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Abstract

The intuition and basic hypothesis that this paper explores is that names are more characteristic of their language than common words

are, and that a single name can have enough clues to con�dently identify its language where random text of the same length wouldn't.

To test this hypothesis, n-gramm modelling is used to learn language models which identify the language of isolated names and equally

short document fragments. As the empirical results corroborate the prior intuition, an explanation is sought for the higher accuracy at

which the language of names can be identi�ed. The results of the application of these models, as well as the models themselves, are

quantitatively and qualitatively analysed and a hypothesis is formed about the explanation of this difference. The conclusions derived

are both technologically useful in information extraction or text-to-speech tasks, and theoretically interesting as a tool for improving our

understanding of the morphology and phonology of the languages involved in the experiments.

1. Introduction

Language identi�cation is performed on different levels,

from the acoustic and prosodic to the phonotactic or

graphotactic, and has found various application in speech

synthesis, information extraction and data mining.

Leaving aside language identi�cation at the acoustic and

prosodic level, we shall concentrate on identifying the lan-

guage of a string of phonemes or graphemes. In fact, all

of the methods and experiments presented here operate on

graphemes, but this choice is driven by data availability

rather than any underlying assumption that cannot be cir-

cumvented.

We further concentrate on identifying the language of a sin-

gle name, even when it is in isolation or in a document

written in a different language. This is particularly interest-

ing for language technology applications such as named-

entity recognition or automatic transliteration, especially

when spotting names transliterated into different orthogra-

phy systems, e.g. spotting English-language named-entities

in Chinese newspapers.

The intuition and basic hypothesis that the work presented

here tests, is that names are more `characteristic' of their

language than common words are, and that a single name

might have enough clues to con�dently identify its lan-

guage, where a common word of the same length wouldn't.

The paper is structured as follows: �rst an overview of

the literature in language identi�cation is provided, both

in the framework of text categorization and for identifying

the language of a single named entity in isolation (Sect. 2.).

Then, in Sect. 3. we present an experimental setup for com-

paring name and generic-text language identi�cation, the

results of which are analysed in detail in Sect. 4. and 5..

Finally, conclusions and future research directions are dis-

cussed in Sect. 6..

2. Background

Guessing the language of a document falls under the larger

area of text categorization, which aims at classifying a doc-

ument as belonging to one (or more) out of certain, pre-

de�ned categories or subject codes. Document language

is one of the possible dimensions of categorization, inter-

esting for various document organization, data mining, and

information extraction tasks.

2.1. Document-level categorization

In their seminal paper, Cavnar and Trenkle (1994) report

experiments on language categorization using a simple n-
gram frequency algorithm. The language models consist of

frequency counts of n-grams (up to 5-grams) for various

languages. To classify a document, the frequency counts

of n-grams in the document are calculated and their dis-

tribution compared against the distribution of n-grams in

the language models. The model with the smallest distance

from the distribution of the document, is assumed to be the

language of the document.

This algorithm was tested on Usenet postings from the

soc.culture newsgroup hierarchy. An eight-language

corpus was generated semi-automatically: a �rst pass op-

erated under the assumption that the postings are in the

language of the country or region under discussion in each

newsgroup, and at a second pass discrepancies between the

newsgroup's default language and the system's prediction

were manually resolved.

With the 400 most frequent n-grams retained in the models,

and postings of at least 300 bytes of length, the system clas-

si�ed the test set almost perfectly, achieving an accuracy of

99.8%. The authors also report an accuracy of 99.3% for

postings that are under 300 bytes, without providing any

further details of how accuracy drops with shorter test doc-

uments.

Cavnar and Trenkle's algorithm has seen various imple-

mentations and applications, the most notable probably be-

ing the TEXTCAT1 implementation used in the SPAMAS-

SASSIN
2 spam �lter. The TEXTCAT distribution includes

1http://www.let.rug.nl/∼vannoord/TextCat/
2http://spamassassin.apache.org/
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language models for 69 languages and about 9 kbytes of

training text in each language.

2.2. Word-level categorization

Language identi�cation is very accurate even for texts as

small as two or three hundred characters, but even so that is

a long way from identifying the language of origin of single

name, when seen in isolation.

Efforts at language identi�cation for proper names orig-

inate in speech synthesis (Spiegel, 1985; Vitale, 1991;

Font Llitjós and Black, 2001), with language identi�cation

used to adjust grapheme-to-phoneme rules. The typical ap-

proach is to improve an English-language speech synthe-

siser by training n-gram classi�ers and using different pro-

nunciation models for foreign names, depending on each

name's origin.

Font Llitjós and Black (2001), in particular, note that lan-

guage identi�cation of isolated names is a dif�cult task,

as they tried to manually tag 516 names and found that

they could con�dently tag only 43% of the data. For their

speech synthesis experiment they used a simpli�cation of

the Cavnar and Trenkle algorithm which only counted 3-
grams. They trained language models on general text (rang-

ing from 255 thousand to 11 million words), and provided

the classi�cation results as features for the grapheme-to-

phoneme models. Unfortunately they do not report results

for the language identi�cation part of their experiments.

Another �eld of application of the same general method-

ology is automatic transliteration of named-entities for the

purposes of machine translation (Huang, 2005), except that

here language identi�cation adjusts transliteration models

instead of grapheme-to-phoneme ones. In Huang's exper-

iment languages were grouped together in clusters, guided

by the effect each clustering had on the accuracy of the

overall transliteration. The resulting clusters roughly cor-

responded to familiar language groupings (Chinese, Ro-

mance, English-and-Dutch, Nordic). Employing language

identi�cation models is reported to improve the accuracy of

the overall task, but no results are provided for the language

identi�cation sub-task per se.

Finally, language identi�cation is also pertinent to

information-extraction tasks such as named-entity recog-

nition. In this context it is important to be able to iden-

tify the original language of a named entity in order to be

able to recognize transliterated named entities. Virga and

Khudanpur (2003) report identifying references to English-

language named entities in Chinese text. Their approach is

to train a tri-gram model on Chinese transliterations of En-

glish names and use it to pick out English-language named-

entities. Knowing that a string is an English word, the orig-

inal orthography can be more accurately guessed.

3. Language Guessing Experiments

The data and experimental setup is the same as previ-

ously reported (Konstantopoulos, 2007), based on Euro-

pean names extracted by harvesting websites listing foot-

ball players and their nationality. Mixed-language nation-

alities (e.g. Belgian and Swiss) where discarded and certain

nationalities were combined under a single language (U.K.

Language Names Avg. Len.

German 2608 7.8

English 1132 7.5

French 1067 7.7

Italian 1042 8.2

Polish 944 8.6

Spanish 824 7.4

Dutch 746 7.5

Czech-Slovak 579 7.2

Swedish 542 8.6

Danish 501 8.2

Portuguese 418 6.3

Table 1: Corpus size statistics for surnames.

& Ireland and Czech Republic and Slovakia.3) Table 1

shows the resulting list of languages, number of names, and

average name length. This dataset was complemented by

the JRC-Acquis Multilingual Parallel Corpus (Steinberger

et al., 2006), used to establish a basis for comparison be-

tween names and common words.

It should also be noted that the original corpus provides full

names without any indication of how they should be split

into their �rst name/last name components, so, for names

with more than two parts, the last part was assumed to

be the last name. This assumption makes the task slightly

more dif�cult, since it removes language-speci�c surname

pre�xes like van and della, but is accurate in most cases

since middle names are far more widespread than surname

pre�xes or double surnames.

Furthermore, all diacritics used in Latin-based scripts were

dropped, since some are suf�cient to considerably narrow

the problem down or even identify a single language (e.g.

Czech �r). This creates a performance mis-balance in favour

of orthographies that prefer grapheme clusters instead of

overloaded characters, as, for example, tell-tale clusters

such and German sch or Polish rsz are retained, but charac-

teristic graphemes such as �r or �s in Czechoslovak are sim-

pli�ed to r. This `injustice,' however, doesn't in�uence the

result presented below, as we are interested in comparing

general-language models versus name-speci�c models; as

long as the handicap in any language is dealt in both mod-

els, the comparison results remain valid.

As a �rst setp, common words models trained on JRC data

were used to predict the language of very short strings,

comparable in length with a single surname (Table 1), as

well as of actual names.

At a second step, the full name and last name datasets were

used to train and test name models, using 10-fold cross-

validation. N -fold cross-validation is a methodology for

evaluating a hypothesis when there is not enough data to

obtain both a training and a test set, but the same data has to

be used for both training and validation, while at the same

time guaranteeing the independence of the training and the

validation process. The original set is partitioned into N

3Preliminary experiments have shown Czeck and Slovak

names to be practically indistinguishable, despite the substantial

differences between the Czeck and Slovak languages.
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Figure 1: Graph plotting F-score of language identi�cation against string length. The two lines plot language identi�cation

performance over general text of �xed length. The outlined square marks show F-scores per language, against average

name length of the language. The �lled square mark averages these last results over all languages.

subsets, of which one is retained as testing data and the

remaining N − 1 are used as training data. Training and

testing is repeated N times (the folds), with each of the N
subsets used exactly once as testing data. The N results

from the folds are averaged to produce a single estimation.

Comparing the results of the JRC models and the names

models, tested over names, we see that training models spe-

ci�c to names has a most profound effect on performance,

as shown in Figure 1. This graph shows the, so to speak,

relative `discriminative density', of names and common

words: last names are shown to carry a lot more potential

per character than common words, as their average length

is just under 8 characters, but can be predicted as accurately

as common words of about 11 characters.

4. Derivational Morphology Analysis

Besides the purely methodological, and expected, result

that one can get better performance by training name mod-

els on names, a more interesting theoretical question is the

reasons why this is the case. One can think of various pos-

sible reasons, with varying degrees of theoretical interest.

One of the most mundane analyses, for example, would be

that names, being a more closed set that common words,

offer themselves to over-speci�c modelling where high ac-

curacy is achieved at the expense of generalization. Fortu-

nately, such a hypothesis can be immediately refuted by the

data in Table 2, as language models trained on names are,

if anything, using shorter n-grams than the ones trained on

common words.

This allows us to turn our attention to more interesting

hypotheses, involving morpho-phonological or graphotac-

tic features that (at least) European names possess, mak-

ing language identi�cation easier. Intuition suggests that

surname forming typically involves a son of derivation

from �rst names, so that different languages can be eas-

ily recognized by such suf�xes. Comparing, for example,

Thomassen, Thomson, Tomasevic, and Tomasevicz one can

immediately guess a Swede, an Englishman, a Czech, and

a Pole.

This intuition was tested by counting what fraction of the

n-grams in the model includes the end-of-word symbol and

thus only matches word suf�xes. Comparing the two sides

of Table 3 one can easily see that suf�xes are not more im-

portant for name models than they are for common word

models. In fact, they are a slightly smaller fraction of the

overall number of n-grams than in generic models.

A re�nement of this hypothesis is that a smaller number of

distinct suf�xes might have a wider distribution in names.

That is, that the derivational morphology creating surnames

involves fewer suf�xes applied to larger number of name

instances so that, even though they are fewer, the relevant

n-grams would have a heavier contribution to the language

identi�cation scores. This hypothesis was tested by adding

the weights with which suf�x n-grams contribute to a lan-

guage's score, re�ecting the number of instances of these

n-grams in the training data. Again, as shown in Table 4

suf�xes are not more important for name models than they

are for generic word models.

An interesting observation can be made by comparing Ta-

bles 3 and 4: suf�xes are `heavier' n-grams, as smaller

fractions of distinct n-grams cover considerably larger frac-

tions o n-gram instances. This shows that suf�xes are im-

portant discriminators, which is to be expected as in all

languages involved morphological markers are mostly suf-

�xes.4 However, this is true for both names and generic

words, and so cannot be the explanation for the higher ac-

4The notable exceptions being verbal in�ectional morphology

of German and Dutch. Indeed, ge- appears prominently in the
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Common word models Surname models

Lang. n-gram length Avg n-gram length Avg

Model 1 2 3 4 5 Len 1 2 3 4 5 Len

Czchslvk 40 187 108 42 23 2.55 25 192 141 34 8 2.52

Polish 43 187 108 42 20 2.52 24 174 135 43 24 2.67

German 48 164 118 52 18 2.57 25 212 120 37 6 2.47

Danish 43 160 124 51 22 2.62 26 177 124 46 27 2.68

Swedish 45 142 107 66 40 2.79 27 185 116 45 27 2.65

Dutch 37 170 121 52 20 2.62 25 195 143 31 6 2.50

English 36 184 129 39 12 2.52 26 212 142 19 1 2.39

French 43 162 123 52 20 2.61 29 203 152 15 1 2.39

Portug 45 159 122 54 20 2.61 26 167 164 36 7 2.58

Spanish 44 156 124 55 21 2.63 26 180 160 31 3 2.51

Italian 42 161 124 49 24 2.63 22 159 168 44 7 2.64

SUM 466 1832 1308 554 240 2.61 281 2056 1565 381 117 2.54

Table 2: Distribution of n-gram lengths in common word and surname models. The table shows the number of distinct

n-grams in the model for each value of n, regardless of the number of instances of each n-gram found in the training data.

Common word models Surname models

1 2 3 4 5 All 1 2 3 4 5 All

CS 0.02 0.11 0.31 0.35 0.29 0.16 0.02 0.08 0.22 0.62 0.80 0.17

PL 0.02 0.10 0.28 0.41 0.50 0.16 0.02 0.07 0.16 0.28 0.41 0.13

SE 0.03 0.10 0.25 0.47 0.56 0.19 0.02 0.09 0.13 0.29 0.32 0.12

DA 0.02 0.11 0.25 0.53 0.86 0.20 0.02 0.09 0.14 0.41 0.56 0.15

DE 0.02 0.09 0.21 0.46 0.57 0.17 0.02 0.09 0.19 0.63 0.80 0.15

NL 0.03 0.09 0.20 0.42 0.40 0.18 0.02 0.08 0.19 0.67 1.00 0.15

EN 0.03 0.10 0.32 0.47 0.50 0.21 0.02 0.07 0.26 0.72 1.00 0.15

FR 0.02 0.08 0.31 0.57 0.67 0.21 0.02 0.07 0.26 0.47 0.00 0.14

PT 0.02 0.07 0.30 0.57 0.70 0.21 0.03 0.06 0.26 0.46 0.62 0.16

ES 0.03 0.07 0.27 0.50 0.77 0.20 0.02 0.06 0.25 0.35 0.33 0.14

IT 0.03 0.08 0.28 0.52 0.64 0.21 0.03 0.03 0.18 0.55 1.00 0.15

Table 3: Fraction of distinct n-grams that include the end-of-string, i.e. match suf�xes.

curacy of the name models.

5. Distinctive Features

Having introduced the notion of an n-gram's `quality' or

`usefulness' as a language discriminator, we turn our at-

tention to a way to quantify this notion so that models can

be compared based on how good discriminators they com-

prise. This quanti�cation is based on the notion of informa-

tion content and entropy.

Entropy is a measure of the lack of order, originally intro-

duced in thermodynamic systems. Shannon (1948) trans-

ferred the concept in information theory, de�ning it as the

expected (on average) number of digits required to encode

a message, using the most ef�cient encoding possible. For

an alphabet of k distinct symbols, appearing with relative

frequencies pi, i = 1..k, the information content of symbol

i is − log pi bits. The entropy of the encoding is then the

generic language models of both languages, but is (also as ex-

pected) absent from the name models. The Gaelic derivational

pre�xes Mac- and Mc- appear in the English surnames, but not

frequently enough to even appear in the n-grams of the English

names model, with 83 and 31 instances in 1132 names, resp.

weighted average of the information contents of all sym-

bols:

H = −
k∑

i=1

pi log pi

and estimates the number of digits necessary to transmit

each symbol. Low values of entropy imply a high level of

organization and the existence of patterns in the signal.

Given the appearance of an n-gram, we consider the pre-

dicted language the `signal' that needs to be transmitted.

The information content of each language is, then, the neg-

ative logarithm of the probability with which this language

is predicted given the appearance of the n-gram; this prob-

ability is estimated by the weight assigned to the n-gram
in each language's model, since heavier weights for a lan-

guage make it more likely that this language will be pre-

dicted. We can now calculate the entropy of the n-gram as

a whole, and use this to estimate the overall `transmission

ef�ciency,' i.e., how good the n-gram is at restricting the

choice of language symbols that might be transmitted, so

that the signal can be compressed.

To make this clearer, compare the distribution of the n-
grams e and rz (Figures 2 and 3). The former is commonly
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Common word models Surname models

1 2 3 4 5 All 1 2 3 4 5 All

CS 0.31 0.20 0.37 0.46 0.17 0.28 0.28 0.18 0.39 0.75 0.84 0.27

PL 0.28 0.18 0.32 0.53 0.56 0.25 0.23 0.15 0.28 0.50 0.50 0.23

DE 0.28 0.19 0.33 0.60 0.68 0.27 0.25 0.16 0.32 0.66 0.84 0.24

DA 0.29 0.19 0.37 0.63 0.88 0.28 0.25 0.16 0.28 0.64 0.62 0.25

SE 0.30 0.20 0.38 0.65 0.68 0.29 0.23 0.15 0.26 0.53 0.54 0.23

NL 0.31 0.20 0.34 0.59 0.50 0.30 0.26 0.17 0.31 0.73 1.00 0.25

EN 0.33 0.21 0.41 0.66 0.72 0.32 0.26 0.17 0.37 0.77 1.00 0.25

FR 0.32 0.21 0.45 0.73 0.67 0.31 0.26 0.16 0.32 0.50 0.00 0.23

PT 0.33 0.21 0.44 0.68 0.76 0.32 0.28 0.17 0.35 0.55 0.77 0.26

ES 0.33 0.21 0.44 0.71 0.80 0.33 0.27 0.17 0.33 0.39 0.38 0.25

IT 0.35 0.21 0.41 0.68 0.73 0.33 0.25 0.15 0.31 0.70 1.00 0.24

Table 4: Fraction of n-gram instances that include the end-of-string, i.e. match suf�xes.

Figure 2: Distribution of occurrences of the unigram e. The

numbers are normalized to represent the per-mil fraction of

all words in all languages where it appears as a unigram of

a given language. The entropy of this distribution is 1.79

Figure 3: Distribution of occurrences of the bigram rz. The

numbers are normalized to represent the per-mil fraction of

all words in all languages where it appears as a unigram of

a given language. The entropy of this distribution is 0.04

found across all languages, so that its presence does not

help much compress the encoding of the language it pre-

dicted, as all languages are more or less likely to be pre-

dicted, and this unigram has a high entropy. The bigram rz,

on the other hand, is very informative and drastically sharp-

ens the distribution of possible predictions in its presence,

so that it has a very low entropy.

After calculating and adding up the entropy of all n-grams

in the generic language models we �nd a total of 934.3, ver-

Common Names

Entropy Entropy F-score

PL 119.4 103.20 0.67

IT 152.8 141.28 0.60

EN 123.3 130.95 0.58

SE 126.2 135.78 0.56

DE 135.4 143.43 0.55

DA 147.2 137.84 0.49

CS 129.9 125.65 0.44

PT 150.7 141.12 0.40

ES 151.2 149.20 0.39

FR 155.6 144.39 0.37

NL 121.4 132.79 0.36

SUM 1512.9 1485.62

Table 5: Entropies of distributions of n-grams of each lan-

guage versus all the rest. The F-scores from Figure 1 are

also shown.

sus 932.4 for all n-grams in the surnames models. Again,

this difference is too small to account for the observed in-

crease in prediction accuracy.

A further re�nement of this calculation is necessary, in or-

der to take into account the fact that, in our example, the bi-

gram in Figure 3 is good at discriminating Polish from the

rest, but not particularly useful in discriminating, say, Span-

ish from Italian. In order to take this factor into account, we

need to evaluate how informative an n-gram is for each lan-

guage, as if 11 binary decisions were to be made, with each

decision placing a different language in juxtaposition with

the remaining 10.

We, thus, calculate for each n-gram in each language not

the entropy of its distribution among all languages as we

did before, but the sum of the entropies of these 11 one-

versus-all distributions. Summing up these sums for each

language, we get the results shown in Table 5.

What can be seen on this table is that, with the exception

of Czeck-Slovak and Italian, the general tendency is for the

entropy ranking to match the F-score ranking, a very strong

indication that this explains the performance of the name

models.
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6. Conclusions and Future Research

The �rst conclusion drawn from the experiments presented

in this paper is that people's names offer themselves for

more accurate language identi�cation than common words.

This conclusion has been repeatedly hinted at in previous

work on grapheme-to-phoneme conversion and transliter-

ation, where a language identi�cation pre-processing step

resulted in dramatic performance increase on the main task.

What is interesting to note is that the performance reported

here is on a par with the performance of human annotators,

who reported that they could only con�dently predict a per-

son's nationality in 43% of the data (cf. Section 2.2.).

What is, however, even more interesting and surprizing is

that the expected and intuitive explanation that surname for-

mation relies heavily on few and language-speci�c mor-

phemes does not hold (Section 4.). The application of infor-

mation theory concepts and techniques to quantifying fea-

tute quality, in pursuit of the features of names that make

the difference, gives inconclusive but promising evidence:

although the difference in the overall entropy of the models

is not signi�cant (934.3 vs. 932.4, cf. Section 5.) there

seems to be a strong correlation between the predictive ac-

curacy of the model and the one-versus-all quality measure

given on Table 5.

This result can guide future research on the subject, as it

can be used to identify the most promising features which

to focus further experiments on. The correlation between

the statistically extracted `important' n-grams on the one

hand, and n-grams that are known to be derivational mor-

phemes on the other can also give interesting hints. The

main effort in pursuing this direction would be the creation

of the morphological resources, as surnames derivation is

not a subject commonly treated computationally.

A second future research direction is that of using a cross-

linguistically uniform and uninformed representation. In

the experiments presented here a small step in this direction

was taken by dropping all diacritics, so that there will be

fewer chances for `easy guesses' based on characters only

found in a single language, but that creates the additional

problem of accurately making all necessary the grapheme-

to-phoneme conversions. An attractive alternative could be

based on the assumption that transliteration to a completely

different orthography to a large extend removes clues that

are based on orthographic idiosyncrasies of the original lan-

guage.
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