CCASH: A Web Application Framework for Efficient, Distributed Language
Resour ce Development

Paul Felt, Owen Merkling, Marc Carmen, Eric Ringger,
Warren Lemmon, Kevin Seppi, Robbie Haertel
Department of Computer Science
Brigham Young University
Provo, Utah 84602 USA
E-mail: pablofelt@gmail.com, omerkling@gmail.comamm.carmen@gmail.com, ringger@cs.byu.edu,
lemmon.warren@gmail.com, kseppi@byu.edu, robbiertél&@byu.edu

Abstract

We introduce CCASH (Cost-Conscious Annotation Supedvisg Humans), an extensible web application fram&wior
cost-efficient annotation. CCASH provides a framewiarkvhich cost-efficient annotation methods suctiesve Learning can be
explored via user studies and afterwards appliethrige annotation projects. CCASH's architecture dscdibed as well as the
technologies that it is built on. CCASH allows custanmotation tasks to be built from a growing setigdéful annotation widgets. It
also allows annotation methods (such as AL) tantq@émented in any language. Being a web applicdtaamework, CCASH offers
secure centralized data and annotation storagéaailitiates collaboration among multiple annotasioBy default it records timing
information about each annotation and providedifs for recording custom statistics. The CCASHfeavork has been used to
evaluate a novel annotation strategy presentedcimnaurrently published paper, and will be usethi future to annotate a large
Syriac corpus.

1. Introduction employ multiple annotators must solve problems athd

The current success and widespread use of daterdriv distribution ~and ~consistency. Such projects must
techniques in language-related fields make anrbtate SOmehow distribute views of the corpus to each oo
corpora an often essential language resourcenBtarice, and collect annotations into a central locatiomdiiag
many popular Natural Language Processing (NLP)any conflicts among the annotations.

algorithms require significant amounts of Although this discussion by no means exhausts the
human-annotated training data in order to perform demands that might be made of a general-purpose
effectively. Also, annotated text can be usefuitsnown annotation tool, we believe they are an importaisst.
right as a means of qualitatively exploring the aated Ideally then, an annotation tool would offer at @imum

text. For example, one might use part-of-speechS)PO the following high-level features:

annotations to study the syntax of a language, or . Accommodate proven cost-efficient annotation
morphological annotations to study the formation of methods

words in a morphologically rich language. - .

e Encourage novel cost-efficient annotation
Along with the need for annotated corpora comesées methods
for tools capable of creating these corpora. Howebhe
process of creating annotated corpora is not triar
one thing, employing human specialists to annctateh
instance in a corpus by hand can be prohibitivektly. A .
general purpose annotation tool should make use of * Accommodate custom annotation tasks
existing cost-efficient annotation methods such as « Coordinate the efforts of multiple annotators

automatic annotation and Active Learning (see 8a@). In this paper we introduce CCASH (Cost-Conscious
However, cost-efficient annotation is an area divac Anpnotation Supervised by Humans), a web application
research, so annotation tools should also be grifly framework for corpus annotation designed to impleime
flexible to encourage noyel methods to be |mpl_emdmt this feature set by using familiar programming pégens,
and explored. Indeed, since the effectiveness dbus open standards technologies, and by providing redse
annotation methods may vary across tasks and demain gefault implementations whenever possible, always

even projects interested only in applying known gjiowing those with unique requirements to defiheit
annotation methods to a large corpus may wish holect own features from the ground up.

exploratory studies to compare the efficiency ofesal

« Facilitate exploratory studies and comparisons
of annotation methods (e.g. measure annotation
costs)

annotation methods before proceeding on a larde.dca The remainder of this paper is organized as follaws
P g : Section 2 we describe annotation projects, studied,

addition to cos_t, many othe_r problems mus_t be dett tools that influenced CCASH's design and
If the annotation task being conducted is uncommon,.

. ; .. _'implementation. In Section 3 we explain our decisio
project developers may need to customize an egistin . S .
. . implement CCASH as a web application. In Sections 4
annotation tool or create their own custom tool to

implement that annotation task. Annotation projebts and 5 we describe CCASH's architecture and

196

implementation details. In Section 6 we describe th
process of customizing CCASH. In Section 7 we aath

amounts of training data (Ringger et al. 2007; Hdet al.
2008a; Haertel et al. 2008b; Settles 2009). AL st

case study in which CCASH was used, and in Se@&ion which data instances an expert is asked to annotate

we discuss conclusions and future work.

2. Redated Work

Here we present previous work that helped to mteitlze
feature set outlined in Section 1 and to informvlag that

presenting them with instances likely to be most
informative for learning algorithms. The resulting
annotations may be used to train an automatic atinat
algorithm.

Ngai and Yarowski (2000) evaluated the effectivenafs

CCASH implements those goals. Due to the importanceAL for noun phrase chunking using an hourly costleio

of cost efficiency to those goals, a large portadrthe
work we cite consists of annotation projects, stadand
tools that were used to develop cost-efficient méshof
annotation.

Automatic annotation, or pre-labeling, consistsusing
NLP algorithms to automatically annotate each imsta
before it is presented to an expert annotator. Expe
annotators then need only review and correct tbpgsed
annotations, which can be much quicker than aningtat
from scratch. Marcus et al. (1994) evaluated autmma
annotation using an interface embedded in the GNU

For this study, seven annotators used a custorhlaua
annotation client communicating with a server talde
centralized AL and record timing information. Tore&n

et al. (2007) evaluated the performance of AL antdsk

of NER in immunogenetics. They developed and used
JANE (the Jena ANnotation Environment), a Java
program built on MMAX2 (Mdller and Strube, 20069, t
record annotators' timing information. JANE uses a
client-server architecture, allowing distributechatation
and multi-annotator AL.

Both of these studies deal with multiple annotatoys

Emacs Editor to annotate the Penn Treebank. Theycentralizing their data and developing tools with

manually timed four annotators and found that aatiicn
annotation more than doubled annotation speed Biod a
increased accuracy and inter-annotator agreeméaiduC
et al. (2001) manually timed two annotators ancresal

client-server architectures. They also extend Alihe
multi-annotator case, again underlining the variefy
implementations possible for each established aioot
method.

a 70% increase in annotation speed using automatidRingger et al. (2008) conducted an AL study with 47

annotation on a Chinese Treebank annotation tesky T
did not report the tool they used. Ganchev et2007)

annotators doing English POS tagging using a
custom-built web application that collected timing

used a custom web-based tool to do named entityinformation. They used that information to derive a

recognition (NER). They evaluated an automatic
annotator that presented annotators with a seaokjble
guesses instead of a single best guess. They manual
recorded the time of a single annotator, reporéingore

hourly cost model for English POS tagging, which
Haertel et al. later incorporated into a cost-cansc
version of AL (2008b). This is a case where cost
measurements were not just used to provide evidemce

than 50% increase in speed compared with a manuathe effectiveness of a particular method of animtabut

baseline.

were actually incorporated into an annotation metho

The dramatic time savings reported in these studiesOther words, there are some cost-efficient anrunati

underscore the importance of providing proven

methods that cannot be implemented with an anootati

framework. Also, notice that each study evaluates
automatic annotation by manually timing a very smal
number of annotators. These results are convinding,
relatively informal. This suggests a need for aatioh
tools that automatically record cost in such a w&ayto
facilitate exploratory studies, allowing significaaser
studies to be run without much overhead. Also,iffiiky

and customization were shown to be important to
annotation tools. For example, Ganchev et al. (R007
found it necessary to tweak the simple concept of
automatic annotation in order to make it successfthe
domain of NER.

Many automatic annotators require annotated trginin
data. Annotated data are cheaply available for comm
tasks in major languages. However, in order to yappl
automatic annotation to a new task or to a newdagsg,
expert annotators must be paid to annotate traidatg,
reducing the cost-efficiency of automatic annotatio

Active Learning (AL) is a technique that addrestigs
problem by reducing the cost of annotating useful

197

information, real-time cost measurement

essential.

Representative general-use annotation platform¢ tha
influenced CCASH's design include GATE (Cunningham
2002), Word-Freak (Morton & Lacivita 2003), MMAX2
(Muller & Strube 2006), Knowtator (Ogren 2006), and
JANE (Tomanek et al. 2007). These tools all support
common annotation tasks and also allow for thetitnea

of custom annotation tasks with different degreés o
flexibility. GATE is a Java tool that uses a cliesatrver
architecture to coordinate multiple annotatorspwadl
timing information to be recorded, and uses a nedul
design to promote customization. Knowtator allowsrs

to define complex annotation schemas, making it
exceptionally configurable and reducing the need fo
customized plug-ins. MMAX2, like GATE, is a highly
modular Java application with a client-server aeatture.
JANE is a Java application built on MMAX2 that, as
mentioned before, provides a form of AL. Word-Freak
supports both automatic annotation and searchisgda

making

Web Client
(GWT-compiled JavaScript)

@GWT RPCs

Java Web Server

Hibernate XML-RPC

Figurel: CCASH Architectur

Instance Provider

on annotation confidence, which allows annotatars t
engage in a kind of manual AL.

3. Web Application Framework

Although the features outlined in Section 1 coulel b
implemented in a variety of ways, CCASH designets f
that a web application framework was most fitting &
number of reasons. Previous annotation tools renaed
toward client-server relationships in order to calite
data and facilitate multiple annotator collabonatigveb
applications make client-server architecture easy a
natural. Among the tools described in Section 2TBA

sentence, which requires expert annotation. ThHancgs
that an instance provider returns may optionally be
pre-annotated. Instance providers are largely ieddent
from the rest of CCASH. They make themselves alkla

as web services at some address by implementing a
simple XML-RPC interface (see Section 5.3). In CEAS
part of setting up an annotation project is givihghe
address of a valid instance provider. Because rinsta
providers are decoupled across the network fronrebe

of CCASH, they may be implemented in any language.
This is particularly valuable since instance previdare a
prime target for making use of NLP algorithms sash
pre-labeling and AL. Algorithm libraries and custom
research tools exist in many languages besides dada
may be reused as part of implementing an instance
provider. Because of this network decoupling, insta
providers may also be located at anywhere in thedwo
although because of network latency issues weipat&
that they will commonly be located either on thensa
machine as the web server, or nearby.

For convenience, CCASH provides Java instance
providers that use generics to return any typenstince

in sequential and random order. We are also workimg
including Java instance providers that implemeress
varieties of pre-labeling and AL.

4.2 Data Model

and MMAX2 seem to be the most popular due in large Deciding how to represent and store instances and
part to their support for extensive programmatic annotations was a difficult design decision in CEAS

customization. A web application seemed a goodaghoi
for a customizable architecture, since Internehigecture
has a tradition of being extremely customizablegnev

Ideally, one would invent a data structure thabdth
efficient and also able to encode every instancé an
annotation type that might be required. For examale

allowing modules written in different languages and POS tagging task might require annotations to be a

running on different platforms to interoperate.

sequence of tags. Dependency parsing, on the loamet,

Being a web application gives CCASH other key might require annotations to contain sets of d@ect
advantages in a distributed annotation project. TheConnections between word pairs in the corresponding
overhead of configuring a collaborative annotation iNstance. One can imagine that a data structure @bl

project can be handled by a single administratah wi

represent both of these annotations (not to merdion

access to the server. Annotators can then imméyliate Multitude of other possible annotation tasks) would
begin annotating texts from any GWT-supported web the risk of being bulky and cumbersome. Howevethef

browser with virtually no per-user configuratiorm@.
Since web applications are reloaded every timeex us
revisits the site or refreshes the browser, therend
difficulty associated with distributing software project
configuration updates. Any updates to the annatatsk

or to the CCASH framework are instantly and
transparently available to all annotators.

4. CCASH Architecture
CCASH?’s architecture consists of four parts: a widnt,

a web server, a database, and an instance profgeer
Figure 1).

4.1 Instance Provider

data structure were not sufficiently general, itwdolose
the ability to represent certain tasks and the éaark
would be unusable for them. Also, if a data strietu
required users to radically alter their own dataesgas in
order to fit CCASH's structures, it might discoueatiem
from using the framework.

Recall that one of our high-level design goalsiprovide
reasonable default implementations whenever passibl
always allowing those with unique requirementseéirae
their own functionality. Guided by this principleye
decided to provide some reasonable default data
representations and separate the CCASH framewaonk fr
task-specific data structures as much as possilideying
developers to use their own data structures, ifreids
with minimal interference from the framework.

Instance providers are processes with a singleThe two parts of CCASH that need to work with

responsibility: to provide instances to annotatdémsthis
context an instance is a piece of text, such asra wr

198

task-specific instance and annotation structurestlae
web client and the instance provider. The web tleust

() Ccash User Study

Sentence 9 of 18

Traders credited Euro Disney ‘s shareé performance to the tremendous hyping of the project that
NNS WBD NNP NNP POS

the shares are destined to help finance : Walt Disney Co. 's 4,800-acre theme park 20 miles east

of Paris

share

MM
(NM) Noun, singular or mass

(VB) Verb, base form
(VBP) Verb, non - 3nd person singular present

Select Different Tag

Previous Word | Next Word

Pause Annotation

Figure 2: English POS Task in CCASH

know how to appropriately display the data instareed completed, giving the instance provider a chance to
collect the desired annotations. The instance peasvi update its models given this new information.

must select instances, possibly pre-label them,th@d The CCASH framework uses a combination of cliedesi
send them to the client. It receives new annotatfoom interfaces and server-side storage to provide
the client, updating its models with new annotaiand oyt-of-the-box user account management and project
recording the annotations alongside the data. TBB W management. It also maintains a database containing

client and the instance provider share a commomaoet jnformation about each annotation (see Section, 4.5)
of serialization, and between those two endpomts,a”c,\,\,ing access to project statistics.

CCASH is ignorant of instance and annotation values
CCASH simply passes the serialized value along as

a . . .
member variable of wrapper objects that CCASH tises 44 Widget Libraries

maintain records in its own database. In order to make new tasks as easy as possible to
implement and customize, we implement default tésks
4.3 Web Client and Server creating and assembling re-usable GWT widgets. For

example, the English POS task in Figure 2 is a
The web client is the portion of the applicatioatthuns in combination of a sequential annotation widget (ailfay
a user's browser using a combination of HTML and payigation over a sequence of instances), an iostan
JavaScript. The CCASH client-side framework isterit annotation widget (highlighting the current instanio a
using the Google Web Toolkit (see Section 5.1), @ed pox) and an English POS instance annotation widget
recommend that CCASH developers extending that\yhich makes use of an auto-completion widget pdpdia
framework or implementing new annotation tasks (seeyth the Penn Treebank tag set. The auto-completion
Section 6) do the same. While annotating, the Viebtts widget allows users to type in any part of the tag
principle responsibility consists of requestingtamees gescription, narrowing down selection options ttries
from the web server, displaying them to the used a inat match any part of the selection.
collecting annotations. The client then sends those

. Because CCASH is intended to be used for reseach a
annotations back to the web server.

o o) well as large-scale annotation projects, the fraarkw
The web server is in charge of facilitating client jncludes widgets useful for building user studi€sese

interactions with other components such as instancecyrrently include widgets for instructions, survegsid
providers and the database. It passes on clienestgifor t,torial annotations with feedback.

new instances to the appropriate instance provécher

notifies the same instance provider when annotatare In addition to the widgets offered by CCASH, many

199

widgets come standard with GWT, and other thirdypar designed with the assumption that future reseasclibp
GWT widget libraries are freely available. Beca@&'T create new tasks for CCASH will likely be familiaath
can interface with native JavaScript, even thirdypa Java programming and at least one of the two major
JavaScript libraries can be used with some addition interface design paradigms that GWT supports:

overhead. assembling Swing-like graphical components
programmatically, or else defining XML interfacesumnd
45 Evaluation to Java objects (similar to more traditional welgga

design). GWT code compiles to JavaScript that is
compatible with most major modern web browsers
including IE, Firefox, Safari, and Opera. GWT also
provides several mechanisms for creating localeab
applications. This helps CCASH support Unicode and
right-to-left languages as well as locale-spedifixt and
styles. Also, GWT facilitates using the browsertdig
buttons to navigate through locations within a web
application by encoding some application state in a
history token embedded in the browser’s address bar

Previous work suggests a strong need for measthimg
cost of each annotation in terms of time (Haerteale
2008a). This is not, however, the only possiblesueaof
cost. Culotta et al. (2006), for example, measas n
terms of the number of required user actions toafix
annotation in a given user interface. This is soeable
surrogate for time, since more interactions gehena¢an
more time, and it enjoys the benefit of being etsy
predict. CCASH provides a flexible mechanism for
measuring cost by collecting events fired by thebwe
client into a simple sequence analogous to a timeli)
Each timeline event has a name and a timestanopyiaty 5.2 Hibernate

calculation of cumulative time, number of interaas, The Java Persistence API is a robust and standaydav
and other desired statistics. CCASH by defaultsfire manage permanent data storage in Java. We chase to
events when an annotation instance is requestegh Wh Hibernate to implement this API and to interfac¢éhvwhe

is presented to an annotator, when an annotation idatabase layer of CCASH. This means that if dewakop
completed, and when an annotation task is paused ofind that they need to persist their own customadat
resumed. If more granularity is required, for exéamp objects, they can do so by simply annotating tkeita
each user interaction needs to be recorded, CCASHobject classes in compliance with the Java Pergiste
developers implementing new tasks in CCASH can fire API. It also means that framework users are freas®
custom events at any point. any of the many database implementations that are

This cost information can be used to evaluate SUPPOrted by Hibernate.

cost-reduction strategigmst hoc But it can also be used Using the Java Persistence AP| makes it easy te plee

by an annotation method that learns from annotatimts. database either on the same machine that is rurthéng

Haertel et al. (2008b) and Settles et al. (2008gHaoth web server or on any other machine that is

proposed methods of incorporating cost modelstinéo network-accessible. Note that storing annotationsi

AL process, helping to offset traditional AL's bimsvards database makes them efficiently accessible without

long, costly instances. precluding the possibility of exporting them to eth
formats such as XML.

5. CoreTechnologies

CCASH makes use of several supporting technologies.5-3 XML-RPC
This section briefly describes what they are and tieey XML-RPC is a simple protocol for making remote

are used. procedure calls over the network. Because of the
simplicity of the protocol, implementations existrmany
5.1 Google Web Toolkit (GWT) programming languages including C, C++, C#, Java,

Python, Ruby, Lisp, and many more. This makessyea
for the instance provider to be implemented in atamy
language in order to reuse existing algorithms
implementations or libraries for automatic annatatand
AL.

CCASH's web client component is implemented with th
Google Web Toolkit (GWT). GWT allows developers to
build user interfaces in Java using familiar Swiikg-
widgets. GWT provides a cross-compiler that congpile
Java code into optimized JavaScript which commuega
with a Java web server using remote procedure.calls
GWT packages this entire bundle—JavaScript for the

client and Java code for the server—into a Web iech 6. Defining Custom Tasks
(WAR) which can be hosted on any compatible Java we The process of adding a new annotation task to GCAS
server like Apache’s Tomcat or Red Hat's jBoss. consists principally of creating a client-side usgerface

We chose to use GWT to implement the web client for the task and then connecting it to an apprépria
portion of CCASH for several reasons. Most impditan instance provider. The following subsections décthis
GWT helps user interface developers abstract aveag f process in more detail.

the browser-specific idiosyncrasies that can malkd w

programming difficult for newcomers. CCASH is

200

Mew Entity ‘ Delete Entity |

Tension has mounted since [HEENPrime Minister =l Eil EEilEGlBtook office in June
vowing to retain the [ERENIIET IRl c2ptured from EYIERin the 1967 JREREErAwar .

MEEsubsequently cancelled a meeting between [BEaland FE8)officials . on civilian

affairs , at the [N ENETIENEEEIcrossing between [EEERand the AR

PLO

Categories

Location
Organization

Person

Miscellaneous

Pause Annotation | Commit Sentence

Figure3: NER Task in CCASI

6.1 Building a Client-side User Interface

In the CCASH framework we have implemented an
English part of speech (POS) annotation task (Eig)r
and a named entity recognition (NER) annotatiork tas
(Figure 3). In both of these tasks, the user isemted
with an interface that gives context at the tophef page
and a more focused inspector that we call the "lbakw.
When implementing a new task in the web client,
developers may either take advantage of this pistieq
layout or else build their own layout.

To build custom client-side interfaces, developatend

a helper class that takes care of bookkeepingasifiing
standard timeline events (see Section 4.5). Theyn th
create and assemble the widgets necessary to ireptem
their task. As mentioned before, third party widget
libraries are available for GWT. CCASH also prowde
widgets for handling common high-level tasks sush a
navigating within a sequence of instances and
highlighting the instance currently in focus. If helper
widgets fit a given task, a developer is free tplament
that task from scratch.

Finally, a task designer who is interested in tsis&eific
timing information will want throw custom timeline
events in the web client at the appropriate times.

6.2 Building an Instance Provider

Creating an instance provider consists of implemegran
XML-RPC interface whose most important method

201

allows clients to get the next instance for a patér
annotator. As explained in Section 5.3, instancwigers
need not be implemented in Java. However, if a new
instance provider is implemented in Java, it cakansse

of convenience methods for filtering timing events,
serialization, and XML-RPC implementation.

CCASH includes Java helper classes with generic
instance and annotation types that may be used to
implement instance providers with a variety of dgfzes.
These helper classes currently support only trivial
instance orderings (sequential and random), bubhepe

to soon provide a complete AL and pre-labeling
framework.

7. Case Sudy

One of CCASH’s principle objectives is to facileat
exploratory studies and comparisons of different
annotation methods. CCASH has been used for that
purpose in a recent user study conducted by Caetnain
(2010). In this study CCASH was used to recordithes

of a group of thirty-three linguistic graduate stuts as
they annotated Penn Treebank sentences with English
POS tags. They were given additional help in thenfof
suggestions from a POS tag dictionaries, whichisbn$
simple mappings from each word type to tags thaewe
previously applied to that type. The coverage le¥such
dictionaries was shown to have an impact on aniootat
time and accuracy.

Carmen et al. had some non-trivial constraints todys

organization. The study presented each participéhta multiple annotators and in building successful apphes
common set of 18 sentences in the same order wétob into the CCASH framework.

six different POS tag dictionary coverage levels.

Additionally, the study ensured that each user 9. Acknowledgements
encountered each coverage level exactly three fiaras
also that each coverage level was applied to &seatof
significantly different length.

These constraints affected both the order in which
sentences were provided to different users andubéty

We would like to thank Jeremy Sandberg for his
contributions to the code base for this project.

10. References

of suggestions offered to the participants. Becafisgis, ~ Carmen, M., Felt, P., Haertel, R. Lonsdale, D.,
we feel that this study provides some evidence for McClanahan, P., Merkling, O., Ringger, E., Seppi, K
CCASH's ability to handle diverse annotation methad (2010). Tag Dictionaries Accelerate ~ Manual
practice. Annotation. InProceedings of LREC 201Malta.

Chiou, F.-D., Chiang, D., & Palmer, M. (2001).
Facilitating Treebank Annotation with a Statistical
Parser. In Proceedings of the Human Language
Technology (HLT) Conferenc8an Diego: ACL.

Culotta, A. & McCallum, A. (2005). Reducing labadin
effort for stuctured prediction tasks. Thhe Twentieth
National Conference on Atrtificial Intelligence (ABA
Pittsburgh, PA: pp. 746-751.

Cunningham, H., Maynard, D., Kalina, B., & Tablah,
(2002). GATE: A Framework and Graphical
Development Environment for Robust NLP Tools and
Applications. InProceedings of the 40th Anniversary
Meeting of the ACLPhiladelphia.

Additionally, after setting up CCASH for the studgry
little effort was required to run it to completioBubjects
worked from a variety of locations using a variefyweb
browsers. Administrators were able to monitor the
progress of the study from the administrator irteef
downloading and reviewing statistics periodicalyhen
one user encountered a minor bug, it was fixed auith
requiring the participants to reinstall or updatey a
software. Also, data and annotations were collected
centrally, eliminating any need to distribute dat&ollect
resulting annotation or timing information.

8. Conclusionsand Future Work Ganchev, K., Pereira, F., & Mandel, M. (2007).
CCASH is a web application framework designed tegi Semi-automated Named Entity Annotation. In
researchers and corpora builders a common platform Proceedings of the Linguistic Annotation Workshop

developing cost-efficient annotation methods and fo Prague: ACL, pp. 53-56.
applying them in annotation projects. CCASH culgent Haertel, R., Ringger, E., Seppi, K., Carroll, J., &

shows promise in meeting these goals by suppottiog McClanahan, P. (2008a). Assessing the Costs of
common tasks: POS tagging and NER labeling. |&les Sampling Methods in Active Learning for Annotation.
been successfully used as a platform for a usatystu In Proceedings of the 46th Annual Meeting of the
evaluating the effectiveness of using POS tagatietiies Association for Computational Linguistics on Human
to speed up English POS tagging. Language Technologie€olumbus, Ohio: ACL Short

We are making the entire CCASH project public on Papers, pp. 65-68. .

SourceForge.net (http://sourceforge.net/projecasia; ~ Haertel, R. A, Seppi, K. D., Ringger, E. K., & @, J.

As we improve the process of extending CCASH with (2008b). Return on Investment for Active Learnihy.
new annotation tasks, we hope that the languageress Procegdings of the NIPS Workshop on Cost-Sensitive
community will begin to contribute their own anniita Learning ACL Press. o

tasks, share useful widgets, and collaborate on the-Owe, J., Jacobson, M., & Michailovsky, B. (2004).

framework. At the same time we plan to releaseva Ja Interlinear Text Editor Demonstration and Project
framework for AL and automatic annotation. Archivage Progress Report. 4th EMELD Work-shop

on Linguistic Databases and Best Practibetroit.
Marcus, M., Santorini, B., & Marcinkiewicz, M. (19%
Building a Large Annotated Corpus of English: The
Penn TreebankComputational Linguisticd9(2), pp.
313-330.
Finally, we are currently implementing a Syriac Morton, T., & Lacivita, J. (2003). Word-Freak: Arpen
morphological annotation task in CCASH. Because ool for Linguistic Annotation. InProceedings of
Syriac is a low-resource language and Syriac | T-NAACL pp. 17-18.
morphological annotation is a non-trivial task, esp gller, C., & Strube, M. (2006). Multi-Level Anndian
annotators are expensive. It will be important tdckly of Linguistic Data with MMAX2. In S. Braun, K. Kohn
determine which annotation methods are most g j Mukherjee (Eds.),Corpus Technology and
cost-effective, and CCASH will be a good means to | gnguage Pedagogy. New Resources, New Tools, New
accomplish this. This Syriac annotation task wiltalve Methods English Corpus Linguistics Vol. 3. Frankfurt:
a number of annotators dispersed around the wive. Peter Lang, pp. 197-214.

are interested in experimenting with different Ngai G, & Yarowsky, D. (2000). Rule Writing or
cost-conscious methods for coordinating the effaifts

Additionally we plan to extend CCASH to implemenét
OpenID protocol (http://www.openid.net) so that ngse
can log in with any OpenlID provider, avoiding the
annoyance of creating a dedicated CCASH account.

202

Annotation: Cost-efficient Resource Usage for Base
Noun Phrase Chunking. IRroceedings of ACLpp.
117-125.

Ogren, P. V. (2006). Knowtator: A Protégé plug-or f
Annotated Corpus Construction. Rroceedings of the
2006 Conference of the NAACL-HLNew York:
Companion Volume, Demonstrations, pp. 273-275.

Ringger, E., McClanahan, P., Haertel, R., Busby, G.
Carmen, M., Carroll, J., et al. (2007). Active Leiag
for Part-of-speech Tagging: Accelerating Corpus
Annotation. In Proceedings of the Linguistic
Annotation Workshop at ACpp. 101-108.

Ringger, E., Carmen, M., Haertel, R., Seppi, Knsdale
D., McClanahan P., Carroll, J., & Ellison, N.. ()0
Assessing the Costs of Machine-assisted Corpus
Annotation through a User Study. Rroceedings of
LREC 2008 Morocco.

Settles, B., Craven, M., & Friedland L. 2008. Aetiv
Learning with Real Annotation Costs. Rroceedings
of the NIPS Workshop on Cost-Sensitive Learnipg
1069-1078.

Settles, B. (2009). Active Learning Literature Sayv
University of Wisconsin-Madison. Computer Sciences
Technical Report 1648.

Tomanek, K., Wermter, J., & Hahn, U. (2007). Effici
Annotation with the Jena ANnotation Environment
(JANE). In Proceedings of the ACL 2007 Linguistic
Annotation Workshop—A Merger of NLPXML 2007 and
FLAC. Prague.

203

