
CCASH: A Web Application Framework for Efficient, Distributed Language
Resource Development

Paul Felt, Owen Merkling, Marc Carmen, Eric Ringger,
Warren Lemmon, Kevin Seppi, Robbie Haertel

Department of Computer Science
Brigham Young University
Provo, Utah 84602 USA

E-mail: pablofelt@gmail.com, omerkling@gmail.com, marc.carmen@gmail.com, ringger@cs.byu.edu,
lemmon.warren@gmail.com, kseppi@byu.edu, robbie_haertel@byu.edu

Abstract

We introduce CCASH (Cost-Conscious Annotation Supervised by Humans), an extensible web application framework for
cost-efficient annotation. CCASH provides a framework in which cost-efficient annotation methods such as Active Learning can be
explored via user studies and afterwards applied to large annotation projects. CCASH’s architecture is described as well as the
technologies that it is built on. CCASH allows custom annotation tasks to be built from a growing set of useful annotation widgets. It
also allows annotation methods (such as AL) to be implemented in any language. Being a web application framework, CCASH offers
secure centralized data and annotation storage and facilitates collaboration among multiple annotations. By default it records timing
information about each annotation and provides facilities for recording custom statistics. The CCASH framework has been used to
evaluate a novel annotation strategy presented in a concurrently published paper, and will be used in the future to annotate a large
Syriac corpus.

1. Introduction
The current success and widespread use of data-driven
techniques in language-related fields make annotated
corpora an often essential language resource. For instance,
many popular Natural Language Processing (NLP)
algorithms require significant amounts of
human-annotated training data in order to perform
effectively. Also, annotated text can be useful in its own
right as a means of qualitatively exploring the annotated
text. For example, one might use part-of-speech (POS)
annotations to study the syntax of a language, or
morphological annotations to study the formation of
words in a morphologically rich language.

Along with the need for annotated corpora comes the need
for tools capable of creating these corpora. However, the
process of creating annotated corpora is not trivial. For
one thing, employing human specialists to annotate each
instance in a corpus by hand can be prohibitively costly. A
general purpose annotation tool should make use of
existing cost-efficient annotation methods such as
automatic annotation and Active Learning (see Section 2).
However, cost-efficient annotation is an area of active
research, so annotation tools should also be sufficiently
flexible to encourage novel methods to be implemented
and explored. Indeed, since the effectiveness of various
annotation methods may vary across tasks and domains,
even projects interested only in applying known
annotation methods to a large corpus may wish to conduct
exploratory studies to compare the efficiency of several
annotation methods before proceeding on a large scale. In
addition to cost, many other problems must be dealt with.
If the annotation task being conducted is uncommon,
project developers may need to customize an existing
annotation tool or create their own custom tool to
implement that annotation task. Annotation projects that

employ multiple annotators must solve problems of data
distribution and consistency. Such projects must
somehow distribute views of the corpus to each annotator
and collect annotations into a central location, handling
any conflicts among the annotations.

Although this discussion by no means exhausts the
demands that might be made of a general-purpose
annotation tool, we believe they are an important subset.
Ideally then, an annotation tool would offer at a minimum
the following high-level features:

• Accommodate proven cost-efficient annotation
methods

• Encourage novel cost-efficient annotation
methods

• Facilitate exploratory studies and comparisons
of annotation methods (e.g. measure annotation
costs)

• Accommodate custom annotation tasks

• Coordinate the efforts of multiple annotators

In this paper we introduce CCASH (Cost-Conscious
Annotation Supervised by Humans), a web application
framework for corpus annotation designed to implement
this feature set by using familiar programming paradigms,
open standards technologies, and by providing reasonable
default implementations whenever possible, always
allowing those with unique requirements to define their
own features from the ground up.

The remainder of this paper is organized as follows: in
Section 2 we describe annotation projects, studies, and
tools that influenced CCASH’s design and
implementation. In Section 3 we explain our decision to
implement CCASH as a web application. In Sections 4
and 5 we describe CCASH’s architecture and

196

implementation details. In Section 6 we describe the
process of customizing CCASH. In Section 7 we outline a
case study in which CCASH was used, and in Section 8
we discuss conclusions and future work.

2. Related Work
Here we present previous work that helped to motivate the
feature set outlined in Section 1 and to inform the way that
CCASH implements those goals. Due to the importance
of cost efficiency to those goals, a large portion of the
work we cite consists of annotation projects, studies, and
tools that were used to develop cost-efficient methods of
annotation.

Automatic annotation, or pre-labeling, consists of using
NLP algorithms to automatically annotate each instance
before it is presented to an expert annotator. Expert
annotators then need only review and correct the proposed
annotations, which can be much quicker than annotating
from scratch. Marcus et al. (1994) evaluated automatic
annotation using an interface embedded in the GNU
Emacs Editor to annotate the Penn Treebank. They
manually timed four annotators and found that automatic
annotation more than doubled annotation speed and also
increased accuracy and inter-annotator agreement. Chiou
et al. (2001) manually timed two annotators and reported
a 70% increase in annotation speed using automatic
annotation on a Chinese Treebank annotation task. They
did not report the tool they used. Ganchev et al. (2007)
used a custom web-based tool to do named entity
recognition (NER). They evaluated an automatic
annotator that presented annotators with a set of plausible
guesses instead of a single best guess. They manually
recorded the time of a single annotator, reporting a more
than 50% increase in speed compared with a manual
baseline.

The dramatic time savings reported in these studies
underscore the importance of providing proven
annotation methods in any general-use annotation
framework. Also, notice that each study evaluates
automatic annotation by manually timing a very small
number of annotators. These results are convincing, but
relatively informal. This suggests a need for annotation
tools that automatically record cost in such a way as to
facilitate exploratory studies, allowing significant user
studies to be run without much overhead. Also, flexibility
and customization were shown to be important to
annotation tools. For example, Ganchev et al. (2007)
found it necessary to tweak the simple concept of
automatic annotation in order to make it successful in the
domain of NER.

Many automatic annotators require annotated training
data. Annotated data are cheaply available for common
tasks in major languages. However, in order to apply
automatic annotation to a new task or to a new language,
expert annotators must be paid to annotate training data,
reducing the cost-efficiency of automatic annotation.

Active Learning (AL) is a technique that addresses this
problem by reducing the cost of annotating useful

amounts of training data (Ringger et al. 2007; Haertel et al.
2008a; Haertel et al. 2008b; Settles 2009). AL controls
which data instances an expert is asked to annotate,
presenting them with instances likely to be most
informative for learning algorithms. The resulting
annotations may be used to train an automatic annotation
algorithm.

Ngai and Yarowski (2000) evaluated the effectiveness of
AL for noun phrase chunking using an hourly cost model.
For this study, seven annotators used a custom-built Java
annotation client communicating with a server to enable
centralized AL and record timing information. Tomanek
et al. (2007) evaluated the performance of AL on the task
of NER in immunogenetics. They developed and used
JANE (the Jena ANnotation Environment), a Java
program built on MMAX2 (Müller and Strube, 2006), to
record annotators' timing information. JANE uses a
client-server architecture, allowing distributed annotation
and multi-annotator AL.

Both of these studies deal with multiple annotators by
centralizing their data and developing tools with
client-server architectures. They also extend AL to the
multi-annotator case, again underlining the variety of
implementations possible for each established annotation
method.

Ringger et al. (2008) conducted an AL study with 47
annotators doing English POS tagging using a
custom-built web application that collected timing
information. They used that information to derive an
hourly cost model for English POS tagging, which
Haertel et al. later incorporated into a cost-conscious
version of AL (2008b). This is a case where cost
measurements were not just used to provide evidence for
the effectiveness of a particular method of annotation, but
were actually incorporated into an annotation method. In
other words, there are some cost-efficient annotation
methods that cannot be implemented with an annotation
tool that does not record and provide access to cost
information, making real-time cost measurement
essential.

Representative general-use annotation platforms that
influenced CCASH’s design include GATE (Cunningham
2002), Word-Freak (Morton & Lacivita 2003), MMAX2
(Müller & Strube 2006), Knowtator (Ogren 2006), and
JANE (Tomanek et al. 2007). These tools all support
common annotation tasks and also allow for the creation
of custom annotation tasks with different degrees of
flexibility. GATE is a Java tool that uses a client-server
architecture to coordinate multiple annotators, allows
timing information to be recorded, and uses a modular
design to promote customization. Knowtator allows users
to define complex annotation schemas, making it
exceptionally configurable and reducing the need for
customized plug-ins. MMAX2, like GATE, is a highly
modular Java application with a client-server architecture.
JANE is a Java application built on MMAX2 that, as
mentioned before, provides a form of AL. Word-Freak
supports both automatic annotation and searching based

197

on annotation confidence, which allows annotators to
engage in a kind of manual AL.

3. Web Application Framework
Although the features outlined in Section 1 could be
implemented in a variety of ways, CCASH designers felt
that a web application framework was most fitting for a
number of reasons. Previous annotation tools have tended
toward client-server relationships in order to centralize
data and facilitate multiple annotator collaboration. Web
applications make client-server architecture easy and
natural. Among the tools described in Section 2, GATE
and MMAX2 seem to be the most popular due in large
part to their support for extensive programmatic
customization. A web application seemed a good choice
for a customizable architecture, since Internet architecture
has a tradition of being extremely customizable, even
allowing modules written in different languages and
running on different platforms to interoperate.

Being a web application gives CCASH other key
advantages in a distributed annotation project. The
overhead of configuring a collaborative annotation
project can be handled by a single administrator with
access to the server. Annotators can then immediately
begin annotating texts from any GWT-supported web
browser with virtually no per-user configuration time.
Since web applications are reloaded every time a user
revisits the site or refreshes the browser, there is no
difficulty associated with distributing software or project
configuration updates. Any updates to the annotation task
or to the CCASH framework are instantly and
transparently available to all annotators.

4. CCASH Architecture
CCASH’s architecture consists of four parts: a web client,
a web server, a database, and an instance provider (see
Figure 1).

4.1 Instance Provider
Instance providers are processes with a single
responsibility: to provide instances to annotators. In this
context an instance is a piece of text, such as a word or

sentence, which requires expert annotation. The instances
that an instance provider returns may optionally be
pre-annotated. Instance providers are largely independent
from the rest of CCASH. They make themselves available
as web services at some address by implementing a
simple XML-RPC interface (see Section 5.3). In CCASH,
part of setting up an annotation project is giving it the
address of a valid instance provider. Because instance
providers are decoupled across the network from the rest
of CCASH, they may be implemented in any language.
This is particularly valuable since instance providers are a
prime target for making use of NLP algorithms such as
pre-labeling and AL. Algorithm libraries and custom
research tools exist in many languages besides Java, and
may be reused as part of implementing an instance
provider. Because of this network decoupling, instance
providers may also be located at anywhere in the world,
although because of network latency issues we anticipate
that they will commonly be located either on the same
machine as the web server, or nearby.

For convenience, CCASH provides Java instance
providers that use generics to return any type of instance
in sequential and random order. We are also working on
including Java instance providers that implement several
varieties of pre-labeling and AL.

4.2 Data Model
Deciding how to represent and store instances and
annotations was a difficult design decision in CCASH.
Ideally, one would invent a data structure that is both
efficient and also able to encode every instance and
annotation type that might be required. For example, a
POS tagging task might require annotations to be a
sequence of tags. Dependency parsing, on the other hand,
might require annotations to contain sets of directed
connections between word pairs in the corresponding
instance. One can imagine that a data structure able to
represent both of these annotations (not to mention a
multitude of other possible annotation tasks) would run
the risk of being bulky and cumbersome. However, if the
data structure were not sufficiently general, it would lose
the ability to represent certain tasks and the framework
would be unusable for them. Also, if a data structure
required users to radically alter their own data schemas in
order to fit CCASH’s structures, it might discourage them
from using the framework.

Recall that one of our high-level design goals is to provide
reasonable default implementations whenever possible,
always allowing those with unique requirements to define
their own functionality. Guided by this principle, we
decided to provide some reasonable default data
representations and separate the CCASH framework from
task-specific data structures as much as possible, allowing
developers to use their own data structures, if desired,
with minimal interference from the framework.

The two parts of CCASH that need to work with
task-specific instance and annotation structures are the
web client and the instance provider. The web client must

Figure 1: CCASH Architecture

198

know how to appropriately display the data instances and
collect the desired annotations. The instance provider
must select instances, possibly pre-label them, and then
send them to the client. It receives new annotations from
the client, updating its models with new annotations and
recording the annotations alongside the data. The web
client and the instance provider share a common method
of serialization, and between those two endpoints,
CCASH is ignorant of instance and annotation values.
CCASH simply passes the serialized value along as a
member variable of wrapper objects that CCASH uses to
maintain records in its own database.

4.3 Web Client and Server
The web client is the portion of the application that runs in
a user’s browser using a combination of HTML and
JavaScript. The CCASH client-side framework is written
using the Google Web Toolkit (see Section 5.1), and we
recommend that CCASH developers extending that
framework or implementing new annotation tasks (see
Section 6) do the same. While annotating, the web client’s
principle responsibility consists of requesting instances
from the web server, displaying them to the user, and
collecting annotations. The client then sends those
annotations back to the web server.

The web server is in charge of facilitating client
interactions with other components such as instance
providers and the database. It passes on client requests for
new instances to the appropriate instance provider and
notifies the same instance provider when annotations are

completed, giving the instance provider a chance to
update its models given this new information.

The CCASH framework uses a combination of client-side
interfaces and server-side storage to provide
out-of-the-box user account management and project
management. It also maintains a database containing
information about each annotation (see Section 4.5),
allowing access to project statistics.

4.4 Widget Libraries
In order to make new tasks as easy as possible to
implement and customize, we implement default tasks by
creating and assembling re-usable GWT widgets. For
example, the English POS task in Figure 2 is a
combination of a sequential annotation widget (allowing
navigation over a sequence of instances), an instance
annotation widget (highlighting the current instance in a
box) and an English POS instance annotation widget
which makes use of an auto-completion widget populated
with the Penn Treebank tag set. The auto-completion
widget allows users to type in any part of the tag or
description, narrowing down selection options to entries
that match any part of the selection.

Because CCASH is intended to be used for research as
well as large-scale annotation projects, the framework
includes widgets useful for building user studies. These
currently include widgets for instructions, surveys, and
tutorial annotations with feedback.

In addition to the widgets offered by CCASH, many

Figure 2: English POS Task in CCASH

199

widgets come standard with GWT, and other third party
GWT widget libraries are freely available. Because GWT
can interface with native JavaScript, even third-party
JavaScript libraries can be used with some additional
overhead.

4.5 Evaluation
Previous work suggests a strong need for measuring the
cost of each annotation in terms of time (Haertel et al.
2008a). This is not, however, the only possible measure of
cost. Culotta et al. (2006), for example, measure cost in
terms of the number of required user actions to fix an
annotation in a given user interface. This is a reasonable
surrogate for time, since more interactions generally mean
more time, and it enjoys the benefit of being easy to
predict. CCASH provides a flexible mechanism for
measuring cost by collecting events fired by the web
client into a simple sequence analogous to a timeline.
Each timeline event has a name and a timestamp, allowing
calculation of cumulative time, number of interactions,
and other desired statistics. CCASH by default fires
events when an annotation instance is requested, when it
is presented to an annotator, when an annotation is
completed, and when an annotation task is paused or
resumed. If more granularity is required, for example if
each user interaction needs to be recorded, CCASH
developers implementing new tasks in CCASH can fire
custom events at any point.

This cost information can be used to evaluate
cost-reduction strategies post hoc. But it can also be used
by an annotation method that learns from annotation costs.
Haertel et al. (2008b) and Settles et al. (2008) have both
proposed methods of incorporating cost models into the
AL process, helping to offset traditional AL’s bias towards
long, costly instances.

5. Core Technologies
CCASH makes use of several supporting technologies.
This section briefly describes what they are and how they
are used.

5.1 Google Web Toolkit (GWT)
CCASH's web client component is implemented with the
Google Web Toolkit (GWT). GWT allows developers to
build user interfaces in Java using familiar Swing-like
widgets. GWT provides a cross-compiler that compiles
Java code into optimized JavaScript which communicates
with a Java web server using remote procedure calls.
GWT packages this entire bundle—JavaScript for the
client and Java code for the server—into a Web Archive
(WAR) which can be hosted on any compatible Java web
server like Apache's Tomcat or Red Hat's jBoss.

We chose to use GWT to implement the web client
portion of CCASH for several reasons. Most importantly,
GWT helps user interface developers abstract away from
the browser-specific idiosyncrasies that can make web
programming difficult for newcomers. CCASH is

designed with the assumption that future researchers who
create new tasks for CCASH will likely be familiar with
Java programming and at least one of the two major
interface design paradigms that GWT supports:
assembling Swing-like graphical components
programmatically, or else defining XML interfaces bound
to Java objects (similar to more traditional web-page
design). GWT code compiles to JavaScript that is
compatible with most major modern web browsers
including IE, Firefox, Safari, and Opera. GWT also
provides several mechanisms for creating localizable web
applications. This helps CCASH support Unicode and
right-to-left languages as well as locale-specific text and
styles. Also, GWT facilitates using the browser history
buttons to navigate through locations within a web
application by encoding some application state in a
history token embedded in the browser’s address bar.

5.2 Hibernate
The Java Persistence API is a robust and standard way to
manage permanent data storage in Java. We chose to use
Hibernate to implement this API and to interface with the
database layer of CCASH. This means that if developers
find that they need to persist their own custom data
objects, they can do so by simply annotating their data
object classes in compliance with the Java Persistence
API. It also means that framework users are free to use
any of the many database implementations that are
supported by Hibernate.

Using the Java Persistence API makes it easy to place the
database either on the same machine that is running the
web server or on any other machine that is
network-accessible. Note that storing annotations in a
database makes them efficiently accessible without
precluding the possibility of exporting them to other
formats such as XML.

5.3 XML-RPC
XML-RPC is a simple protocol for making remote
procedure calls over the network. Because of the
simplicity of the protocol, implementations exist in many
programming languages including C, C++, C#, Java,
Python, Ruby, Lisp, and many more. This makes it easy
for the instance provider to be implemented in almost any
language in order to reuse existing algorithms
implementations or libraries for automatic annotation and
AL.

6. Defining Custom Tasks
The process of adding a new annotation task to CCASH
consists principally of creating a client-side user interface
for the task and then connecting it to an appropriate
instance provider. The following subsections describe this
process in more detail.

200

6.1 Building a Client-side User Interface
In the CCASH framework we have implemented an
English part of speech (POS) annotation task (Figure 2)
and a named entity recognition (NER) annotation task
(Figure 3). In both of these tasks, the user is presented
with an interface that gives context at the top of the page
and a more focused inspector that we call the “lens” below.
When implementing a new task in the web client,
developers may either take advantage of this pre-existing
layout or else build their own layout.

To build custom client-side interfaces, developers extend
a helper class that takes care of bookkeeping such as firing
standard timeline events (see Section 4.5). They then
create and assemble the widgets necessary to implement
their task. As mentioned before, third party widget
libraries are available for GWT. CCASH also provides
widgets for handling common high-level tasks such as
navigating within a sequence of instances and
highlighting the instance currently in focus. If no helper
widgets fit a given task, a developer is free to implement
that task from scratch.

Finally, a task designer who is interested in task-specific
timing information will want throw custom timeline
events in the web client at the appropriate times.

6.2 Building an Instance Provider
Creating an instance provider consists of implementing an
XML-RPC interface whose most important method

allows clients to get the next instance for a particular
annotator. As explained in Section 5.3, instance providers
need not be implemented in Java. However, if a new
instance provider is implemented in Java, it can make use
of convenience methods for filtering timing events,
serialization, and XML-RPC implementation.

CCASH includes Java helper classes with generic
instance and annotation types that may be used to
implement instance providers with a variety of data types.
These helper classes currently support only trivial
instance orderings (sequential and random), but we hope
to soon provide a complete AL and pre-labeling
framework.

7. Case Study
One of CCASH’s principle objectives is to facilitate
exploratory studies and comparisons of different
annotation methods. CCASH has been used for that
purpose in a recent user study conducted by Carmen et al.
(2010). In this study CCASH was used to record the times
of a group of thirty-three linguistic graduate students as
they annotated Penn Treebank sentences with English
POS tags. They were given additional help in the form of
suggestions from a POS tag dictionaries, which consist of
simple mappings from each word type to tags that were
previously applied to that type. The coverage level of such
dictionaries was shown to have an impact on annotation
time and accuracy.

Carmen et al. had some non-trivial constraints on study

Figure 3: NER Task in CCASH

201

organization. The study presented each participant with a
common set of 18 sentences in the same order with one of
six different POS tag dictionary coverage levels.
Additionally, the study ensured that each user
encountered each coverage level exactly three times, and
also that each coverage level was applied to a sentence of
significantly different length.

These constraints affected both the order in which
sentences were provided to different users and the quality
of suggestions offered to the participants. Because of this,
we feel that this study provides some evidence for
CCASH’s ability to handle diverse annotation methods in
practice.

Additionally, after setting up CCASH for the study, very
little effort was required to run it to completion. Subjects
worked from a variety of locations using a variety of web
browsers. Administrators were able to monitor the
progress of the study from the administrator interface,
downloading and reviewing statistics periodically. When
one user encountered a minor bug, it was fixed without
requiring the participants to reinstall or update any
software. Also, data and annotations were collected
centrally, eliminating any need to distribute data or collect
resulting annotation or timing information.

8. Conclusions and Future Work
CCASH is a web application framework designed to give
researchers and corpora builders a common platform for
developing cost-efficient annotation methods and for
applying them in annotation projects. CCASH currently
shows promise in meeting these goals by supporting two
common tasks: POS tagging and NER labeling. It has also
been successfully used as a platform for a user study
evaluating the effectiveness of using POS tag dictionaries
to speed up English POS tagging.

We are making the entire CCASH project public on
SourceForge.net (http://sourceforge.net/projects/ccash).
As we improve the process of extending CCASH with
new annotation tasks, we hope that the language resources
community will begin to contribute their own annotation
tasks, share useful widgets, and collaborate on the
framework. At the same time we plan to release a Java
framework for AL and automatic annotation.

Additionally we plan to extend CCASH to implement the
OpenID protocol (http://www.openid.net) so that users
can log in with any OpenID provider, avoiding the
annoyance of creating a dedicated CCASH account.

Finally, we are currently implementing a Syriac
morphological annotation task in CCASH. Because
Syriac is a low-resource language and Syriac
morphological annotation is a non-trivial task, expert
annotators are expensive. It will be important to quickly
determine which annotation methods are most
cost-effective, and CCASH will be a good means to
accomplish this. This Syriac annotation task will involve
a number of annotators dispersed around the world. We
are interested in experimenting with different
cost-conscious methods for coordinating the efforts of

multiple annotators and in building successful approaches
into the CCASH framework.

9. Acknowledgements
We would like to thank Jeremy Sandberg for his
contributions to the code base for this project.

10. References
Carmen, M., Felt, P., Haertel, R., Lonsdale, D.,

McClanahan, P., Merkling, O., Ringger, E., Seppi, K.
(2010). Tag Dictionaries Accelerate Manual
Annotation. In Proceedings of LREC 2010. Malta.

Chiou, F.-D., Chiang, D., & Palmer, M. (2001).
Facilitating Treebank Annotation with a Statistical
Parser. In Proceedings of the Human Language
Technology (HLT) Conference. San Diego: ACL.

Culotta, A. & McCallum, A. (2005). Reducing labeling
effort for stuctured prediction tasks. In The Twentieth
National Conference on Artificial Intelligence (AAAI).
Pittsburgh, PA: pp. 746-751.

Cunningham, H., Maynard, D., Kalina, B., & Tablan, V.
(2002). GATE: A Framework and Graphical
Development Environment for Robust NLP Tools and
Applications. In Proceedings of the 40th Anniversary
Meeting of the ACL. Philadelphia.

Ganchev, K., Pereira, F., & Mandel, M. (2007).
Semi-automated Named Entity Annotation. In
Proceedings of the Linguistic Annotation Workshop.
Prague: ACL, pp. 53-56.

Haertel, R., Ringger, E., Seppi, K., Carroll, J., &
McClanahan, P. (2008a). Assessing the Costs of
Sampling Methods in Active Learning for Annotation.
In Proceedings of the 46th Annual Meeting of the
Association for Computational Linguistics on Human
Language Technologies. Columbus, Ohio: ACL Short
Papers, pp. 65-68.

Haertel, R. A., Seppi, K. D., Ringger, E. K., & Carroll, J.
(2008b). Return on Investment for Active Learning. In
Proceedings of the NIPS Workshop on Cost-Sensitive
Learning. ACL Press.

Lowe, J., Jacobson, M., & Michailovsky, B. (2004).
Interlinear Text Editor Demonstration and Project
Archivage Progress Report. In 4th EMELD Work-shop
on Linguistic Databases and Best Practice. Detroit.

Marcus, M., Santorini, B., & Marcinkiewicz, M. (1994).
Building a Large Annotated Corpus of English: The
Penn Treebank. Computational Linguistics 19(2), pp.
313-330.

Morton, T., & Lacivita, J. (2003). Word-Freak: An Open
Tool for Linguistic Annotation. In Proceedings of
HLT-NAACL, pp. 17-18.

Müller, C., & Strube, M. (2006). Multi-Level Annotation
of Linguistic Data with MMAX2. In S. Braun, K. Kohn,
& J. Mukherjee (Eds.), Corpus Technology and
Language Pedagogy. New Resources, New Tools, New
Methods. English Corpus Linguistics Vol. 3. Frankfurt:
Peter Lang, pp. 197-214.

Ngai, G., & Yarowsky, D. (2000). Rule Writing or

202

Annotation: Cost-efficient Resource Usage for Base
Noun Phrase Chunking. In Proceedings of ACL, pp.
117-125.

Ogren, P. V. (2006). Knowtator: A Protégé plug-in for
Annotated Corpus Construction. In Proceedings of the
2006 Conference of the NAACL-HLT. New York:
Companion Volume, Demonstrations, pp. 273-275.

Ringger, E., McClanahan, P., Haertel, R., Busby, G.,
Carmen, M., Carroll, J., et al. (2007). Active Learning
for Part-of-speech Tagging: Accelerating Corpus
Annotation. In Proceedings of the Linguistic
Annotation Workshop at ACL, pp. 101-108.

Ringger, E., Carmen, M., Haertel, R., Seppi, K., Lonsdale
D., McClanahan P., Carroll, J., & Ellison, N.. (2008).
Assessing the Costs of Machine-assisted Corpus
Annotation through a User Study. In Proceedings of
LREC 2008. Morocco.

Settles, B., Craven, M., & Friedland L. 2008. Active
Learning with Real Annotation Costs. In Proceedings
of the NIPS Workshop on Cost-Sensitive Learning, pp.
1069-1078.

Settles, B. (2009). Active Learning Literature Survey.
University of Wisconsin-Madison. Computer Sciences
Technical Report 1648.

Tomanek, K., Wermter, J., & Hahn, U. (2007). Efficient
Annotation with the Jena ANnotation Environment
(JANE). In Proceedings of the ACL 2007 Linguistic
Annotation Workshop–A Merger of NLPXML 2007 and
FLAC. Prague.

203

