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Abstract
We investigate the impact of input data scale in corpus-based learning using a study style of Zipf’s law. In our research, Chinese word
segmentation is chosen as the study case and a series of experiments are specially conducted for it, in which two types of segmentation
techniques, statistical learning and rule-based methods, are examined. The empirical results show that a linear performance improvement
in statistical learning requires an exponential increasing of training corpus size at least. As for the rule-based method, an approximate
negative inverse relationship between the performance and the size of the input lexicon can be observed.

1. Introduction

Zipf’ s law which was discovered empirically by (Zipf,
1949) is originally about word token distribution in an En-
glish corpus. A general version of the law states the proba-
bility of w (it could be word token or something else) as,

p(w) ~r(w)™" )
where r(w) is the rank of w in frequency order, and a is
a constant. This empirical result implies that serious data
sparseness could occur in computational process for nat-
ural languages, and meanwhile reveals a relationship be-
tween the word token proportion and their coverage in a
corpus. In this paper, we consider such a case, if corpus
enlargement is the only way to overcome such data sparse-
ness and the learning method is fixed, then what a perfor-
mance can we expect to obtain for a specific corpus size?
Although such an investigation upon the topic was also in-
cluded in existing works such as (Banko and Brill, 2001),
this study still brings some novelties. First of all, we ana-
lyze not only machine learning but also rule-based method.
Thus a comparison between them can be made, while only
machine learning techniques were concerned with in exist-
ing works. Secondly, we choose Chinese word segmenta-
tion that is formulated as a sequence labeling task as the
study case, this is also slightly different from those classifi-
cation tasks in previous works. Thirdly, our study is based
on more strict experimental settings than the previous ones.
This will let our conclusion more reliable and make a quan-
tifiable estimation on the impact of corpus magnitude pos-
sible for the first time.

2. Experimental Settings
2.1. The Data

The reason to choose Chinese word segmentation for this
study is four-fold. Firstly, word segmentation is a simple
enough language processing task. It may be easily modeled
as a sequence labeling task by using some popular (statis-
tical) machine learning tools such as Conditional Random

Table 1: Corpus size in number of characters

Corpus AS CityU UPUC MSRA
Training (M) | 8.44 2.71 0.83 2.17
Test (K) 146.3  364.5 256.5 172.6

Fields (CRFs). Secondly, a rule-based method, maximal
matching algorithm, is available for this task, which permits
a comparison to statistical learning method for supporting
our topic. Thirdly, multiple standard large-scale segmen-
tation corpora that are essentially required by this study
have been available since Bakeoff-2003'. Fourthly, Chi-
nese word segmentation is a word-focus task, while word
is usually just the focus in a typical study of Zipf’s law.
Our experiments are carried out in three largest corpora®
from Bakeoff-2006° (Levow, 2006). Corpus size in the
number of characters is in Table 1, where each column
means a corpus or a segmentation convention. Among four
Bakeoffs that have been held, only in Bakeoff-2006, both
training corpora and test corpora are large enough and thus
suitable for this study.

For the evaluation criterion, word segmentation perfor-
mance is usually measured by F'-score,

2RP
F= 2
R+ P @

where the recall R and precision P are respectively the pro-
portions of the correctly segmented words to all words in
the gold-standard segmentation and a segmenter’s output.

'First Chinese word segmentation Bakeoff, the shared task
held by SIGHAN, http://www.sighan.org/bakeoff2003.

2UPUC corpus is excluded as the size of its training set is not
large enough to support our investigation.

3Third International Chinese Language Processing Bakeoff,
http://www.sighan.org/bakeoff2006.
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2.2. The Method

Both statistical machine learning and rule-based methods
are considered for the segmentation task in this study. As
for the former, existing work shows that Chinese word seg-
mentation can be effectively formulated as character tag-
ging task by using maximum entropy or CRFs (Xue, 2003;
Peng et al., 2004; Song et al., 2006). As the state-of-the-art
results in recent two Bakeoffs were given by (Zhao et al.,
2006a; Zhao et al., 2006b; Zhao and Kit, 2008b; Zhao and
Kit, 2008a), it is shown that the CRFs learning achieves
a better segmentation performance with a 6-tag set than
any other tag set. We opt for using this tag set that rep-
resents character position in a word and the corresponding
six n-gram feature templates for our experiments.* The six
tags are B, By, B3, M, E and S. Accordingly, we have the
tag sequences S, BE, BBoE, BBsBsE, BB, Bs M E and
BByB3sM---ME for characters in a word of length 1, 2,
3, ---, and 6 (and above), respectively. The six n-gram fea-
ture templates are C'_1, Cy, C1, C_1Cy, CyCy and C_1CY,
where 0, —1 and 1 stand for the positions of the current,
previous and next characters, respectively.

The rule-based segmentation method that we adopt here
is the maximum matching algorithm that relies on a pre-
defined lexicon. Given an input sequence, this algorithm
tries to find the longest matched word from the lexicon at
the current character position. According to the scan direc-
tion in the sequence, the algorithm has two variants, for-
ward and backward. We use forward maximum matching
(FMM) algorithm in the following experiments.

2.3. Data Splitting

As there are no different sized corpora for any segmentation
convention, a series of splitting operations are performed on
the original training corpus to generate smaller and smaller
training subsets.

To start from the identical size for three selected training
corpora, the first two million characters are respectively ex-
tracted to build three commensurate training corpora. After
that, the two-million-character corpus is split into two equal
parts, namely, two training subsets. A CRFs model will be
trained from each subset and evaluated in the standard test
corpus, and an average F-score will be calculated from both
results.’ And then, each subset will be further split into two
parts for CRFs training and test routines. The average F-
score is thus calculated from four results. This pipeline of
training set splitting, CRFs training and test will be contin-
uously performed until most training subsets include less
than one setence. The size of the smallest training subsets
is averagely 32 characters, which means that 65,536 train-
ing and test routines have to be done for so small subsets.
For a direct comparison, the lexicon for FMM segmenta-
tion will be extracted from the same split training subset

4(Zhao and Kit, 2008b) has shown that this setting is suffi-
cient to output nearly state-of-the-art performances even without
a group of additional features derived from unsupervised segmen-
tation. As for CRFs implementation, we use the CRF++ package,
http://crfpp.sourceforge.net/

>The average operation is especially useful to overcome the
uncertainty as the training corpus is extremely small.

for CRFs, and the average F-score is also calculated for the
same depth splitting.

3. The Results

Figure 1 illustrates two groups of performance curves that
represent F-scores for CRFs and FMM methods as the size
of training set exponentially varies. Notice that CRFs al-
ways outperforms FMM at any size of training corpus.

We observe that the performances given by CRFs linearly
increase as training set is doubled. Figures 2(a) shows a lin-
ear fitting result for the performance curve on AS corpus.
Note that the fitting is quite accurate. This is also the case
for the other two corpora, C'ityU and M SRA.

The case of FMM segmentation is sophisticated. We finally
found its performance curve can be well represented by the
sigmoid function,

a

S
1+ be—z’

3)
where a and b are two constants, = log(s), and s is the
size of training data. Figures 2(b) illustrates a good sig-
moidal fitting over the performance curves given by FMM
segmentation on AS corpus.

The average length of lexicons extracted from training sub-
sets with the same splitting depth is calculated and shown in
Figure 3. Again, lines are observed. As either of variant in
this figure is in a logarithmic form, this shows that the size
of the lexicon is proportional to the power of that of the seg-
mented corpus from where the lexicon extracted. Interest-
ingly, all curves nearly overlap for three different corpora.
This suggests that three different segmentation conventions
share some similar statistical characteristics In fact, let L
denote the size of the lexicon, and s for that of the corpus,
we will have

L=ks"™ ors=FkLY?,

for all three corpora according to the results in Figure 3.

Out-of-vocabulary words (OOV) mean those that appear in
test corpus but absent in training corpus. They are espe-
cially concerned in word segmentation task as the rate of
OOV, the proportion of OOV to all words from test corpus,
will heavily affect the segmentation performance. And of
course OOV is the critical factor which causes data sparse-
ness, thus those unseen items in test corpus could be an-
other reference for our investigation. Figure 4(a) shows
how the rate of OOV occurrences or types decreases as the
respective training set is continuously doubled (The aver-
age strategy is still adopted.). Once more, the OOV rate ver-
sus corpus size can be well estimated by a sigmoid function
as shown in Figure 4(b) (Figures on the other two corpora
are ignored as the similar fitness can be observed, too.).

4. Discussion

On the basis of our empirical results, we can make such a
conclusion that the linear growth of performance is at the
need of an exponential increasing of corpus size for statis-
tical learning over annotated corpus. This can be roughly
explained by Zipf’s law, as the learning method is fixed and
the data sparsity become worse in an exponential way, the

1673



L —
- | —A— AS-CRF
0.9 || —¥— CityU-CRF
L | —— MSRA-CRF
0.8 || ---4--- AS-FMM
| | ---%-- CityU-FMM ¢ |
© o7 L|--®-- MSRA-FMM —— ,;>< ’
s 06 : ‘[>«<- ]
° ol y e |
E’ 0.5 |- .-._J«-- )
< ) -J—+
- - -';.".‘:"1’ 1
041 gttt TS 1

-=..'.".".....|--.-J.

0.3
PN IR N NN N MU R

5 6 7 8 9

10 11 12 13 14 15 16 17 18 19 20 21

Log Value of Corpus Size

Figure 1: Comparison of learning curves of CRFs and FMM

input data should be exponentially enlarged to overcome
such sparsity.

As for a rule-based method, our empirical study shows it
is more helpful to overcome data sparsity than a statistical
one. Substitute z = log(s) into equation (3), we have a
relation between F-score and corpus size (or lexicon size)
as

a a

C1—bs 1L

for FMM segmentation, which is actually a negative inverse
relation (a > 0 and b,%’ > 0). Though CRFs outperforms
FMM in all the above results, this is due to the limited lexi-
con size for FMM. Note that a lexicon is often much easier
to obtain than a segmented corpus, while the former is re-
quired by FMM and the latter by CRFs. Thus it will be
promising for FMM segmentation as the input lexicon is
sufficiently large.

Following the similar way as the above discussion, we say
that the OOV rate is in the inverse ratio of the size of train-
ing data as in equation (4), the only difference is b < 0
at this time. It proves the linear decrease of uncertainty in
the data, which helps the linear improvement of the perfor-
mance, is kept when the corpus is exponentially enlarged.
It is worth noting that this study is actually a computational
intensive work, which costs a month to work out nearly
400,000 necessary results of either CRFs or FMM segmen-

F “

tation. Our study on the relations between the learning per-
formance and the data size could provide a good reference
for large-scale corpus learning and annotation.

5. Conclusion

Under the empirical investigation with FMM and CRFs
based Chinese word segmentation, we report our findings
for the performance of different methods with regard of cor-
pus size. As for the choice of our methods, FMM and CRFs
are the prevailing representatives of rule-based and statisti-
cal approaches for the task of Chinese word segmentation,
respectively. Thus our investigation can be described as a
generalized case study in computational linguistics, espe-
cially for morphological computation.

Of course the overall trend shows that, the larger size of the
corpus, the better performance we can obtain, still, when
we look into the technical details, we observe that, as for the
statistical method, it can be roughly explained by Zipf’s law
that a linear improvement on performance is actually found
with an exponential increasing of corpus size, which can
reduce the statistical uncertainty of the low frequent learn-
ing examples, as well as OOVs. Meanwhile, interestingly,
the rule-based method shows its strength in terms of data
sparseness, that can be ascribed to those learning examples
with regardless of statistical significance are still well learnt
in this kind of learning strategy.
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Figure 2: Performance curves with fitting: AS corpus ((a) CRFs, (b) FMM)
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Figure 3: lexicon size vs. corpus size

Moreover, the relationships that we have demonstrated in
this paper do give us some hints about constructing a bal-
anced corpus, and on the other hand, we may find a promis-
ing way of joint approach with rule-based and statistical
methods incorporated for a certain task on a certain sized
corpus.
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Figure 4: (a) OOV rate vs. corpus size, (b) OOV rates with sigmoidal fitting: AS corpus
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