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Abstract
There are many accurate methods for language identification of long textsamples, but identification of very short strings still presents
a challenge. This paper studies a language identification task, in which the test samples have only 5–21 characters. We compare two
distinct methods that are well suited for this task: a naive Bayes classifierbased on character n-gram models, and the ranking method by
Cavnar and Trenkle (1994). For the n-gram models, we test severalstandard smoothing techniques, including the current state-of-the-
art, the modified Kneser-Ney interpolation. Experiments are conducted with 281 languages using the Universal Declaration of Human
Rights. Advanced language model smoothing techniques improve the identification accuracy and the respective classifiers outperform
the ranking method. The higher accuracy is obtained at the cost of larger models and slower classification speed. However, there are
several methods to reduce the size of an n-gram model, and our experiments with model pruning show that it provides an easy way to
balance the size and the identification accuracy. We also compare the results to the language identifier in Google AJAX Language API,
using a subset of 50 languages.

1. Introduction
Language identification of text has become increasingly
important as large quantities of text are processed or filtered
automatically for tasks such as information retrieval or ma-
chine translation. The problem has been researched long
both in the text domain and in the speech domain (House
and Neuburg, 1977). Existing methods have utilized vari-
ous levels of information present in the text domain, for in-
stance, short words, probabilities of various character com-
binations, n-grams of words, n-grams of characters, dia-
critics and special characters, syllable characteristics, mor-
phology and syntax (Cole et al., 1997).
There are several very accurate methods for language iden-
tification of long strings of text (McNamee, 2005). How-
ever, these methods rarely work well with very short texts,
and are typically evaluated only on a small set of languages,
that may not reveal all the problems in applications with
hard contexts (da Silva and Lopes, 2006).
We study character-based language identification with n-
gram language models. Because of the compact models
that do not need word-based features, this approach is well
suited for language identification tasks that have dozens
of languages, little training data and short test samples.
Character-based n-gram models have been widely used in
language identification; see, e.g., Beesley (1988), Cavnar
and Trenkle (1994), Dunning (1994) and Teahan (2000).
However, our work extends the previous contributions in
at least three ways. First, the emphasis has been mostly
with the identification of texts that contain at least several
words. In contrast, our test samples consist of 5–21 char-
acters. Furthermore, we do not take word boundaries into
special consideration. That is, a test sample may only be
a part of a word. Second, the set of languages has always
been more limited; usually less than thirty languages. Our
experiments are carried out with 281 languages using the
Universal Declaration of Human Rights as a corpus. In
addition to making the task more challenging in general,

an extensive set of languages prevents using any language-
specific information, such as existence of word boundaries
in the text.
Third, the previous studies on written language identifica-
tion do not include modern n-gram modeling techniques
such as n-gram smoothing and model pruning, which have
been important for improving, e.g., speech recognition sys-
tems. The smoothing methods applied in language iden-
tification have usually been either very simple (Dunning,
1994) or non-standard (Valencia and Yvon, 1997), and
there has been no extensive study of their effect on the task.
We test several smoothing methods, including state-of-the-
art methods such as modified Kneser-Ney interpolation by
Chen and Goodman (1999). In addition, we consider the
effects of selecting the n-gram length and removing non-
relevant n-grams with the pruning algorithm by Stolcke
(1998), which both relate to the trade-off between the size
of the n-gram model and its prediction accuracy.

1.1. Related Work

Character n-grams have been applied to language iden-
tification together with, for instance, language modeling
(Beesley, 1988; Dunning, 1994), frequency profile match-
ing (Cavnar and Trenkle, 1994) and compression (Teahan,
2000). For short test samples, they have previously been
considered in foreign name identification (Valencia and
Yvon, 1997), but without rigorous experiments and using
ad-hoc techniques. In addition, there are at least two recent
papers that consider identification of short test samples with
word-based models.
Hammarstr̈om (2007) models word emission probabilities
with relative frequencies of words. An unsupervised af-
fix detection component models unseen words and lan-
guage switches are minimized in a sequence of words. The
method is tested with a set of 32 languages but is not com-
pared to any other method.
Řeh̊uřek and Kolkus (2009) model words in a document us-
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ing a Bernoulli distribution and taking into account the dis-
crimination power of the words in feature selection. The
method is tested with nine languages against a modified
version of the n-gram method by Teahan (2000). For short
text segments (2–5 words), they report higher recall but, on
average, lower precision for their method.

2. Methods
The language identification task is often divided into two
separate steps: language modeling and classification. Lan-
guage models are typically constructed independently of
each other, without taking into account the final classifica-
tion task in the process. A language model might then con-
tain features that have no or very little discriminative power
in the classification. However, there are also approaches
that build the language models and the classification sys-
tem at the same time (Řeh̊uřek and Kolkus, 2009).
The classifier used in the language identification plays an
important role. There are several general machine learn-
ing methods that have been applied in the language iden-
tification task, for instance, support vector machines (Kru-
engkrai et al., 2005), normalized dot product (Damashek,
1995), k-nearest neighbor and relative entropy (Sibun and
Reynar, 1996). Other applied methods include decision
trees, neural networks and multiple linear regression (Botha
and Barnard, 2007).
In this section, the ranking method and the classifiers based
on n-gram models applied in our experiments are described.

2.1. Ranking Method for Language Identification

The ranking method by Cavnar and Trenkle (1994) is
widely used for language identification and text catego-
rization. The method generates language specific profiles
which contain them most frequent character n-grams of
the training corpus sorted by their frequency. Figure 1 il-
lustrates the ranking method. A similar text profile is cre-
ated from the classified text. A cumulative “out-of-place”
measure between the text profile and each language profile
is calculated. It determines how far out of place any n-gram
in one profile is from its place in the other profile. If an n-
gram in the text profile is missing from the language profile,
it yields the maximum distance, which equals the number
of n-grams in the language profile.
For short text inputs, the text profile typically contains
much less n-grams than the language profile. Therefore, our
experiments are carried out with a revised ranking method
that does not penalize for language profile n-grams that are
not present in the text profile.
In their original paper, Cavnar and Trenkle (1994) identify
long text samples withm ∈ {100, 200, 300, 400} and ob-
tain the best results withm = 400. As our identification
task is different, consisting of short segments, we will opti-
mize the parameter values for it.

2.2. Language Identification with N-gram Models

An n-gram model defines a probability distribution over ut-
terances of a language, making the (n−1):th order Markov
assumption. That is, the probability of an observation (usu-
ally a word or a character) is assumed to depend only on

Figure 1: An illustration of the rank order method. Adopted
from Cavnar and Trenkle (1994).

the previousn − 1 observations. Maximum likelihood es-
timates of the probabilities tend to overlearn the training
data. The estimates can be improved by various smoothing
techniques which move probability mass from the n-grams
that occur rarely to those that do not occur at all. The sim-
plest but a crude way is to distribute the probability uni-
formly over unseen events. A thorough overview of com-
mon smoothing methods is given by Chen and Goodman
(1999).
For the language identification task, we use character-based
n-gram models. A classifier based on the n-gram models is
created as follows: One model is trained for each language.
Given a test sample, its likelihood is calculated for all the
models, and the language that gives the best likelihood is
selected. Taking individual n-grams as feature variables,
this can be considered a naive Bayes classifier.
Next, we shortly describe the methods for building n-gram
models used in the experiments.

2.2.1. Additive Smoothing
One of the first to experiment with character n-gram mod-
els in language identification was Dunning (1994). He used
character-based language models smoothed with the sim-
ple “add one” smoothing (originating from Laplace’s rule
of succession), which adds one to the counts of all possi-
ble n-grams. However, this leads to overestimation of the
probabilities of unseen n-grams.
A simple generalization is the general additive (or Lid-
stone) smoothing, where a smaller valueλ < 1 is added
to the counts:

Padd(xi|x
i−1

i−n+1
) =

C(xi
i−n+1) + λ

C(xi−1

i−n+1
) + λV

, (1)

wherexj

i denotes the sequencexi . . . xj , V is the size of the
vocabulary (number of different characters in the language)
and C(x) denotes the number of occurrences of an item
x. The parameterλ can be optimized by maximizing the
probability of the held out data.
In this article, additive smoothing withλ = 1 is called
Laplace smoothing and additive smoothing with optimized
λ is called Lidstone smoothing.

2.2.2. Katz Smoothing
One of the methods used widely in speech recognition do-
main is Katz smoothing (Katz, 1987), in which the n-gram
counts are modified using the Good-Turing estimate (Good,
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1953). In addition, lower-order n-grams are used when-
ever the higher-order n-grams are not available. This type
of models are called back-off models, in contrast to inter-
polated models, where the probabilities of the lower order
n-grams are always interpolated with the higher-order n-
grams (Chen and Goodman, 1999).

2.2.3. Absolute Discounting
Absolute discounting (Ney et al., 1994) is a simple method
that usually gives results close to the Katz smoothing (Chen
and Goodman, 1999). An optimized discount parameterD

is removed from every count, and the left-out probability
mass is used as interpolation weight with the lower-order
model:

Pabs(xi |x
i−1

i−n+1
) =

C(xi
i−n+1) − D

C(xi−1

i−n+1
)

+ λ
x

i−1

i−n+1

P (xi |x
i−1

i−n+2
), (2)

whereλ
x

i−1

i−n+1

is a scaling factor that makes the conditional

distribution sum to one.

2.2.4. Kneser-Ney Smoothing
Kneser and Ney (1995) proposed a method where the prob-
ability of a lower-order n-gram is set to be proportional to
the number of different unitsxi−n+1 that it follows

N(•xi
i−n+2) = |{xi−n+1 : C(xi

i−n+1) > 0}|, (3)

instead of being proportional to the number of occurrences
of the lower order(n − 1)-gramC(xi

i−n+2). I.e., if the
number of different contexts is high, we assume that it will
probably occur also with context types that we have not
seen before. Note thatC(x) denotes the number of occur-
rences of an itemx, andN(•x) denotes the number of con-
text types in whichx occurs. Similarly,

N(•xi−1

i−n+2
•) =

∑

xj

N(•xi−1

i−n+2
xj). (4)

Using this notation, the probabilities are estimated as

PKN(xi |x
i−1

i−n+2
) =

N(•xi
i−n+2)

N(•xi−1

i−n+2
•)

. (5)

The actual smoothing used by Kneser and Ney (1995) was
absolute discounting with back-off to lower-order models.
The modified Kneser-Ney interpolation by Chen and Good-
man (1999) differs from the original method in two ways:
Interpolation is applied instead of back-off, and the dis-
count parameterD is optimized separately in the cases
where the number of occurrences to discount is one, two,
and three or more. The modified Kneser-Ney interpolation
has been shown to outperform other smoothing methods in
cross-entropy and speech recognition tests, especially when
high-order n-grams are used (Goodman, 2001).
Later in the article, “Kneser-Ney” and “KN” will refer to an
interpolated model with Kneser-Ney smoothing, and “mod-
ified Kneser-Ney” to the modified Kneser-Ney interpola-
tion that applies three discount parameters.

2.2.5. Model Pruning
The size of an n-gram model grows rapidly with increasing
n and training corpus size. The simplest way to reduce the
model size is to exclude n-grams that occur fewer times
than a given cut-off count. The n-grams that contribute
only little to the modeling accuracy can also be excluded
using pruning algorithms such as entropy-based pruning
(Stolcke, 1998) and revised Kneser pruning (Siivola et al.,
2007), which works better for Kneser-Ney smoothed mod-
els. Some results indicate that pruning combined with cut-
offs can produce better results than pruning alone (Good-
man and Gao, 2000). In addition to removing n-grams from
a full model, it may be useful to select the initial n-grams
with growing algorithms that make it possible to use very
long n-grams (Siivola et al., 2007).

3. Experiments
The goal of our experiments is to find out how the different
character-based methods for language identification per-
form with short text segments and a set of 281 languages.
Especially, we study how common language modeling
techniques from the speech recognition research could be
adopted to this task. In this section, we describe our data
set, evaluation procedure, and the applied implementations
of the identification methods.

3.1. Data
For the experiments, we used documents from the Univer-
sal Declaration of Human Rights1 in 281 languages. The
corpus consists of one pdf document of few pages in each
language. Text was extracted in UTF-8 encoding with the
pdftotext tool for Linux. Some documents contained
headers or comments in English which were manually re-
moved. White space sequences were replaced by a sin-
gle space. The preprocessed data is available athttp://
www.cis.hut.fi/research/cog/data/udhr/.
Table 1 shows file sizes, character counts and character set
sizes on the selected languages. The extreme values within
the corpus are emphasized with bold font. The median doc-
ument length was 11 095 characters, with range of 4 368–
26 844 characters. The first and third quartiles were 10 038
and 12 448, resulting to the relatively small interquartile
range of 2 411 characters.
The language specific character set sizes had range of 44–
539 characters. The median was 61 characters and the
interquartile range 57–66 characters. Five languages had
character vocabularies larger than 100 characters: Arabic,
Chinese, Japanese, Korean and Ukrainian.
A smaller data set of 50 languages was selected from the
full language set for comparison with with the Google
AJAX language API2. The language set consisted of all lan-
guages from the full language set that the Google API could
identify. The median length of a document in this data set
was 11 304 characters with interquartile range of 10 375–
12 065 characters.
We made as few prior assumptions as possible on our text
data. For instance, we did not assume that word bound-
aries are marked. Rather, all characters, including spaces,

1http://www.un.org/en/documents/udhr/
2http://code.google.com/apis/ajaxlanguage/
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Character
Language Document size set size

(kilobytes) (characters) (characters)

English 10.494 10 730 57
French 12.082 11 990 60
German 11.964 12 065 70
Spanish 11.998 12 060 61

Portuguese 11.578 11406 64
Finnish 12.559 12 328 57
Greek 22.260 12 529 68

Russian 21.341 11 902 67
Tagalog 13.192 13 488 57

Ashéninca 26.399 26 844 60
Cashinahua 4.945 5 016 59
Japanese 12.177 4 368 506
Chinese 10.854 5 457 539
Kikongo 11.669 11 931 44

...
...

...
...

Average 11.943 11 334 66.0

Table 1: Language specific document sizes, measured in
kilobytes and characters, and the character set sizes of the
selected languages. The extreme values within the corpus
are in bold and the averages are calculated over all 281 lan-
guages.

were treated equally. This is reasonable, because our cor-
pus has of a very diverse set of languages. For instance,
the Japanese text has only 213 spaces, whereas the texts in
Maori and Nigerian Pidgin English documents have more
than 3 000 spaces. Furthermore, on Chinese there is a space
between every character. Counting space as a regular char-
acter in the models provided additional information of its
average frequency for the language model.

3.2. Evaluation

As an evaluation measure, we apply accuracy, which is the
proportion of correctly identified test samples. For individ-
ual languages, we can calculate precision and recall. Pre-
cision is the proportion of correctly classified test samples
in all samples classified to the given language, whereas re-
call is the proportion of correctly classified test samples in
all samples of the given language. As we have the same
amount of test samples for each language, the accuracy of
a method can be calculated by taking the average over the
recall of each language.
Because of the small size of the corpus, we apply 10-fold
cross validation, in which the text in each language is di-
vided into ten equal-sized parts. Eight parts are used as a
training set for calculating the n-gram frequencies for the
models, one part is used as a held-out set for parameter
optimization, and one part is reserved for testing. From
each test set, we randomly select 50 samples per each sam-
ple length. We do not restrict the test samples to whole
words—they are chosen randomly regardless of the word
boundaries. To estimate the statistical significance between
the results of any two methods, we apply 10-fold cross val-
idated paired t-test with 95 % confidence level.
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Figure 2: The overall identification accuracy for selected
methods as a function of test sample length. Parameters
for the methods aren = 5 (absolute discounting and Katz
smoothing),n = 3 (Laplace and Lidstone smoothing) and
n = 6,m = 7000 (ranking method).

3.3. Tools and Implementation

N-gram models with absolute discounting, Kneser-Ney
smoothing and modified Kneser-Ney smoothing were build
and pruned with the VariKN toolkit (Siivola et al., 2007).
Models with Katz smoothing were build with the SRI Lan-
guage Modeling Toolkit (Stolcke, 2002). N-gram models
with additive smoothing (Laplace and Lidstone) were build
with our own Python implementation. The n-gram model
based classifier and the ranking method were implemented
in Python. Google AJAX Language API results were re-
trieved automatically on March 21–22, 2010.

4. Results
The overall identification accuracy of selected methods as
a function of the test sample length can been seen in Fig-
ure 2. The number of n-grams for the ranking method and
the maximum n-gram length for all methods have been opti-
mized, as described later. Results with Kneser-Ney smooth-
ing methods are excluded, as they overlap with the results
of the absolute discounting method. As expected, the ac-
curacy improves as the test sample length increases. The
differences between the methods are most obvious with
shorter test samples. As we continue to analyze the results,
we will show the averages over bothall test sample lengths
(5, 7, . . . , 21), andshort test sample lengths(5, 7, 9), in or-
der to emphasize the challenges with very short test sam-
ples. The final results and the optimal parameters for all
the evaluated methods are presented in Table 2.

4.1. Ranking Method

We optimized the parametersn and m of the ranking
method for our task by experimenting with the parameter
combinations withn ranging from one to eight andm in
the range 200–7 000. Figure 3 shows the average accuracy
over all sample sizes with the testedn as a function ofm.
The curves forn ∈ {1, 7, 8} are not shown. The unigram
ranking model (n = 1) gave 28.8 % accuracy with no im-
provement asm increases, because most languages have
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Accuracy / %
Method Parameter(s) short all

Absolute
discounting

n = 5 62.8 77.8

Katz n = 5 62.1 77.4
KN n = 4 60.2 76.9

Modified KN n = 4 59.8 76.6
n = 6,Ranking

m = 7000
60.6 76.3

Lidstone n = 3 53.7 71.0
Laplace n = 3 52.0 70.6

Table 2: The optimal parameters and results for short and
all test sample lengths for the evaluated methods.
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Figure 3: Average accuracy over all sample lengths for the
ranking method with differentn as a function ofm.

a character vocabulary of sizeV < 200. The curves for
n ∈ {7, 8} would be below the curve forn = 6. The same
comparison with short sample lengths produced similar be-
havior but with accuracies roughly 20 % lower.
Figure 3 shows that the accuracy of the ranking method is
increasing asm grows until somen-specific extreme point.
After this point adding more n-grams to the models starts
to impair the accuracy. The larger then, the further we can
grow the model to improve the results. On the other hand
choosing too largen makes the results worse.

4.2. N-gram Language Models

Figure 4 shows the accuracy of different classification
methods as a function ofn, the maximum length of n-grams
in the model. We performed the experiments up to 8-grams,
but the results forn > 6 are not shown, since increasing
n over six only reduced accuracy. The methods applying
language models with additive smoothing (Laplace, Lid-
stone) perform relatively well withn < 4, but with longer
n-grams the accuracy drops dramatically. The methods us-
ing advanced smoothing techniques (absolute discounting,
Katz and both KN smoothing methods) have the higher ac-
curacy the longer n-grams are used, up to 4 or 5-grams. The
ranking method with optimal profile sizes performs slightly
worse than the best n-gram models, but gets closer asn
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Figure 4: The average accuracy over all test samples for the
methods as a function ofn. For the ranking method,m is
optimized for everyn as described in Section 4.1.
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Figure 5: The average accuracy over short test samples
of different classifiers as a function ofn. For the ranking
method, best possiblem is chosen for everyn as described
in Section 4.1.

grows.
Figure 5 highlights the differences between the best
smoothing methods and the ranking method by showing
the accuracies withn ∈ {3, 4, 5, 6}. The accuracies were
calculated for short test samples to emphasize the differ-
ences. All differences between the methods were statisti-
cally significant, except the difference between the ranking
method and the Kneser-Ney method atn = 5. Interestingly,
the state-of-the-art smoothing technique, modified Kneser-
Ney smoothing, obtains worse accuracies than absolute dis-
counting or Katz smoothing. Furthermore, the best param-
eter for KN and modified KN isn = 4, whereas absolute
discounting and Katz obtained the best results withn = 5.

4.3. Memory and CPU Time Usage

Figure 6 shows the model size of different methods as a
function ofn, the maximum length of n-grams in the model.
The language model sizes are calculated by taking the sum
over the sizes of files saved in plain text ARPA format. For
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Figure 6: The model sizes of the methods used in Figures 4
and 5 as a function of maximum length of n-gramsn.
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Figure 7: The effect of model pruning for identification ac-
curacy of absolute discounting method (n = 4) with both
short and all sample lengths.

the ranking method, n-grams were stored into a plain text
file and the file sizes were summed up. The increase in
model size is steepest with the smoothing methods that use
backoff or interpolation. For the Katz smoothing, the mod-
els are slightly larger because the SRILM toolkit stores the
model parameters with a higher precision.
We investigated the effect of language model pruning on the
classifier size and the identification accuracy. The experi-
ments were run for the best performing smoothing method,
absolute discounting, withn = 4 and pruning parameter
ε ∈ {0, 0.02, . . . , 0.20}. Figure 7 shows results for both all
test sample length and short test sample lengths. For all test
sample lengths, the model size can be almost halved with-
out a statistically significant decrease in the accuracy. For
short test samples, the decrease is slightly larger and statis-
tically significant even with the smallest tested amount of
pruning.
In addition to the larger model sizes, the classification based
on n-gram models was also slower than classification with
the ranking method. With the optimal models, the differ-
ence was roughly tenfold. With our implementation, prun-

ing of the n-gram models did not reduce the classification
times. Also the training of the language profiles of the rank-
ing method is considerably faster and simpler than training
of the n-gram models.

4.4. Comparison to the Google API

Experiments with the Google AJAX language API were run
with the smaller language set. The overall identification ac-
curacy for the Google API was weak, ranging from 20.8 %
to 59.9 % with different test sample lengths, compared to
the accuracy that was obtained with the best n-gram mod-
els, ranging from 64.1 % to 90.7 %.
Table 3 shows the comparison between absolute discount-
ing and the Google API with selected languages. As the
average recall rates show, the Google API is probably not
intended for language identification of short text segments.
Even though the Google API had 100 % precision rates on
some languages, such as Serbian and Chinese, it only in-
dicates that no test samples of other languages were incor-
rectly classified to this language. As also the recall rates for
these particular languages were very low, the Google API
cannot reliably be used for identifying short texts in these
languages. For English, the Google API had better recall
(86.4 %) than obtained with the n-gram models (76.4 %).
This is explained by the fact that the Google API probably
had a very high emphasis on identifying English: 17.8 % of
all and 29.2 % of short non-English test samples were iden-
tified as English. This is naturally at the cost of identifying
the other languages.
There were some anomalies in the Google API results
which reduced the overall accuracy. Tagalog3 and Por-
tuguese were not identified at all, even though they are
listed as supported languages. Greek was not identified
with sample lengths of 19 and 21 characters, whereas short
test samples were identified flawlessly.

5. Discussion
We have refrained from making any prior assumption on
our corpus in the experiments. In real-word applications
with specific language sets, language specific information
can be exploited, e.g., in preprocessing. For instance, if
one works with languages clearly consisting of words, com-
bining word-based language models with character-based
models could provide improved accuracy.
The widely used ranking method has two parameters (max-
imum n-gram lengthn and the number of n-gramsm) that
affect the model. Our experiments suggest that when the
test samples are very short, the identification accuracy can
be significantly improved by increasing them far beyond
the values suggested by Cavnar and Trenkle (1994). This
can be explained by the fewer number of n-grams in the
short input: unlike with long inputs, a short text input is
not very likely to contain the most frequent n-grams in the
language. Therefore, the model should contain also more
infrequent n-grams.
Rather surprisingly, modified KN has the lowest identifica-
tion accuracy of the advanced smoothing methods. How-
ever, by calculating average perplexities for the test dataof

3Tagalog is spoken in the Philippines by 22 million people.
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Absolute discounting Google API
Precision / % Recall / % Precision / % Recall / %

short all short all short all short allLanguage samples samples samples samples samples samples samples samples

English 59.6 74.9 62.5 76.4 4.8 9.0 71.3 86.4
French 62.4 77.8 60.6 77.6 21.4 34.8 50.7 75.6

German 78.0 89.3 75.1 87.4 42.2 61.0 41.3 68.6
Spanish 41.4 56.9 40.7 57.7 22.6 33.2 33.2 65.1

Portuguese 37.2 50.9 43.9 60.0 0.0 0.0 0.0 0.0
Maltese 82.5 91.3 81.0 91.3 73.5 87.4 26.8 37.7
Finnish 80.2 91.7 83.1 92.5 42.8 61.8 28.8 56.9

Greek 99.9 100.0 99.7 99.9 99.0 99.3 99.2 69.4
Slovenian 65.0 79.3 64.5 77.8 50.2 73.7 17.0 34.3

Serbian 61.5 76.2 62.7 76.2 100.0 100.0 10.7 20.6
Chinese 99.2 99.7 96.7 98.1 100.0 100.0 7.8 44.8
Russian 62.6 74.3 67.3 79.1 31.0 38.4 68.0 81.0

Uzbek 82.1 92.5 81.1 91.2 100.0 100.0 6.5 8.9
Malay 54.0 61.1 46.0 52.1 42.5 56.9 13.7 23.6

Tagalog 85.4 94.1 83.5 91.8 0.0 0.0 0.0 0.0
...

...
...

...
...

...
...

...
...

Average 72.5 82.4 72.3 82.2 53.1 63.0 28.0 43.8

Table 3: Recall and precision for absolute discounting (n = 5) and Google AJAX Language API for selected languages
with both short and all test sample lengths. Precision is theproportion of correctly classified test samples in all samples
classified to the given language. Recall is the proportion ofcorrectly classified test samples in all samples of the given
language. Average values are calculated over all 50 languages in the smaller language set.

the same language the model was trained, we found that
the modified KN improved the predictions over the other
smoothing methods. This suggests that the performance of
the language model as such does not necessarily reflect the
classification accuracy in language identification with the
naive Bayes classifier.
Combining different types of language models is one
method of improving the prediction ability (Goodman,
2001). We made two initial experiments with linear combi-
nation. Backward n-gram models (Duchateau et al., 2002),
where the probabilities of the characters are estimated con-
ditioned on the following characters, improved the iden-
tification accuracy 0.9 % absolute with 5-gram models
smoothed with absolute discounting. Another simple way
of improving the results might be interpolating with a back-
ground model trained with the full (multilingual) data. As
explained by Zhai and Lafferty (2001), the background
model should reduce the influence of common characters,
similar to the inverse document frequency weighting ap-
plied in vector space models. More extensive experiments
with model combination is left to future work.
Considering the sizes of the n-gram models, there are some
methods of creating more compact models that are not re-
ported above. We did make initial experiments with vari-
able length n-gram models trained with the growing algo-
rithm by Siivola et al. (2007), but the models did not im-
prove the results of 5-gram models (as did not full mod-
els using longer n-grams). However, we did not try using
count cut-offs or clustering, which are reported to be more
efficient than pruning alone in word-based n-gram models
(Goodman and Gao, 2000). Overall, these methods should

be more useful with larger training corpora.

6. Conclusions
Although many language identification methods work very
well for documents or other long texts, our experiments
confirmed that the identification of short text segments is
not a solved problem. The accuracy of the studied methods
was found to decrease significantly when the identified text
gets shorter. Therefore, finding the best methods and opti-
mizing the parameters is important with short text inputs.
We investigated n-gram language models with different
smoothing methods, including the Laplace smoothing used
in the language identification model by Dunning (1994) and
advanced smoothing methods such as absolute discounting,
Katz smoothing and Kneser-Ney smoothing. The best pa-
rameters and the respective results for all the tested methods
are shown in Table 2.
The additive smoothing methods (i.e., Laplace used in Dun-
ning (1994) and Lidstone) are clearly outperformed by the
ranking method and all the advanced smoothing methods.
With additive smoothing the accuracy has a peak at max-
imum n-gram lengthn = 3 and drops dramatically with
longer n-grams. In contrast, all the advanced smooth-
ing methods (absolute discounting, Katz, KN and mod-
ified KN) behave more systematically asn grows. We
obtained highest accuracies with absolute discounting and
Katz smoothing (n = 5 for both), with less than one per-
cent difference. The next best results are obtained with the
ranking method (n = 6, m = 7000) and the n-gram mod-
els with KN smoothing (n = 4). Their accuracies are worse
than the best ones, especially with the short sample lengths.
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We studied reducing the model size with language model
pruning. The more accurate models have larger model sizes
which, however, can be almost halved without a signifi-
cant decrease in identification accuracy. Pruning is clearly a
good option for producing more compact models, but there
is a natural trade-off between model size and accuracy.
We compared our best method, absolute discounting, with
the language identification provided in the Google AJAX
Language API. In overall, absolute discounting gave supe-
rior results, but the Google API was slightly better iden-
tifying some individual languages. The comparison might
be unfair as it seems that the Google API is developed for
longer text inputs.
To conclude, the advanced smoothing methods (e.g., ab-
solute discounting) are more accurate than the ranking
method and additive smoothing methods in identifying
short text samples. However, the higher accuracy is ob-
tained at the cost of larger models and slower classification
speed.
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