
New Tools for Web-Scale N-grams

Dekang Lin,∗ Kenneth Church,† Heng Ji,♮ Satoshi Sekine,∇ David Yarowsky,†

Shane Bergsma,‡ Kailash Patil,† Emily Pitler, ⋄ Rachel Lathbury,♯ Vikram Rao,♭

Kapil Dalwani, † Sushant Narsale†

∗Google, Inc. (lindek@google.com ),
†Johns Hopkins University (kenneth.church@jhu.edu,yarowsky@cs.jhu.edu,

kailash@jhu.edu, kapild@cs.jhu.edu, sushant@jhu.edu ),
♮City University of New York (hengji@cs.qc.cuny.edu ),

∇New York University (sekine@cs.nyu.edu ),
‡University of Alberta (sbergsma@ualberta.ca ),

⋄University of Pennsylvania (epitler@seas.upenn.edu ),
♯University of Virginia (rlathbury@virginia.edu ),

♭Cornell University (vr59@cornell.edu )

Abstract
While the web provides a fantastic linguistic resource, collecting and processing data at web-scale is beyond the reachof most academic
laboratories. Previous research has relied on search engines to collect online information, but this is hopelessly inefficient for building
large-scale linguistic resources, such as lists of named-entity types or clusters of distributionally-similar words. An alternative to pro-
cessing web-scale text directly is to use the information provided in an N-gram corpus. An N-gram corpus is an efficient compression of
large amounts of text. An N-gram corpus states how often eachsequence of words (up to length N) occurs. We propose tools for working
with enhanced web-scale N-gram corpora that include richerlevels of source annotation, such as part-of-speech tags. We describe a
new set of search tools that make use of these tags, and collectively lower the barrier for lexical learning and ambiguityresolution at
web-scale. The tools will allow novel sources of information to be applied to long-standing natural language challenges.

1. Introduction

The overall performance of machine-learned NLP systems
is often ultimately determined by the size of the training
data rather than the learning algorithms themselves (Banko
and Brill, 2001). The web undoubtedly offers the largest
textual data set. Text from the web has been found use-
ful in a diverse range of NLP applications (Kilgarriff and
Grefenstette, 2003).
While the web provides a fantastic linguistic resource, col-
lecting and processing data at web-scale is beyond the
reach of most academic laboratories. Previous approaches
have relied on search engines to collect online informa-
tion (Grefenstette, 1999; Turney, 2001; Keller and Lapata,
2003; Chklovski and Pantel, 2004; Lapata and Keller, 2005;
Nakov and Hearst, 2005). There are a number of drawbacks
in using search engines (Kilgarriff, 2007). While broad-
coverage search engines can work well when counts for a
small number of queries are needed, they are hopelessly
inefficient when millions of queries are required. Search
engines are therefore inadequate for building large-scale
linguistic resources, such as lists of named-entity types
or clusters of distributionally-similar words. Furthermore,
search engines offer a very impoverished query language.
Queries that match capitalization, punctuation, and annota-
tions such as part-of-speech are not supported. There have
been efforts to develop search engines that support different
kinds of linguistic queries, but so far these have used much
smaller document collections than those indexed by com-
mercial search engines (Cafarella and Etzioni, 2005; Banko
et al., 2007). Another option is to apply NLP-strength post-
processing to the pages returned by a search engine for a
particular query (Nakov and Hearst, 2005). For efficiency

reasons this is again only possible at a small-scale.

An alternative to processing web-scale text directly is to
use the information provided in anN-gram corpus. An
N-gram corpus is an efficient compression of large amounts
of text. An N-gram corpus states how often each sequence
of words (up to length N) occurs. To keep the size manage-
able, N-grams that occur with a frequency below a particu-
lar threshold can be filtered.

The data of Brants and Franz (2006), commonly referred to
as the Google N-gram Corpus, provides a widely-used cor-
pus of N-gram counts, taken from a trillion words of online
text. A number of recent NLP systems have used counts
from this corpus (Vadas and Curran, 2007; Yuret, 2007;
Kummerfeld and Curran, 2008; Bergsma et al., 2009). Al-
though this N-gram data is much smaller than the source
text from which it was taken, it is still a very large re-
source, occupying approximately 24 GB compressed, and
containing billions of N-grams in hundreds of files. Spe-
cial strategies are needed to effectively query large num-
bers of counts. Some of these strategies include pre-sorting
queries to reduce passes through the data, hashing (Hawker
et al., 2007), storing the data in a database (Carlson et al.,
2008), and using a trie structure (Sekine, 2008). While
these strategies allow for much faster retrieval of infor-
mation than using a search engine, the kinds of informa-
tion that can be queried remains fairly impoverished, as the
Google N-gram Corpus contains only words and counts.

We propose tools for working with enhanced web-scale
N-gram corpora that include richer levels of source anno-
tation, such as part-of-speech tags. We describe a new set
of search tools that make use of these tags, and collec-
tively lower the barrier for lexical learning and ambiguity

2221



resolution at web-scale. These tools were developed dur-
ing a six-week research workshop at the Center for Lan-
guage and Speech Processing at Johns Hopkins University.
The tools will be available under an open-source license at:
http://code.google.com/p/ngramtools/

2. Overview

Section 3. describes the N-gram data used in our implemen-
tations of the different search tools.
The tools have different strengths and are therefore appro-
priate for different uses. Indeed, we relied on each of these
tools for different NLP applications during our research at
the workshop. Feedback from users helped define the ulti-
mate functionality of the tools.
The first set of tools allows for very expressive search
queries using the idea ofrotated N-grams (Section 4.). A
simple query language allows the user to construct detailed
search patterns and gather information from the matching
N-grams. For applications that require arbitrarily expres-
sive searches over words and tags, including the use of reg-
ular expressions, these tools should be used. They are the
main focus of this paper.
Another set of tools are based on suffix arrays (Section 5.).
These tools provide very efficient retrieval of the top-K re-
sults for a query. They also provide the quickest access to
frequency information for exact-match queries (i.e., ones
that do not use tags or regular expressions).
Finally, we describe tools that additionally index syntactic
chunk and named-entity information (Section 6.). These
tools also link the retrieved N-grams back to their location
in the original text. They are therefore most useful for ap-
plications requiring richer levels of annotation and cross-
reference.

3. Tagged N-gram data

3.1. Web-scale N-grams

The data of Brants and Franz (2006) provides a widely-used
corpus of N-gram counts, taken from a trillion words of on-
line text. We built the tools in Section 4. and Section 5. to
make use of a new N-gram corpus, created from the same
source text as this earlier N-gram data, but with several en-
hancements. First, duplicate sentences are discarded. This
is important because in a web corpus, the use of legal dis-
claimers and other boilerplate text causes some sentences
to occur millions of times, skewing the N-gram statistics.1

Second, to filter garbage text, we only keep sentences 20 to
300 bytes long and with less than 20% of characters being
digits or punctuation. Third, we convert all digits to ‘0’ and
replace all URLs with ‘〈URL〉’ and e-mail addresses with
‘〈EMAIL 〉.’
The remaining sentences were part-of-speech tagged using
the tag-set of the Penn Treebank (Marcus et al., 1993) via
the TnT Tagger (Brants, 2000). TnT was used because of

1Likely duplicate sentences in the original Google N-gram cor-
pus have recently been observed, and their effects on extracting
lexical information discussed, atnlpers.blogspot.com/2010/02/

google-5gram-corpus-has-unreasonable.html

its accuracy (96.7% on the Treebank) and efficiency.2

After tagging, the N-gram counts were then collected,
keeping only unigrams that occur more than 40 times and
2-to-5-grams that occur more than 10 times. There are 4.1
billion N-grams in the resulting database. Each N-gram en-
try in the database also indicates how often the N-gram oc-
curs with each part-of-speech tag sequence. E.g.:

flies 1643568 NNS|611646 VBZ|1031922

– indicating that flies occurred 1.6 million times, and was
tagged roughly six hundred thousand times as a plural noun
and one million times as a verb.
To allow efficient access to the N-gram entries, and to col-
lect and aggregate information over the entries, we devel-
oped data structures and tools, which we discuss in Sec-
tion 4. and Section 5..

3.2. Wikipedia N-grams

The tools in Section 6. use a tagged and cleaned
Wikipedia corpus,3 automatically annotated with part-of-
speech, chunk and named-entity information. Part-of-
speech and chunk tags were annotated by the OAK system,4

and named-entities were annotated by the Stanford NE tag-
ger.5 We extracted N-grams from the annotated corpus, in-
cluding N-grams up to seven tokens in length, without any
frequency thresholds. The corpus contains 1.7 billion to-
kens and there are 4.55 billion unique N-grams in the re-
sulting N-gram database. The data is available under GNU
Free Documentation License.

4. Tools for Rotated N-grams
This section describes our first set of tools for matching
and counting N-grams. We first describe the notion of a
rotated N-gram. We discuss how our data is structured us-
ing this concept. We then describe the programs, patterns,
and commands that work with this data. The tools can be
used in batch mode or when a block of N-grams is returned
using a search key, and we discuss the advantages of each
approach. Finally, we describe some applications of our
tools, including an approach to creating semantic clusters
from the distribution of phrases in the rotated N-gram data

4.1. Data organization

We would like to take an arbitrary input word or phrase
and find all the N-grams containing that word. Once we
have these N-grams, we can match them against arbitrarily

2TnT is an HMM-style tagger, and does not use bi-lexical fea-
tures. It can therefore perform poorly on tagging decisionsin-
volving bi-lexical dependencies, such as distinguishing between a
past-tense verb (VBD) and a past participle (VBN), where thespe-
cific relation between the verb and noun is important (e.g.troops
stationed (VBN) vs. troops vacationed (VBD) or lessons learned
(VBN) vs. students learned (VBD)). Overall, tagging errors are
fairly consistent in the corpus, and are reflected in the aggregate
statistics (more on this in Section 5.). One of the applications we
investigated was to design a post-processor to fix VBN-VBD er-
rors using N-gram statistics.

3http://nlp.cs.nyu.edu/wikipedia-data
4http://nlp.cs.nyu.edu/oak
5http://nlp.stanford.edu/software/CRF-NER.shtml

2222



complex patterns, such as regular expressions. E.g., sup-
pose we are searching for expression involving the word
cheetah. If we store the N-grams in alphabetical order,
all the N-grams that begin withcheetah will be sequen-
tial, but those that containcheetah in later positions will be
distributed throughout the data. An expensive linear pass
through all the data would therefore be required to retrieve
all the matching N-grams.
One solution is to store multiple copies of each N-gram,
rotated so that different words occur at the first position in
different copies. A phrase like “faster than a cheetah” will
be rotated three times (with the “><” marker indicating the
pivot of the rotation):

faster than a cheetah
than a cheetah >< faster
a cheetah >< than faster
cheetah >< a than faster

On the right-hand-side of the rotation marker, the words
are stored in reverse order (this facilitates the clustering de-
tailed in Section 4.6.). Each rotated version is stored with
the corresponding count and part-of-speech tag data for the
original N-gram. Once all the N-grams are rotated, we sort
them alphabetically. In the new version, all the N-grams
containingcheetah will therefore be consecutive. We call
the input query (here, the wordcheetah) thesearch prefix
as it is the prefix of a block of rotated N-grams, and is used
to retrieve this block. A search prefix can be any number of
tokens up to the length of N-grams in the data.
We divide the rotated N-grams into 992 files of roughly
500MB each (unzipped). No prefix spans multiple files.
We build an index over these files. When a search prefix
is given as a query, we search the index file for its location
in the data, and then seek to the appropriate location in the
appropriate file, returning the matching rotated N-grams.
The matching N-grams can be further processed using the
commands and patterns described below. A program called
search_prefix takes as arguments a search prefix, an
index (either one to load from disk or the address of a run-
ning index server) and an optional command (or set of com-
mands) to run on the matching N-grams (Section 4.3.).
Rather than specifying a search prefix, the N-grams can
also be processed in batch mode. The 992 rotated files can
be divided among nodes in a computing cluster and pro-
cessed in parallel. We used Hadoop on IBM/Google’s aca-
demic cloud computing cluster. Section 4.6. describes one
application of batch processing: building semantic clusters
of distributionally-similar phrases.

4.2. Patterns

The patterns are mixed sequences of words and part-of-
speech tags that can be specified to match exactly or with
regular expressions. The patterns are specified using a
fully-parenthesized, Lisp-style syntax. They consist of
atomic patterns and composite patterns.
Atomic patterns match words or tags against strings or
regular-expressions provided by the user. A simple pattern
is (word = WORD), which is true if the token in a given
position matches the providedWORD. Other constructions
include (tag ˜ REGEXP) which matches a tag against a

regular expression and (tag in LIST) which is true if the
tag is in the given list. Sequences of words or tags can also
be matched. For example,word-seq matches a regular
expression over the N-gram tokens:

(word-seq (got an? . * for Christmas))

This matches N-grams like “got an X-box for Christmas,”
“got a pony for Christmas,” etc.
Composite patterns combine other patterns in union, inter-
section, or sequence. For example, (+ PATTERN), matches
one or more consecutive subsequences that match the given
pattern, (? PATTERN) can optionally match one pattern,
while (or PATTERN1 PATTERN2 ... PATTERNn) matches
a sequence if any of the patterns match. The pattern (seq
PATTERN1 PATTERN2 ... PATTERNn) matches a consecu-
tive sequence of the given patterns, as in:

(seq (word = a)
(word = river)
(tag ˜ [ˆN]. * ))

This pattern matches all the instances wherea river occurs
and is not followed by another noun, matching instances
like a river runs, while excluding matches for phrases like
a river boat or a river basin.

4.3. Commands
A command, also known as anextractor, processes the
results returned by matching the patterns against the
N-grams. Commands can print, count, and format match-
ing N-grams or parts of matching N-grams. For example,
the command:

(print-ngram PATTERN [:max-match M])

will print all the N-grams that match the pattern (up to
the first M , if the max-match option is included). The
following is an example of using this command with the
search_prefix program:

search_prefix SERVER ‘learned’
‘(print-ngram

(seq (word = learned)
(or (tag = DT) (tag = PRP$))
(word = lessons)

))’

where SERVER is the hostname and port of a server host-
ing the index. This pattern tells us how often the past-tense
verblearned takes the wordlessons as a direct object. This
particular command was used in a task where we looked at
using N-gram counts to disambiguate VBN/VBD tags (see
Footnote 2). A high count for this pattern indicates that
learned is likely a VBN in lessons learned. The equivalent
pattern counts are much lower forstudents learned, indicat-
ing thatlearned is a VBD in this context.
It is also possible to count how often particular strings
match patterns, and how often they co-occur with other
matched patterns. Thecount command can be used in batch
mode as:

(count (seq (+ (tag ˜ [NJ]. * ) :name NP)
(? (word = ,))
(word in (who which) :name RPr))

:format ‘‘$[NP] $[RPr]’’)

2223



This command counts how often sequences of nouns and
adjectives (labeled asNP) are followed by one of two rela-
tive pronouns (RPr), and outputs the matches as follows:

...
recent conversation which 10
recent debate which 10
recent divorcee who 60
recent meeting which 232 who 13
recent opinion poll which 24
...

Ji and Lin (2009) used similar patterns to learn which en-
tities in text are animate (those tending to be followed by
a who) and inanimate (those tending to followed bywhich
or where). This information was shown to improve unsu-
pervised person mention detection. They also constructed
similar patterns to determine the grammatical gender and
number of entities.

4.4. Modes of Operation

There are trade-offs between matching patterns using a
search prefix or applying them to all the N-grams in batch
mode. If the goal is to build a lexical resource, i.e., a col-
lection of data that can applied in a variety of NLP applica-
tions, then batch mode is preferred, as it will extract all the
information in the N-gram corpus. This was the approach
taken to extracting gender, number, and animacy informa-
tion.
Using thesearch_prefix programs are most useful for
preliminary investigations, brain-storming, and proof-of-
concept experiments. For example, sometimes counts are
only needed for a small number of phrases, perhaps only
those in annotated training and testing data. In this case,
instantiating queries with the particular words in these ex-
amples might be faster than collecting the information for
all phrases in the N-gram corpus. This is the approach we
took for our experiments in VBN/VBD disambiguation.
If the search_prefix program will be called repeat-
edly, there are several ways to improve its efficiency. First
of all, we provide functionality to allow a set of commands
to be applied together. The commands then operate in par-
allel on the same block of returned N-grams. Secondly,
it may be useful to develop an automatic way to choose a
good search prefix, if more than one prefix is possible for
the same pattern. If a common word is used, very large
blocks of N-grams will be processed. One strategy we em-
ployed was as follows: we found the longest phrase that oc-
curs in the instantiated pattern. In the case of ties, we chose
the phrase whose first token had the lower unigram count.
The unigram count is only a proxy fornumber of N-grams
that a phrase occurs in. We really want to minimize the
latter. However, the simpler approach was sufficient for our
applications.

4.5. Pattern-Matching Applications

We already mentioned some applications of our tools. We
used them to acquire lexical knowledge for improving part-
of-speech tagging (VBN/VBD disambiguation) and also to
learn noun gender, number, and animacy for person men-
tion detection. In addition, significant work was done us-
ing these tools to extract lexical knowledge for classifying

count vs. mass nouns, and to determine adjective order in
generation.
Our tools and data will be especially helpful in a broad class
of applications where mining information from search en-
gines can conflate phrases (e.g.Martin Luther) with longer
phrases that have the original as a prefix (e.g.Martin Luther
King Jr. Boulevard).
For example, consider the problem of predicting noun
countability. Countable nouns includeriver andavocado.
For these, it is correct to refer toa river, one river, three
rivers, many rivers etc. Uncountable, mass nouns include
water andluggage. One cannot saya water, whereassome
water andmuch water are acceptable.
There are reliable corpus-based indicators of countabil-
ity. We can simply count how often a noun phrase oc-
curs with countable or mass-specific pre-modifiers (Bald-
win and Bond, 2003; Lapata and Keller, 2005; Peng and
Araki, 2005). For example, we could determine count-
ability by contrasting the corpus frequencies ofmuch wa-
ter versusmany water. If we naı̈vely apply this pat-
tern, however, we will match cases where water is actually
only a prefix of a larger phrase, such asmany water bot-
tles/towers/molecules/etc. Clearly, “we need some mecha-
nism for detecting [noun phrase] boundaries” (Baldwin and
Bond, 2003). While corpus-based approaches have used
part-of-speech tagging to detect phrase boundaries (Bald-
win and Bond, 2003), research using search engines has,
out of necessity, neglected the issue, and achieved lower
performance (Peng and Araki, 2005; Lapata and Keller,
2005).
Similar issues will occur when using web-scale pattern-
matching for any lexical property, whenever a noun occurs
at the beginning or ending of a pattern.6

Our tools offer a solution: they allow the use of web-
scale statistics, without compromising on the quality of
the search patterns. Here, we can include requirements on
neighbor tags as part of the search pattern. We saw an ex-
ample of this pattern in Section 4.2. for getting counts for
the wordriver. Here is another example that uses the count
command in batch mode to extract the relevant statistics for
matching phrases:

(count (seq (or (word ˜ [Mm]uch)
(word ˜ [Mm]any)
:name PreM)

(+ (tag ˜ [NJ]. * ) :name NP)
(tag ˜ [ˆN]. * ))

:format ‘‘$[NP] $[PreM]’’)

The final pattern in the sequence matches any tag that does
not begin withN, and therefore identifies noun boundaries.
The command prints noun phrases and their count with pre-
modifiersmuch andmany. These commands can also be
instantiated with specific nouns (for example, only those
nouns in annotated training and testing data). We would

6The problem may be less severe when the noun occurs at the
beginning of the pattern. In such cases, the noun (e.g.water) is
likely the head of any longer phrase that is matched (e.g.bath wa-
ter), since it occurs as the suffix of this longer phrase. Conflating
the noun with the longer phrase may therefore not be harmful if
phrases and their heads tend to agree in the property of interest
(e.g. countability).

2224



then use the the aforementionedsearch_prefix pro-
gram to extract the relevant information.

4.6. Semantic Clustering of N-grams

We now describe one large-scale application that uses the
rotated N-gram data: a web-scale distributional cluster-
ing of phrases. We produce a clustering with ten million
phrases via K-means clustering. We make this data pub-
licly available.
Clusters allow us to generalize. Recently, a number of
researchers in NLP have successfully used clusters to im-
prove the performance of systems trained using supervised
machine learning (Miller et al., 2004; Koo et al., 2008; Lin
and Wu, 2009). Essentially, even if a word or phrase has not
been observed in the training data, we may process it cor-
rectly in unseen data provided we have information about
its cluster membership.
For example, suppose we have training data that indicates
Honda Accord is a car. When applying our system, we may
see phrases likepeace accord andNissan Maxima. Based
purely on the identical grammatical heads, we might sus-
pectpeace accord is a car, while we would have no infor-
mation forNissan Maxima. However, if we knew the clus-
ter memberships of the entities involved (Table 1) where
Honda Accord is in Cluster 825 andpeace accord is in
Cluster 883, we could learn that all entities in Cluster 825
tend to be cars while none of the phrases in Cluster 883 are
so. This knowledge would let us make the correct determi-
nation at test time.
Most previous large-scale efforts use the algorithm devel-
oped by Brown et al. (1992), e.g. Miller et al. (2004) and
Koo et al. (2008). This algorithm operates over words. A
word in isolation, however, can be ambiguous (likeaccord),
whereas phrases are less so. Lin and Wu (2009) produce a
clustering with 20 million phrases, but neither the web doc-
uments they used for clustering, nor their resulting clusters,
are publicly available.
We follow Lin and Wu (2009) in using K-means to cluster
phrases, but make our clusters publicly available. To make
web-scale clustering practical, we cluster using our rotated
N-gram data. We first define what we mean byphrase, and
then apply this definition operationally to build our clusters.
A phrase is intuitively a sequence of words that functions
as a single unit in a sentence. For example, whiledegree in
computer science is a phrase (it can play many roles in text),
we regarddegree in computer on its own as not a phrase.
Frequency is therefore an inadequate filter;degree in com-
puter occurs 52,181 times in our corpus, and is of course
more frequent thandegree in computer science, which oc-
curs 39,640 times. Lin and Wu (2009) define phrases to
be sequences of words that are queried on a search engine.
While this is a potentially useful heuristic, query data is not
made publicly available. We instead use the following idea:
N-grams that have low entropy of context are not phrases.
For example, ifdegree in computer is always followed by
one of a few specific tokens, it is not itself a phrase. We ap-
proximate choosing N-grams with high entropy of context
by ensuring a certain number of unique left and right con-
texts co-occur with the N-gram, that a certain percentage
of the left and right contexts are stop words, and that the

phrase itself obeys some constraints such as not beginning
with a stop word, not ending in a conjunction, preposition,
or determiner, and not containing certain punctuation.
The main idea of clustering phrases using N-gram data is
to use higher-order N-grams to extract the context (i.e. dis-
tributional) features for lower-order phrases. Phrases that
are similar should have similar distributional features. This
is a simple application of Harris (1954)’s distributional hy-
pothesis: words (and phrases) that occur in similar contexts
tend to have similar meanings.
We simultaneously identify phrases and extract their dis-
tributional contexts in a single pass through the N-gram
data. For example, consider passing through the block of
N-grams beginning with the phrasedegree in engineering:

degree in engineering 31978
...
degree in engineering >< PhD 110
degree in engineering >< accredited 21
degree in engineering >< four-year 72
...
degree in engineering mechanics 63
degree in engineering management 63

As we encounter these N-grams, we have the total count
of the phrasedegree in engineering (31978) and counts
for various left-contexts (left:PhD 110,left:accredited 21,
left:four-year 72) and right-contexts (right:mechanics 63,
right:management 63). We include as context features both
adjacent tokens and those separated from the phrase by a
stop word.
We use the Map-Reduce distributed programming
paradigm (Dean and Ghemawat, 2008), and run experi-
ments using Hadoop on IBM/Google’s academic cloud
computing cluster. Our mapper creates the count vectors
for each example, while the reducer sums the frequency
of each context across all examples (the global context
counts). We then do another pass over the context vectors,
converting the context counts to the mutual information
between the phrases and the contexts (dividing the phrase-
context co-occurrence count by the count of the phrase
and the global count of the context, determined in the
reduction part of the previous pass). This produces the
feature vectors needed for clustering.
Finally, we run K-means clustering over the resulting fea-
ture vectors. We use as our distance metric the cosine sim-
ilarity between feature vectors. K-means is used because
it is computationally efficient and easily parallelized. We
run 50 iterations using 1000 cluster centroids and random
initialization.
We tuned our thresholds by running several development
clusterings and assessing the results. The final run of our
algorithm produced a clustering of 10 million phrases in
1000 clusters. The algorithm is found to intuitively cluster
entities like cities, cars, movies, etc. Table 1 provides some
example clusters. Cluster 286 is a collection of names of
Indian origin. These were clustered because they occurred
in the context of other Indian names. There are potentially
many applications of such name collections.
We used the clusters in an experiment determining the
scope of conjunctions. They were found to enable good

2225



Cluster 825 Cluster 883 Cluster 286
Nissan Maxima right:car secrecy agreement left:signed Pramod Kumar left:shri
Nissan Altima right:parts 00-year lease agreement left:sign Krishna Kumar right:singh
Buick Century right:cars deed of agreement right:signed Anil Kumar right:kumar
Nissan Pathfinder left:0000 memorandum agreement left:signing Dinesh Kumar left:dr.
Infiniti G00 right:recalls technology transfer agreementleft:under Rajesh Kumar left:mr
Nissan Sentra right:engine twinning agreement right:between Ashok Kumar right:sharma
Pontiac Sunfire left:new operational agreement left:into KUMAR left:dr
Mazda Miata left:ford memorandum of cooperation right:with Virendra right:gupta
Isuzu Rodeo left:used 0-year agreement left:entered Arun Kumar left:mr.
Hyundai Elantra right:sale co-operative agreement left:a Kamlesh

Table 1: Example phrasal clusters acquired using distributional clustering over N-gram data. For each cluster, the first
column indicates the most canonical phrases in the cluster (by similarity to cluster centroid) while the second column
indicates the most highly weighted elements of the centroidfeature vector (right: indicates a word occurring on the right,
left: indicates a word on the left). Recall that all digits were pre-converted to ‘0’ in the N-gram source corpus.

disambiguation performance on this task, exceeding meth-
ods based on co-occurrence frequencies.

5. Suffix-array tools
A separate set of tools are based on suffix arrays. The tools
take as input flat files such as the tagged N-gram data de-
scribed in Section 3.. These flat files associate each N-gram
key with parts-of-speech and frequency counts. We split the
input files into chunks of roughly 2GBs each. The chunk
size is selected so that we can afford random access within
a chunk. We build indexes (suffix arrays) for each chunk.
Suffix arrays support a number of different types of queries.
Given a list of patterns, it is easy to find N-grams that match
the pattern in various ways including exact match, starts
with and contains. With a variation of suffix arrays de-
scribed in (Church et al., 2007), the indexes can be mod-
ified to return the top-K results by counts. This option is
particularly useful for queries that would otherwise flood
the user with too many matches.
A part-of-speech tagger was built on top of these tools. The
tagger highlighted opportunities for improving the part-of-
speech tags in the input files. The tagger incorrectly tagged
‘work’ as a verb in ‘He drove to work’ because of tag-
ging errors in the input files. If the tagging errors in the
input files were random, then ‘more data would be better
data,’ but unfortunately, TnT often makes the same mis-
takes again and again.
The tools mentioned above were also applied to other types
of flat files including the output of our K-means cluster-
ing, as well as the output of BBN’s self-organizing units on
Switchboard speech (Garcia and Gish, 2006).

6. Part-of-speech, chunk, & named-entity
N-gram matching in Wikipedia

We also developed a search tool for corpora with richer lev-
els of source annotation, beyond part-of-speech (POS) tag-
ging. We used this tool to index our annotated Wikipedia
data (Section 3.2.). The tool supports queries with an arbi-
trary number of wild-cards and also allows restricting the
wildcards to particular POS, chunk (such as NP, VP, PP)
or Named Entity (NE) types (person, location, and organi-
zation). It outputs matching N-grams with frequencies as

well as with all the contexts of the N-gram in the original
corpus (i.e. the source sentences, keyword-in-context lists
and document ID information). The tool takes a fraction of
a second for a search on a single CPU Linux-PC environ-
ment (using 1GB memory and 500GB disk).
This system is an extension of the N-gram search en-
gine system described in (Sekine, 2008). The previous
system can only handle tokens in the query, such as “*
was established in *.” However, finer specification of the
wildcards by POS, chunk or NE is quite useful for filter-
ing out noise. For example, the new system can search
“NE=COMPANY was established in POS=CD.” This finer
specification halves the number of matching N-grams for
this query, and avoids returning N-grams which have a
comma or a common noun at the first position or a loca-
tion in the last position. The structure of the index is com-
pletely changed from the trie structure of (Sekine, 2008). It
now uses an inverted index structure with additional check-
ing mechanisms. The index size has reduced greatly from
2.4TB to 500GB, with a minor sacrifice in search speed.
A separate paper provides full details of the architecture
and algorithms of this particular search tool (Sekine and
Dalwani, 2010).

Acknowledgments

We gratefully acknowledge Frederick Jelinek and the mem-
bers of the Center for Language and Speech Process-
ing at Johns Hopkins University for hosting the work-
shop at which this research was conducted. We thank
the IBM/Google Academic Cloud Computing Initiative for
providing access to their computing cluster. We also thank
the National Science Foundation, Google Research, and the
Defense Advanced Research Projects Agency for sponsor-
ing the workshop, and Thorsten Brants, Fernando Pereira
and Alfred Spector at Google for their help with providing
the new N-gram data.

7. References
Timothy Baldwin and Francis Bond. 2003. Learning the

countability of English nouns from corpus data. InACL.
Michele Banko and Eric Brill. 2001. Scaling to very very

2226



large corpora for natural language disambiguation. In
ACL.

Michele Banko, Michael J. Cafarella, Stephen Soderland,
Matt Broadhead, and Oren Etzioni. 2007. Open infor-
mation extraction from the web. InIJCAI.

Shane Bergsma, Dekang Lin, and Randy Goebel. 2009.
Web-scale N-gram models for lexical disambiguation. In
IJCAI.

Thorsten Brants and Alex Franz. 2006. The Google Web
1T 5-gram Corpus Version 1.1. LDC2006T13.

Thorsten Brants. 2000. TnT – a statistical part-of-speech
tagger. InANLP.

Peter F. Brown, Peter V. deSouza, Robert L. Mercer, Vin-
cent J. Della Pietra, and Jenifer C. Lai. 1992. Class-
based n-gram models of natural language.Computa-
tional Linguistics, 18(4):467–479.

Michael J. Cafarella and Oren Etzioni. 2005. A search en-
gine for natural language applications. InWWW.

Andrew Carlson, Tom M. Mitchell, and Ian Fette. 2008.
Data analysis project: Leveraging massive textual cor-
pora using n-gram statistics. Technial Report CMU-ML-
08-107.

Timothy Chklovski and Patrick Pantel. 2004. VerbOcean:
Mining the web for fine-grained semantic verb relations.
In EMNLP.

Kenneth Church, Bo Thiesson, and Robert Ragno. 2007.
K-best suffix arrays. InHuman Language Technologies
2007: The Conference of the North American Chapter of
the Association for Computational Linguistics; Compan-
ion Volume, Short Papers.

Jeffrey Dean and Sanjay Ghemawat. 2008. Mapreduce:
simplified data processing on large clusters.Commun.
ACM, 51(1):107–113.

Alvin Garcia and Herbert Gish. 2006. Keyword spotting
of arbitrary words using minimal speech resources. In
IEEE Int. Conf. Acoust., Speech, Signal Processing.

Gregory Grefenstette. 1999. The World Wide Web as a
resource for example-based machine translation tasks. In
ASLIB Conference on Translating and the Computer.

Zellig Harris. 1954. Distributional structure.Word,
10(23):146–162.

Tobias Hawker, Mary Gardiner, and Andrew Bennetts.
2007. Practical queries of a massive n-gram database.
In Australasian Language Technology Association Work-
shop.

Heng Ji and Dekang Lin. 2009. Gender and animacy
knowledge discovery from web-scale N-grams for unsu-
pervised person mention detection. InPACLIC.

Frank Keller and Mirella Lapata. 2003. Using the web to
obtain frequencies for unseen bigrams.Computational
Linguistics, 29(3):459–484.

Adam Kilgarriff and Gregory Grefenstette. 2003. Intro-
duction to the special issue on the Web as corpus.Com-
putational Linguistics, 29(3):333–347.

Adam Kilgarriff. 2007. Googleology is bad science.Com-
putational Linguistics, 33(1).

Terry Koo, Xavier Carreras, and Michael Collins. 2008.
Simple semi-supervised dependency parsing. InACL-
08: HLT.

Jonathan K. Kummerfeld and James R. Curran. 2008.
Classification of verb particle constructions with the
Google Web1T Corpus. InAustralasian Language Tech-
nology Association Workshop.

Mirella Lapata and Frank Keller. 2005. Web-based models
for natural language processing.ACM Transactions on
Speech and Language Processing, 2(1):1–31.

Dekang Lin and Xiaoyun Wu. 2009. Phrase clustering for
discriminative learning. InACL-IJCNLP.

Mitchell Marcus, Beatrice Santorini, and Mary
Marcinkiewicz. 1993. Building a large annotated
corpus of English: The Penn Treebank.Computational
Linguistics, 19(2):313–330.

Scott Miller, Jethran Guinness, and Alex Zamanian. 2004.
Name tagging with word clusters and discriminative
training. InHLT-NAACL.

Preslav Nakov and Marti Hearst. 2005. Search engine
statistics beyond the n-gram: Application to noun com-
pound bracketing. InCoNLL.

Jing Peng and Kenji Araki. 2005. Detecting the countabil-
ity of english compound nouns using web-based models.
In IJCNLP: Companion Volume.

Satoshi Sekine and Kapil Dalwani. 2010. Ngram search
engine with patterns combining token, POS, chunk and
NE information. InLREC.

Satoshi Sekine. 2008. A linguistic knowledge discovery
tool: Very large ngram database search with arbitrary
wildcards. InCOLING: Companion volume: Demon-
strations.

Peter D. Turney. 2001. Mining the web for synonyms:
PMI-IR versus LSA on TOEFL. InEuropean Confer-
ence on Machine Learning.

David Vadas and James R. Curran. 2007. Large-scale
supervised models for noun phrase bracketing. InPA-
CLING.

Deniz Yuret. 2007. KU: Word sense disambiguation by
substitution. InSemEval-2007: 4th International Work-
shop on Semantic Evaluations.

2227


