includes
various syntax-enhanced approaches to statistical MT and
also applies to example-based MT in which translation tem-
plates can be extracted from aligned syntactic structures.
There is a distinction between techniques that exploit lin-
guistically motivated structures and the ones that induce
syntactic mappings (for example synchronous grammars)
from raw text specifically optimized for the task of trans-
lation. In the grammar induction approach tree alignment
is the result of training and is often based on existing word
alignments (Chiang, 2007) or iterative re-estimation proce-
dures (Wu, 1995; Saers et al., 2009). Linguistically moti-
vated structures can be integrated in various ways, for ex-
ample, by defining syntactic constraints in training (Zoll-
mann and Venugopal, 2006; Chiang et al., 2008; Chiang et
al., 2009). Other approaches rely entirely on the mapping
between linguistic parse trees that can be extracted from
parallel aligned treebanks (Poutsma, 2000; Vandeghinste
and Martens, 2009). However, only a few resources ex-
ist and most of them are created with a large human effort
(Gustafson-̌Capková et al., 2007; Ahrenberg, 2007; Gonza-
les et al., 2009). Therefore, techniques are required for the
automatic alignment of parsed parallel corpora in order to
produce appropriate amounts of training data.
In recent years some approaches to automatic tree align-
ment have been proposed (see, e.g., (Zhechev and Way,
2008; Lavie et al., 2008)) mostly using automatic word
alignment to induce links between non-terminal nodes. In
this paper we describe a discriminative approach based on
standard classification techniques and supervised learning
for this task. Discriminative models in general have the ad-
vantage that various feature can easily be integrated without
considering the dependencies between them in the under-
lying data structure. Usually a loss function is iteratively
optimized over a set of labeled training data in order to es-

timate model parameters. For tree alignment we observed
that small amounts of training data seem to be sufficient
in order to obtain reasonable performance. This encour-
aged us to further develop our toolbox which is described
below. In this paper we include a description of the main
concepts of our approach and some details of the imple-
mentation and usage of the software which includes tools
for handling treebank data in various formats and scripts
for evaluation.

2. Discriminative Tree Alignment
This section summarizes the general approach imple-
mented in Lingua-Align. This includes a discussion of
alignment features and link search strategies.

2.1. The General Approach

Tree alignment is modeled as a structured classification
task using a discriminative feature-based model. In our
approach we decompose the structured prediction problem
into local binary decisions based on local, contextual and
history features. In particular, we build a standard log-
linear model for binary classification predicting linksaij
between node pairssi andtj from the source and the target
language tree, respectively:

P (aij |si, tj) =
1

Z(si, tj)
exp

(

∑

k

λkfk(si, tj , aij)

)

Here, fk(si, tj, aij) represent feature functions extracted
from the candidate nodes and their contexts and the cor-
responding weightsλk are learned in the training proce-
dure. History features are embedded in the procedure us-
ing a so-called “recurrent architecture” (Dietterich, 2002)
in which prediction is performed sequentially incorporat-
ing previous decisions as additional features. Classification
is performed in a bottom-up manner using predictions on
child nodes as our history. In particular, we count the num-
ber of linked nodes dominated by the current node pair and
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normalize this count with the number of child nodes of the
larger subtree. In classification we use link likelihoods as
“soft counts” instead of local link decisions made by the
classifier in order to incorporate uncertainties of the classi-
fier. In training we may also include a variant of SEARN
(Daumé III, 2006) in order to reduce the label bias problem
(van den Bosch, 1997) which is a known issue in recurrent
prediction strategies (see also section 2.3.). This iterative
strategy can be switched on or off using simple runtime pa-
rameters. In a final step, we use the likelihoods of links
predicted by the classifier in an additional inference proce-
dure that performs the actual alignment (see section 2.4.).
Using this general approach we are able to align any pair of
tree structures without being bound to specific types of syn-
tactic annotation and grammar formalisms. Furthermore,
we may also switch off the history features and use a sim-
ple greedy alignment strategy without bottom-up classifi-
cation and well-formedness checks which would allow us
to align even non-tree structures (for example dependency
graphs) without changing the general approach. This flex-
ibility makes our tree aligner a valuable resource for var-
ious kinds of applications in which structural alignment
is required. However, most of its power comes from the
feature extraction which is optimized for certain types of
data structures and the ability of the local classifier to learn
appropriate predictions. In the next section we briefly de-
scribe the features used in our current implementation.

2.2. Alignment Features
Any real-valued feature function can be integrated in the
log-linear model we are using. Here, we give a brief
overview of features that we currently support in Lingua-
Align. For illustration purposes we will use the example
in figure 1 taken from SMULTRON, a multilingual aligned
treebank (Gustafson-Čapková et al., 2007), which we will
also use in our experiments described in section 4..

NP0

DT1

The
NNP2

garden
PP3

IN4

of
NP5

NNP6

Eden

NP0

NP1

PM2

Edens

NN3

lustgård

Figure 1: Example tree alignment from SMULTRON (So-
phie’s World, English-Swedish). The dashed lines refer to
complementary links which are not part of the official tree-
bank.

The first type of alignment features is similar to the lexical
link scores introduced by (Zhechev and Way, 2008). This
score combines lexical translation probabilities for given
node pairs to form so-calledinside scores (relations be-
tween leaf nodes within the subtrees) andoutside scores

(relations between leaf nodes outside of the current sub-
trees). We use a similar definition as (Zhechev and Way,
2008) with a slight modification, replacing mean link scores
with the maximum link score:

αinside(s|t) =
∏

si∈yield(s)

maxtj∈yield(t)P (si|tj)

αoutside(s|t) =
∏

si /∈yield(s)

maxtj /∈yield(t)P (si|tj)

The lexical translation probabilitiesP (si|tj) used above
are usually extracted from automatic word alignment. The
inverse translation table withP (tj |si) probability estima-
tions can also be applied to compute inverse inside/outside
scores, accordingly. In contrast to (Zhechev and Way,
2008), we use these four individual scores as separate fea-
ture functions which makes it more flexible for the learning
algorithm to adjust the importance of these values.
A second type of features uses existing word alignments di-
rectly by computing link consistency scores for given tree
node pairs. This score is simply the proportion of word
alignments which are consistent with the chosen subtree
pair among all the other ones involving words covered by
these subtrees. Any kind of word alignment can be used
to compute these scores. We usually apply the directional
Viterbi alignments of IBM model 4 (produced by Giza++
(Och and Ney, 2003)) and symmetrized alignments pro-
duced by Moses (Koehn et al., 2007) on top of the IBM
models. For example, consider the following (mostly incor-
rect) word alignment produced by Giza++ for the sentence
pair from our example:

the garden of eden
NULL {} edens {1} lustg ård {2 3 4}
edens lustg ård
NULL {} the {} garden {} of {} eden {1 2}

This would create the following features for some of the
nodes in our example tree pair:

source target GIZAsrc2trg GIZAtrg2src

NNP6 PM2 0 0.5
NNP6 NN3 1/3 0.5
NP0 NP0 1 1
NP0 NP1 0.25 0.5

Table 1: Examples of word alignment features

A third type of features considers the positions of the nodes
within the parse trees. Firstly, we define atree-level simi-
larity score which compares the relative vertical positions
of the current nodes within their parse trees. For this we
normalize the distance to the root node with the maximum
distance of any leaf node from the root in that tree and
compute the absolute difference between these relative po-
sitions. Secondly, we define atree-span similarity score
by comparing the relative horizontal positions of the sub-
trees. For this we compute the mean of the positions in the
sentence of all words dominated by the current node and
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calculate relative positions by normalizing this value with
the overall length of the sentence. Finally, we also com-
pute theratio of leafs dominated by the two tree nodes as
another tree structure feature. Table 2 shows a number of
such features extracted from the example tree pair above.

source target span-sim level-sim leaf-ratio
NNP6 PM2 0 1 1
NNP6 NN3 1 0.5 1
NP0 NP0 1 1 0.5
NP0 NP1 0.5 0.5 0.25

Table 2: Examples of tree structure features

The last type of base features considers labels in the parse
trees – phrase structure categories for non-terminal nodes
and part-of-speech labels for terminal nodes. These fea-
tures are typically very important for the classification
model but language-pair specific. Each of them is used as a
binary feature and appropriate weights are learned from the
training data. Other, similar types of labels can also easily
be integrated, for example, dependency labels.
It is important to mention that all the features described
above can also be extracted from any contextual node. We
implemented a simple formalism to select features from ar-
bitrary nodes connected with the current node pair. This
is done by adding a prefix to the feature template speci-
fying the movement that has to be performed before ex-
tracting the corresponding feature value. For example, a
prefix “parent” refers to moving to the immediate parent
nodes of both, the source and the target language node. The
prefix “srcparent” refers to a movement on the source lan-
guage side only (similarly with “trgparent” for the target
language tree). With the prefix “children” we may move
to the daughter nodes and retrieve the mean of the accord-
ing feature values. The prefix “sister” makes it possible to
move to nodes with the same parent. Again there are vari-
ants of these operations for moving on one side only. All
these operations can be applied recursively, such that we
can move, for example, to the “grandparent” node by spec-
ifying a prefix “parentparent”. Corresponding features are
only extracted if all movements can be carried out. Table 3
shows some possible contextual features of a particular pair
of nodes extracted from our example trees.

feature value
sister labels=PP-NP 1
sister labels=NNP-NP 1
parentαinside(t|s) 0.00001077
srcparentGIZAsrc2trg 0.75

Table 3: Contextual features for node pair〈DT1, NN3〉

The use of contextual features is one way to implicitly in-
tegrate structural dependencies in the alignment process.
Note that contextual features may indicate negative cues
even in cases where the same type of feature would rep-
resent a positive one for the current node pair. For in-
stance, a strong “srcsisterGIZAsrc2trg” feature may indi-

cate that a link between a sister node on the source lan-
guage side and the current target language node should be
preferred over a link between the current node pair whereas
the “GIZAsrc2trg” feature usually represents a positive cue
for the current node pair. It is up to the learning algorithm
to adjust the parameters accordingly.
Finally, it is also allowed to combine base features like the
ones above to create complex features in order to account
for any non-linear correlation between them within the clas-
sification task. Examples of complex features are combina-
tions of category labels and word alignment scores or tree-
span similarity scores combined with tree-level similarity
scores. In case of real-valued features we simply multiply
corresponding values. Other types of score combinations
could be integrated as well but are not supported at the mo-
ment.
Lingua-Align provides in this way a flexible framework for
feature extraction for the tree alignment task supporting a
set of base features that can be retrieved from any contex-
tual node which may be combined with each other in vari-
ous ways. Using this framework different experiments can
easily be carried out and the alignment process can be ad-
justed according to particular settings and needs (for exam-
ple, adjusting alignment speed versus alignment quality or
using the software with or without word alignment infor-
mation).

2.3. Training the Local Classifier

Any standard classifier that supports real-valued features
can be used for our task once appropriate features have
been extracted from the data. In fact it would not require
more than minor adjustments in the feature representation
to call a different training and classification algorithm im-
plemented in any kind of external machine learning pack-
age or library. In our current setup we opted for a log-linear
model and a maximum entropy classifier implemented in
the freely available toolbox Megam (Daumé III, 2004).
This toolbox includes very efficient training procedure that
allow fast experimentation with large feature sets. In fact
the bottleneck in training (and testing) is not the local clas-
sifier but the extraction of features from the data which of-
ten requires quite a lot of tree traversal steps and other op-
erations on the underlying data structure.
Basically we use standard settings for training the binary
classifier using real-valued features and the conjugate gra-
dient algorithm implemented in Megam. Other settings can
be adjusted by adding appropriate arguments to the call of
the external software. Future releases of Lingua-Align will
probably support other binary classifiers and external ma-
chine learning packages as well to make it possible to test
various kinds of learning approaches.
It is important to remember that the approach of using local
classification for tree alignment is only an approximation
of the underlying complex structured prediction problem.
There are some possible issues with the decomposition of
the global problem into sequential decisions. History fea-
tures are valuable cues for structural dependencies. How-
ever, the risk of error propagation should not be neglected
when depending on local predictions. In our case, we there-
fore do not include hard decisions of the classifier to set the
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values of history features. Instead we use the prediction
likelihood for each possible link candidate as a soft count
for subsequent predictions. In this way, uncertainties of the
classifier influence future decisions. However, there is also
the problem of learning with history features which may
lead to the label bias problem (van den Bosch, 1997). The
fact that we learn from correctly annotated training data
produces decision problems when confronting the classi-
fier with erroneous and uncertain features in the actual an-
notation step. Therefore, it may be a good idea to adjust
the local classifier to the “real situation” in practical pre-
diction. This can be done using a simple iterative training
procedure. We adapted ideas of SEARN (“search-learn”)
(Daumé III, 2006) in which history features are interpolated
with the predictions of the current classifier to train a new
classifier for the next iteration. In SEARN the optimal in-
terpolation weight should be learned on some development
data. This step is skipped in our current implementation
which may explain the unsatisfactory results in the exper-
iments described below in section 4.. This will be investi-
gated further in future work.

2.4. Alignment Inference

After training a classifier this model can be applied for pre-
dicting actual links between given node pairs. As men-
tioned earlier, we do not need to rely directly on the lo-
cal predictions but may include an additional alignment in-
ference procedure in order to integrate additional structural
constraints.

2.4.1. Maximum weight matching
One common constraint is a restriction to one-to-one align-
ments which seems to be reasonable for linking non-
terminal nodes. Using prediction likelihoods as link scores
we can apply standard search strategies to infer links be-
tween the nodes of the entire tree structure. One possibil-
ity is to use well-known graph-theoretic algorithms mod-
eling alignment as an assignment problem in a weighted
bipartite graph. In graph theory a bipartite graph is char-
acterized by the property that its nodes can be divided into
two disjoint setsS andT such that every edge in the graph
connects a node inS to one inT . In our caseS refers to
the nodes in the source language tree andT refers to the
nodes in the target language tree. Edges in the bipartite
graph refer to alignments betweenS andT . Using our lo-
cal classifier we can assign scorespij = P (aij |si, tj) for
every possible linkaij creating a weighted bipartite graph.
The assignment problem is now to find a maximum weight
matching in this graph, i.e. the set of edges without com-
mon nodes that maximize the sum of the values attached
to them. This task can also be interpreted as the assign-
ment~a = (a1 · · ·an)

T of n “tasks” (source tree nodes) to
n “agents” (target tree nodes) that minimizes the overall
costC =

∑n
i=1 ciai

where each possible assignment has
the costcij = 1− pij :

assign





















c11 c12 · · · c1n
c21 c22 · · · c2n
...

...
. . .

...
cn1 cn2 · · · cnn





















=











a1
a2
...
an











This fundamental combinatorial optimization problem can
be solved by a number of well-known algorithms. The
Hungarian method (Kuhn, 1955) is one of them solving
this task in polynomial time (Munkres, 1957). Several im-
plementations of this algorithm (also know as the Kuhn-
Munkres algorithm) exist and in our case we integrated a
publicly available Perl extension (Kulkarni and Pedersen,
2008). This module extends the original algorithm to han-
dle cases in which the number of nodes differs in both sets
by padding zeros in the corresponding matrix. This basi-
cally leads to some unaligned nodes in either source or tar-
get language tree which is, of course, necessary in the case
of a one-to-one link constraint.

2.4.2. Greedy alignment
Another way of handling one-to-one alignment constraints
is to run a simple greedy alignment strategy as proposed
by (Melamed, 2001) for word alignment. In this case, we
simply start with the highest score among all link candi-
dates and align the corresponding nodes with each other.
We then remove these nodes from the search space and con-
tinue with the next ones until no more links can be added. In
this way we also obtain strictly one-to-one alignments with
possibly some unaligned nodes on one side. However, we
are not guaranteed to obtain the maximum weight match-
ing as in the assignment algorithm explained above. On the
other hand, an advantage of the greedy strategy is that other
constraints can easily be added to this competitive linking
approach. For example, additional well-formedness con-
straints can be included as defined by (Zhechev and Way,
2008). These constraints basically add the following re-
striction: Descendants/ancestors of a source linked node
may only be linked to descendants/ancestors of its target
linked counterpart. In our experimental results we will see
the importance of these additional constraints when applied
to tree alignment. This leads to a clear advantage of the
greedy strategy compared to the assignment algorithm from
the previous section which cannot guarantee this kind of
well-formedness. Figure 2 summarizes the basic greedy
search algorithm.

1: sorted←sort indecesby value(P (aij|si, tj))
2: while (i, j)← popsorted do
3: if P (aij |si, tj) < min score then
4: return links

5: end if
6: if not srcLink[i] and not trgLink[j] then
7: if is wellformed(i, j, links) then
8: links[i][j]← P (aij |si, tj)
9: srcLink[i]← true

10: trgLink[j]← true
11: end if
12: end if
13: end while
14: return links

Figure 2: Greedy search with well-formedness constraints

The greedy algorithm can be adjusted in various ways. For
example, it is possible to relax the well-formedness con-
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straints to allow multiple links per node by replacing line
6 in the algorithm above with “if not srcLink[i] or not
trgLink[j] then” and by adjusting theis wellformed func-
tion accordingly. Other constraints can also easily be inte-
grated which makes this strategy a very flexible approach
for alignment inference.

2.4.3. Combined strategies
There are many other ways for inference with alignment
heuristics like the greedy competitive approach. For exam-
ple, one can define source-to-target matching algorithms
with additional well-formedness constraints. Similarly
this can be applied in the opposite direction. Further-
more, directional alignments can be combined again us-
ing heuristics similar to the ones applied in traditional word
alignment using asymmetric IBM models (symmetrization
heuristics such as intersection etc). Another strategy is
to split alignment into several steps, for example aligning
non-terminal nodes first and terminal nodes thereafter using
well-formedness constraints in both steps. It is also possi-
ble to use a restrictive alignment strategy first (for exam-
ple the assignment algorithm with subsequent removal of
non-wellformed links) followed by a relaxed strategy with
less constraints. Furthermore, additional constraints can be
added, for example, forcing the aligner to link nodes of the
same type only (non-terminals with non-terminals and ter-
minal nodes with terminal nodes). One may also skip the
alignment of unary tree productions.
Lingua-Align implements a number of strategies and allows
various combinations of constraints and cascaded align-
ment steps. In this way, the alignment result can easily
be adjusted according to one’s needs (focusing on preci-
sion or recall, requiring complete alignment on one side or
both sides, etc). Table 4 illustrates the impact of inference
strategies by comparing links proposed by different base
strategies for the example tree pair from figure 1 (none of
the final alignments is really satisfactory).

source target threshold greedy munkres wellformed
NP0 NP0 yes yes yes yes
PP3 NP1 - yes yes -
NNP6 NN3 - yes yes yes
NNP2 PM2 - yes yes yes

Table 4: Alignments proposed by different inference strate-
gies (threshold refers to the decisions made by the lo-
cal classifier;munkres is the combinatorial assignment re-
sult; wellformed is a greedy search strategy with well-
formedness constraints)

3. The Tree Aligner Package

Lingua-Align is a collection of Perl modules and a number
of simple frontend scripts that can be used to call the train-
ing and alignment procedures. The tree aligner is intended
to be used on the command line supporting a variety of pa-
rameters to adjust the behavior of the alignment process.
The modular design makes it also straightforward to inte-
grate Lingua-Align in other software and to extend it with
additional modules. The library structure is divided into

modules that handle the interaction with the external classi-
fier (training and classification), modules that manage vari-
ous kinds of data formats (treebanks, parallel corpora, word
alignments), modules for feature extraction and modules
that perform different kinds of alignment inference algo-
rithms. The implementation uses an object-oriented style
to make it easy to extend the package.
The main frontend can be used for both training a new
model and aligning a given parallel treebank. Command
line arguments can be specified to set appropriate parame-
ters for the training procedure and the alignment phase. The
classification model is stored in a plain text file and can be
re-used for any subsequent alignments. Another advantage
of the discriminative approach is that the alignment of large
treebanks can easily be run in parallel once the model has
been trained. The main bottleneck is feature extraction but
this can be done individually for each tree pair. In this way,
many partitions of a treebank can be aligned simultaneously
using the same alignment model.

<?xml version="1.0" ?>
<treealign>
<treebanks>

<treebank id="en"
filename="SMULTRON_EN_Sophies_World.xml"/>

<treebank id="sv"
filename="SMULTRON_SV_Sophies_World.xml"/>

</treebanks>
<alignments>

<align author="Lingua::Align" type="fuzzy"
prob="0.44271032770176010906">

<node node_id="s1_4" treebank_id="en"/>
<node node_id="s1_2" treebank_id="sv"/>

</align>
<align author="Lingua::Align" type="good"

prob="0.75750083118538613647">
<node node_id="s1_502" treebank_id="en"/>
<node node_id="s1_500" treebank_id="sv"/>

</align>
<align author="Lingua::Align" type="fuzzy"

prob="0.17420817390945234071">
<node node_id="s1_2" treebank_id="en"/>
<node node_id="s1_1" treebank_id="sv"/>

</align>
<align author="Lingua::Align" type="fuzzy"

prob="0.28574840542833246371">
<node node_id="s1_501" treebank_id="en"/>
<node node_id="s1_501" treebank_id="sv"/>

</align>
</alignments>
</treealign>

Figure 3: An example of the Tree Aligner Format

One difficulty is the dependence of some important fea-
tures on prior word alignment. This basically requires to
run statistical word alignment on the entire corpus in or-
der to prepare feature extraction. Lingua-Align supports
the common file formats produced by Giza++ and Moses
(Viterbi alignment, lexical translation table, symmetrized
word alignment) and reads these files natively when pro-
ducing tree alignment features. Important here is to pro-
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vide appropriate files that match the sentences in the paral-
lel treebank to be aligned.
The standard output format of Lingua-Align is similar to
the one used by the Stockholm Tree Aligner (STA), a tool
for manual alignment (Lundborg et al., 2007). Figure 3
shows a short example of the alignment format produced by
our tool. This format is also expected for the training data
and the default format for corpus encoding is TigerXML as
it is for STA.
Using the same file conventions as STA makes it straight-
forward to integrate manual and automatic tree alignment.
This is especially useful for the rapid development of new
training data and the manual inspection of automatic align-
ment results. Furthermore, it is straightforward to use the
result of automatic tree alignment in STA for manual post-
editing in order to produce validated parallel treebanks in
a semi-automatic way. A closer integration of the auto-
matic aligner into the graphical interface of STA could be
an interesting direction for future work (possibly in con-
nection with an on-line learning algorithm for incremental
improvements of the basic classifier).
Lingua-Align also supports two other treebank formats:
AlpinoXML and Penn treebank format. These formats can
directly be used by the alignment software. Conversion
tools are also included to change the annotation from one
format to another.
Finally, there is also a script for alignment evaluation. We
use standard measures of precision, recall and balanced F-
scores defined as follows:

Precision =
|P ∩ A|

|A|
Recall =

|S ∩A|

|S|

F =
2 ∗ Precision ∗Recall

Precision+Recall

These metrics are adapted from the word alignment lit-
erature (Och and Ney, 2003) using a distinction between
“sure” (S) links and “possible” (P) links. In SMULTRON
there is a distinction between “good” and “fuzzy” links. We
interpret “good” links as “sure” and add “fuzzy” links to the
set of “good” links to describe the set of “possible” links.A

refers to the links proposed by the system (without making
a distinction between good and fuzzy links). The evalua-
tion script computes these basic scores for a given align-
ment and a given gold standard and also provides separate
numbers for non-terminal and terminal nodes. An example
output of the evaluation script can be seen in figure 41.

4. Experiments
We tested our package with data taken from the SMUL-
TRON treebank. In particular, we used the two chapters of
“Sophie’s World” in Swedish and English to train and test
various tree alignment models which includes 6,671 “good”

1Note that the proposed link type (“good” for links with cer-
tainty ≥ 0.5 and “fuzzy” for other links) does not influence the
overall scores whereas it does for the individual scores of “good”
and “fuzzy” links.

--------------------------------------------
precision (ALL/NT:NT) = 82.32 (1984/2410)

recall (ALL/NT:NT) = 78.08 (1984/2541)
balanced F (ALL/NT:NT) = 80.15

--------------------------------------------
precision (ALL/T:T) = 78.00 (2716/3482)

recall (ALL/T:T) = 71.79 (2716/3783)
balanced F (ALL/T:T) = 74.77

--------------------------------------------
precision (fuzzy/NT:NT) = 17.91 (65/363)

recall (fuzzy/NT:NT) = 11.82 (65/550)
balanced F (fuzzy/NT:NT) = 14.24
--------------------------------------------

precision (fuzzy/T:T) = 6.91 (51/738)
recall (fuzzy/T:T) = 16.89 (51/302)

balanced F (fuzzy/T:T) = 9.81
--------------------------------------------

precision (good/NT:NT) = 71.42 (1462/2047)
recall (good/NT:NT) = 73.84 (1462/1980)

balanced F (good/NT:NT) = 72.61
--------------------------------------------

precision (good/T:T) = 81.74 (2243/2744)
recall (good/T:T) = 64.44 (2243/3481)

balanced F (good/T:T) = 72.06
=======================================

precision (all) = 79.77 (4700/5892)
recall (all) = 74.32 (4700/6324)

recall (good) = 75.66 (4132/5461)
recall (fuzzy) = 65.82 (568/863)

=======================================
F (P_all & R_all) = 76.95
F (P_all & R_good) = 77.66
=======================================

Figure 4: Tree alignment evaluation

links and 1,141 “fuzzy” links between nodes in the parse
trees of about 500 sentence pairs. We used the first 100
sentences for training and tested alignment quality on the
remaining part of the corpus. In this way we use a larger
portion of the corpus for evaluation in order to obtain re-
liable scores. Alignment quality is measuered using preci-
sion, recall and F-score as described above. The results are
shown in table 5.
The tree aligner produces very promising results. The per-
formance consistently improves when adding features to
the model. The advantage of our feature-rich discrimina-
tive approach can be seen when comparing the results with
the performance of an unsupervised tree aligner. Running
the subtree aligner described in (Zhechev and Way, 2008)
on the same data set yields a balanced F-score of 57.57%
which is similar to the scores we obtain when using the
same lexical features. This scores is very low especially
because of the size of the training data used for estimat-
ing lexical translation probabilities. However, when using
a larger model (adding the entire Europarl corpus (Koehn,
2005) to our data set) the performance of the unsupervised
tree aligner improves only slightly to about 58.64% (mainly
due to the obvious domain mismatch).
Interesting is also to see the effect of different inferenceal-
gorithms. The first two columns in table 5 refer to local
classification without any additional inference procedures.
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inference algorithm→ threshold=0.5 greedy munkres greedy+wellformed
history features→ no yes no yes no yes no yes searn
lexical 38.52 40.00 50.05 56.76 49.75 56.60 52.0357.11 57.05
+ tree 50.27 51.84 54.55 57.81 54.41 57.01 57.5458.68 55.47
+ alignment 60.41 60.63 60.92 60.87 61.31 60.83 62.0962.88 56.84
+ labels 72.44 72.24 72.94 73.14 72.72 73.05 75.7275.79 73.88
+ context 74.68 74.90 75.03 75.60 74.96 75.38 77.2977.66 75.21

Table 5: Results (balanced F-scores) for different featuresets and inference algorithms (greedy competitive linking, Kuhn-
Munkres assignment, greedy linking with additional well-formedness constraints and the same with SEARN learning).

We can see that the performance of the basic classifier is
much below the other inference-based approaches when us-
ing a limited set of features only. However, with increasing
amounts of features the base classifier catches up with the
inference algorithms which demonstrates the power of the
local feature-rich log-linear model even in this structured
prediction task. Furthermore, our test data does not seem to
suffer from the label bias problem. The performance actu-
ally drops in all settings when applying our simplified ver-
sion of SEARN training. This is probably due to the non-
optimized fixed interpolation weight applied in our setup.
We will investigate this strategy further in future work in
order to see if we can obtain additional performance gains.
The advantage of an inference-based approach can be
seen when applying the well-formedness constraints which
seems to be very important even in the feature-rich set-
tings. The best performance is consistently achieved with
the greedy search strategy using these constraints.

5. Conclusions
Lingua-Align is a toolbox for automatic tree-to-tree align-
ment that uses a local discriminative classification approach
for a sequential alignment procedure. The toolbox includes
a flexible framework for feature extraction from parallel
treebanks supporting the extraction of contextual informa-
tion and the integration of external tools for word align-
ment. History features can be used in a recurrent classifi-
cation architecture to approximate the complex structured
prediction task. Several alignment inference algorithms are
implemented that can be run on top of the predictions of the
local classifier.
In our experiments we can show that small amounts of
training data are sufficient to obtain a reasonable tree
aligner model. We are currently using the toolbox to align
large-scale parallel treebanks in an on-going project on
syntax-based machine translation (Tiedemann and Kotzé,
2009).
Lingua-Align also includes several tools for handling dif-
ferent kinds of data formats and for the evaluation of tree
aligment results. It also integrates well with an existing tool
for manual tree alignment which makes it possible to visu-
alize and manually correct automatic alignment results.
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